
van Emde Boas Trees

Venice, Italy, 3 February 2026

Giulio Ermanno Pibiri
Ca’ Foscari University of Venice

Problem definition

• Maintain a sorted integer set , for some universe size , under the
following operations and queries for an integer . 
 
- : return the smallest element in . 
- : return the largest element in . 
- : return “Yes” if , “No” otherwise. 
- : add to (assuming). 
- : remove from (assuming). 
- : return the smallest such that , or if no such element exists. 
- : return the largest such that , or if no such element exists.

S ⊆ {0,…, U − 1} U
0 ≤ x < U

Min() S
Max() S
Member(x) x ∈ S
Insert(x) x S x ∉ S
Delete(x) x S x ∈ S
Successor(x) y ∈ S y > x ⊥
Predecessor(x) y ∈ S y < x ⊥

Problem definition
• Problem. Maintain a dynamic, sorted, integer set , for some .

• Notes:

- We assume fits in memory words.

- is a set, hence no duplicates are allowed.

- Balanced binary search trees (like AVL trees and RB trees) 
solve the problem in time per op/query, 
where . This holds for general keys. 
 
Here, we deal with integers from a bounded domain.

S ⊆ {0,…, U − 1} U

U O(1)

S

O(log n)
n = |S |

Problem definition
• Problem. Maintain a dynamic, sorted, integer set , for some .

• Notes:

- We assume fits in memory words.

- is a set, hence no duplicates are allowed.

- Balanced binary search trees (like AVL trees and RB trees) 
solve the problem in time per op/query, 
where . This holds for general keys. 
 
Here, we deal with integers from a bounded domain.

S ⊆ {0,…, U − 1} U

U O(1)

S

O(log n)
n = |S |

• The solution we are going to describe was first proposed by
Peter van Emde Boas in 1975, and later refined in 1977. Peter van Emde Boas

Plain bitvector

• Idea. Use a bitvector of bits where iff . 
(Sometimes called the characteristic bitvector of .)

• Example for and .

B[0..U − 1] U B[x] = 1 x ∈ S
S

U = 16 S = {2,4,7,13}

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0

0 1 2

B
3 4 5 6 7 8 9 10 11 12 13 14 15

• Insert/Delete : flip bit in position .

• : check bit in position .

• Runtime is .

x x
Member(x) x

O(1)
• But Min/Max, Predecessor/Successor are

slow: time by scanning .O(U) B

Chunking

• Idea. Split into chunks of bits. Define a new bitvector such that
 iff chunk is not empty. (We assume divides .)

• Intuition. Use the summary as a shortcut, avoiding to scan the entire bitvector.

• In general, ops/queries operate on the summary and at most two chunks: time,
which is minimized for .

B R summary[0..U/R − 1]
summary[i] = 1 i R U

O(U/R + R)
R = U

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0

0 1 2

B
3

1 1 0 1summary
0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary
0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary

:Predecessor(13)

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary

:Predecessor(13)

0 1 2 3

- Retrieve Min from chunk .⌊13/4⌋

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary

:Predecessor(13)

0 1 2 3

- Retrieve Min from chunk .⌊13/4⌋
- Is Min larger than ?13 mod 4

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary

:Predecessor(13)

0 1 2 3

- Retrieve Min from chunk .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary

:Predecessor(13)

0 1 2 3

- Retrieve Min from chunk .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3.

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary

:Predecessor(13)

0 1 2 3

- Retrieve Min from chunk .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3.

- Reconstruct answer: .3 + 1 × 4 = 7

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary

:Predecessor(13)

0 1 2 3

:Insert(9)

- Retrieve Min from chunk .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3.

- Reconstruct answer: .3 + 1 × 4 = 7

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary

:Predecessor(13)

0 1 2 3

:Insert(9)

- Retrieve Min from chunk .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3.

- Reconstruct answer: .3 + 1 × 4 = 7

- Is chunk empty? Yes.⌊9/4⌋

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary

:Predecessor(13)

0 1 2 3

:Insert(9)

- Retrieve Min from chunk .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3.

- Reconstruct answer: .3 + 1 × 4 = 7

- in chunk .Insert(9 mod 4) ⌊9/4⌋

1

- Is chunk empty? Yes.⌊9/4⌋

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary

:Predecessor(13)

0 1 2 3

:Insert(9)

- Retrieve Min from chunk .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3.

- Reconstruct answer: .3 + 1 × 4 = 7

- in chunk .Insert(9 mod 4) ⌊9/4⌋

1

- Previous query returned “Yes”, so 
 on summary.Insert(⌊9/4⌋)

1

- Is chunk empty? Yes.⌊9/4⌋

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary

:Predecessor(13)

0 1 2 3

:Insert(9)

:Delete(9)

- Retrieve Min from chunk .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3.

- Reconstruct answer: .3 + 1 × 4 = 7

- in chunk .Insert(9 mod 4) ⌊9/4⌋

1

- Previous query returned “Yes”, so 
 on summary.Insert(⌊9/4⌋)

1

- Is chunk empty? Yes.⌊9/4⌋

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary

:Predecessor(13)

0 1 2 3

:Insert(9)

:Delete(9)

- Retrieve Min from chunk .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3.

- Reconstruct answer: .3 + 1 × 4 = 7

- in chunk .Insert(9 mod 4) ⌊9/4⌋

1

- Previous query returned “Yes”, so 
 on summary.Insert(⌊9/4⌋)

1

- from chunk .Delete(9 mod 4) ⌊9/4⌋

0

- Is chunk empty? Yes.⌊9/4⌋

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary

:Predecessor(13)

0 1 2 3

:Insert(9)

:Delete(9)

- Retrieve Min from chunk .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3.

- Reconstruct answer: .3 + 1 × 4 = 7

- in chunk .Insert(9 mod 4) ⌊9/4⌋

1

- Previous query returned “Yes”, so 
 on summary.Insert(⌊9/4⌋)

1
- Is chunk empty?⌊9/4⌋
- from chunk .Delete(9 mod 4) ⌊9/4⌋

0

- Is chunk empty? Yes.⌊9/4⌋

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary

:Predecessor(13)

0 1 2 3

:Insert(9)

:Delete(9)

- Retrieve Min from chunk .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3.

- Reconstruct answer: .3 + 1 × 4 = 7

- in chunk .Insert(9 mod 4) ⌊9/4⌋

1

- Previous query returned “Yes”, so 
 on summary.Insert(⌊9/4⌋)

1
- Is chunk empty?⌊9/4⌋
- from chunk .Delete(9 mod 4) ⌊9/4⌋

0

- Yes, so also from summary.Delete(⌊9/4⌋)0

- Is chunk empty? Yes.⌊9/4⌋

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary

:Predecessor(13)

0 1 2 3

:Insert(9)

:Delete(9)

- Retrieve Min from chunk .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3.

- Reconstruct answer: .3 + 1 × 4 = 7

- in chunk .Insert(9 mod 4) ⌊9/4⌋

1

- Previous query returned “Yes”, so 
 on summary.Insert(⌊9/4⌋)

1
- Is chunk empty?⌊9/4⌋
- from chunk .Delete(9 mod 4) ⌊9/4⌋

0

- Yes, so also from summary.Delete(⌊9/4⌋)0

- Is chunk empty? Yes.⌊9/4⌋

In general, we
recurse twice: 

on the summary
and on a chunk.

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Towards van Emde Boas trees — Recursion

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary
0 1 2 3

• We let 
 and

.
high(x) := ⌊x/ U⌋
low(x) := x mod U

{2} {0,3} Ø {1}

x high(x) low(x)
2 0 2
4 1 0
7 1 3

13 3 1

{0,1,3}

• Now that we have a solution that runs in time for a universe size , we can use it
for both the summary and the chunks, recursively, over a universe size .

O(U) U
U

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

summary {0,1,3}

{2} {0,3} Ø {1}

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

summary {0,1,3}

{2} {0,3} Ø {1}

:Min()

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

summary {0,1,3}

{2} {0,3} Ø {1}

:Min()
- Answer on summary.i = Min()

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

summary {0,1,3}

{2} {0,3} Ø {1}

:Min()
- Answer on summary.i = Min()
- If , return .i = ⊥ ⊥
- Otherwise, return on child .Min() i

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

summary {0,1,3}

{2} {0,3} Ø {1}

:Min() Runtime is 
.T(U) ≤ Θ(1) + 2T(U), T(2) = Θ(1)- Answer on summary.i = Min()

- If , return .i = ⊥ ⊥
- Otherwise, return on child .Min() i

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

summary {0,1,3}

{2} {0,3} Ø {1}

:Min() Runtime is 
.T(U) ≤ Θ(1) + 2T(U), T(2) = Θ(1)- Answer on summary.i = Min()

- If , return .i = ⊥ ⊥
- Otherwise, return on child .Min() i

Letting and , we have 
 . 

Hence .

w = log2 U R(w) = T(2w)
R(w) ≤ Θ(1) + 2R(w/2) → R(w) = O(w)

T(U) = O(log U)

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

summary {0,1,3}

{2} {0,3} Ø {1}

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

:Insert(9)

summary {0,1,3}

{2} {0,3} Ø {1}

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

:Insert(9)

summary {0,1,3}

{2} {0,3} Ø {1}

- in child .Insert(9 mod 4) ⌊9/4⌋

{1}

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

:Insert(9)

summary {0,1,3}

{2} {0,3} Ø {1}

- in summary.Insert(⌊9/4⌋)

{0,1,2,3}

- in child .Insert(9 mod 4) ⌊9/4⌋

{1}

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

:Insert(9)

Runtime is 
 .T(U) ≤ Θ(1) + 2T(U), T(2) = Θ(1) → O(log U)

summary {0,1,3}

{2} {0,3} Ø {1}

- in summary.Insert(⌊9/4⌋)

{0,1,2,3}

- in child .Insert(9 mod 4) ⌊9/4⌋

{1}

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

summary {0,1,3}

{2} {0,3} Ø {1}

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

:Predecessor(13)

summary {0,1,3}

{2} {0,3} Ø {1}

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

:Predecessor(13)

summary {0,1,3}

{2} {0,3} Ø {1}

- Retrieve Min from child .⌊13/4⌋
- Is Min larger than ?13 mod 4

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

:Predecessor(13)

summary {0,1,3}

{2} {0,3} Ø {1}

- Retrieve Min from child .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

:Predecessor(13)

summary {0,1,3}

{2} {0,3} Ø {1}

- Retrieve Min from child .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from child 1, which is 3.

- Reconstruct answer: .3 + 1 × 4 = 7

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

:Predecessor(13)
Runtime is 

.T(U) ≤ O(log U) + T(U), T(2) = Θ(1)

summary {0,1,3}

{2} {0,3} Ø {1}

- Retrieve Min from child .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from child 1, which is 3.

- Reconstruct answer: .3 + 1 × 4 = 7

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

:Predecessor(13)
Runtime is 

.T(U) ≤ O(log U) + T(U), T(2) = Θ(1)

summary {0,1,3}

{2} {0,3} Ø {1}

- Retrieve Min from child .⌊13/4⌋
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from child 1, which is 3.

- Reconstruct answer: .3 + 1 × 4 = 7

Letting and , we have 
 . 

Hence .

w = log2 U R(w) = T(2w)
R(w) ≤ O(w) + R(w/2) → R(w) = O(w)

T(U) = O(log U)

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

summary {0,1,3}

{2} {0,3} Ø {1}

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

summary {0,1,3}

{2} {0,3} Ø {1}

:Member(7)
- Answer from chunk .Member(7 mod 4) ⌊7/4⌋

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

Runtime is 
, .T(U) ≤ Θ(1) + T(U) T(2) = Θ(1)

summary {0,1,3}

{2} {0,3} Ø {1}

:Member(7)
- Answer from chunk .Member(7 mod 4) ⌊7/4⌋

Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

Runtime is 
, .T(U) ≤ Θ(1) + T(U) T(2) = Θ(1)

summary {0,1,3}

{2} {0,3} Ø {1}

Letting and , we have 
 . 

 
Hence .

w = log2 U R(w) = T(2w)
R(w) ≤ Θ(1) + R(w/2) → R(w) = O(log w)

T(U) = O(log log U)

:Member(7)
- Answer from chunk .Member(7 mod 4) ⌊7/4⌋

The story so far

• Chunking: runtime.

• Recursive chunking: runtime for most operations but membership in
.

O(U)
O(log U)

O(log log U)

The story so far

• Chunking: runtime.

• Recursive chunking: runtime for most operations but membership in
.

O(U)
O(log U)

O(log log U)

• … But imposing a complete binary tree on gives a solution with time for
all operations and queries. 

• Our goal: time for everything.

• Q. Where is the problem?

B O(log U)

O(log log U)

The story so far

• Chunking: runtime.

• Recursive chunking: runtime for most operations but membership in
.

O(U)
O(log U)

O(log log U)

• … But imposing a complete binary tree on gives a solution with time for
all operations and queries. 

• Our goal: time for everything.

• Q. Where is the problem?

B O(log U)

O(log log U)

• A. We recurse twice (or we do not spend per level): 
 
  
 
 whereas

O(1)

T(U) ≤ Θ(1) + 2T(U) → O(log U)

T(U) ≤ Θ(1) + T(U) → O(log log U)

Towards van Emde Boas trees — min/max out
• Take min and max elements out from every child and summary, without representing them

recursively.

• Intuition. Now and , as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries. 
With this change, we can always get the nice recurrence , .

Min() Max()

T(U) ≤ Θ(1) + T(U) T(2) = Θ(1)

summary {0,1,3}

{2} {0,3} Ø {1}

Towards van Emde Boas trees — min/max out
• Take min and max elements out from every child and summary, without representing them

recursively.

• Intuition. Now and , as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries. 
With this change, we can always get the nice recurrence , .

Min() Max()

T(U) ≤ Θ(1) + T(U) T(2) = Θ(1)

summary {0,1,3}

{2} {0,3} Ø {1}

min:  
max:

⊥
⊥

min: 0 
max: 3

{1}

min: 1 
max: 1

Ø

min: 2 
max: 2

Ø

min: 0 
max: 3

Ø

Towards van Emde Boas trees — min/max out
• Take min and max elements out from every child and summary, without representing them

recursively.

• Intuition. Now and , as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries. 
With this change, we can always get the nice recurrence , .

Min() Max()

T(U) ≤ Θ(1) + T(U) T(2) = Θ(1)

summary

:Predecessor(13)
- Retrieve Min from chunk . Now in .⌊13/4⌋ Θ(1)
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3. Now in .Θ(1)
- Reconstruct answer: .3 + 1 × 4 = 7{0,1,3}

{2} {0,3} Ø {1}

min:  
max:

⊥
⊥

min: 0 
max: 3

{1}

min: 1 
max: 1

Ø

min: 2 
max: 2

Ø

min: 0 
max: 3

Ø

Towards van Emde Boas trees — min/max out
• Take min and max elements out from every child and summary, without representing them

recursively.

• Intuition. Now and , as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries. 
With this change, we can always get the nice recurrence , .

Min() Max()

T(U) ≤ Θ(1) + T(U) T(2) = Θ(1)

summary

:Predecessor(13)
- Retrieve Min from chunk . Now in .⌊13/4⌋ Θ(1)
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3. Now in .Θ(1)
- Reconstruct answer: .3 + 1 × 4 = 7{0,1,3}

{2} {0,3} Ø {1}

min:  
max:

⊥
⊥

min: 0 
max: 3

{1}

min: 1 
max: 1

Ø

min: 2 
max: 2

Ø

min: 0 
max: 3

Ø

Towards van Emde Boas trees — min/max out
• Take min and max elements out from every child and summary, without representing them

recursively.

• Intuition. Now and , as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries. 
With this change, we can always get the nice recurrence , .

Min() Max()

T(U) ≤ Θ(1) + T(U) T(2) = Θ(1)

summary

:Predecessor(13)
- Retrieve Min from chunk . Now in .⌊13/4⌋ Θ(1)
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3. Now in .Θ(1)
- Reconstruct answer: .3 + 1 × 4 = 7{0,1,3}

{2} {0,3} Ø {1}

min:  
max:

⊥
⊥

min: 0 
max: 3

{1}

min: 1 
max: 1

Ø

min: 2 
max: 2

Ø

min: 0 
max: 3

Ø

:Insert(9)

Towards van Emde Boas trees — min/max out
• Take min and max elements out from every child and summary, without representing them

recursively.

• Intuition. Now and , as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries. 
With this change, we can always get the nice recurrence , .

Min() Max()

T(U) ≤ Θ(1) + T(U) T(2) = Θ(1)

summary

:Predecessor(13)
- Retrieve Min from chunk . Now in .⌊13/4⌋ Θ(1)
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3. Now in .Θ(1)
- Reconstruct answer: .3 + 1 × 4 = 7{0,1,3}

{2} {0,3} Ø {1}

min:  
max:

⊥
⊥

min: 0 
max: 3

{1}

min: 1 
max: 1

Ø

min: 2 
max: 2

Ø

min: 0 
max: 3

Ø

:Insert(9)
- Is chunk empty? Yes. Now in .⌊9/4⌋ Θ(1)

Towards van Emde Boas trees — min/max out
• Take min and max elements out from every child and summary, without representing them

recursively.

• Intuition. Now and , as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries. 
With this change, we can always get the nice recurrence , .

Min() Max()

T(U) ≤ Θ(1) + T(U) T(2) = Θ(1)

summary

:Predecessor(13)
- Retrieve Min from chunk . Now in .⌊13/4⌋ Θ(1)
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3. Now in .Θ(1)
- Reconstruct answer: .3 + 1 × 4 = 7{0,1,3}

{2} {0,3} Ø {1}

min:  
max:

⊥
⊥

min: 0 
max: 3

{1}

min: 1 
max: 1

Ø

min: 2 
max: 2

Ø

min: 0 
max: 3

Ø

:Insert(9)
- Is chunk empty? Yes. Now in .⌊9/4⌋ Θ(1)
- in chunk . Now in .Insert(9 mod 4) ⌊9/4⌋ Θ(1)

1
1

Towards van Emde Boas trees — min/max out
• Take min and max elements out from every child and summary, without representing them

recursively.

• Intuition. Now and , as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries. 
With this change, we can always get the nice recurrence , .

Min() Max()

T(U) ≤ Θ(1) + T(U) T(2) = Θ(1)

summary

:Predecessor(13)
- Retrieve Min from chunk . Now in .⌊13/4⌋ Θ(1)
- Is Min larger than ?13 mod 4
- No, so answer on summary.Predecessor(⌊13/4⌋) = 1
- Return Max from chunk 1, which is 3. Now in .Θ(1)
- Reconstruct answer: .3 + 1 × 4 = 7{0,1,3}

{2} {0,3} Ø {1}

min:  
max:

⊥
⊥

min: 0 
max: 3

{1}

min: 1 
max: 1

Ø

min: 2 
max: 2

Ø

min: 0 
max: 3

Ø

:Insert(9)
- Is chunk empty? Yes. Now in .⌊9/4⌋ Θ(1)
- in chunk . Now in .Insert(9 mod 4) ⌊9/4⌋ Θ(1)

1
1

- Previous query returned “Yes”, so 
 on summary.Insert(⌊9/4⌋)

{1,2}

van Emde Boas trees — Rec. definition (graphical)

• A van Emde Boas tree for a universe , , is:U vEB(U)

vEB(U)

U min max

U min max

if U = 2

if U > 2vEB(U)summary children

vEB(U) vEB(U)…

U

Important note: the min/max elements are not recursively
represented in the children.

van Emde Boas trees — Example

vEB({2,4,6,7,13,14},16)

children

summary
: 16 

min: 2 
max: 14

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

vEB({1,3},4)

vEB(Ø,2)

children summary
 = 4, min = 1, max = 3U

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2) vEB({0},2)

children vEB({1},2)summary

vEB({0,2,3},4)

 = 4, min = 0, max = 3U

: 2 
min:  
max:

U
⊥
⊥

: 2 
min: 0 
max: 0

U

: 2 
min: 1 
max: 1

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥ vEB(Ø,2)

children summary

vEB({1,2},4)

 = 4, min = 1, max = 2U

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

van Emde Boas trees — Example

vEB({2,4,6,7,13,14},16)

children

summary
: 16 

min: 2 
max: 14

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

vEB({1,3},4)

vEB(Ø,2)

children summary
 = 4, min = 1, max = 3U

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2) vEB({0},2)

children vEB({1},2)summary

vEB({0,2,3},4)

 = 4, min = 0, max = 3U

: 2 
min:  
max:

U
⊥
⊥

: 2 
min: 0 
max: 0

U

: 2 
min: 1 
max: 1

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥ vEB(Ø,2)

children summary

vEB({1,2},4)

 = 4, min = 1, max = 2U

: 2 
min:  
max:

U
⊥
⊥

:Predecessor(13) 1 1 0 1

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

van Emde Boas trees — Example

vEB({2,4,6,7,13,14},16)

children

summary
: 16 

min: 2 
max: 14

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

vEB({1,3},4)

vEB(Ø,2)

children summary
 = 4, min = 1, max = 3U

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2) vEB({0},2)

children vEB({1},2)summary

vEB({0,2,3},4)

 = 4, min = 0, max = 3U

: 2 
min:  
max:

U
⊥
⊥

: 2 
min: 0 
max: 0

U

: 2 
min: 1 
max: 1

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥ vEB(Ø,2)

children summary

vEB({1,2},4)

 = 4, min = 1, max = 2U

: 2 
min:  
max:

U
⊥
⊥

:Predecessor(13) 1 1 0 1
lowhigh

Min()

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

van Emde Boas trees — Example

vEB({2,4,6,7,13,14},16)

children

summary
: 16 

min: 2 
max: 14

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

vEB({1,3},4)

vEB(Ø,2)

children summary
 = 4, min = 1, max = 3U

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2) vEB({0},2)

children vEB({1},2)summary

vEB({0,2,3},4)

 = 4, min = 0, max = 3U

: 2 
min:  
max:

U
⊥
⊥

: 2 
min: 0 
max: 0

U

: 2 
min: 1 
max: 1

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥ vEB(Ø,2)

children summary

vEB({1,2},4)

 = 4, min = 1, max = 2U

: 2 
min:  
max:

U
⊥
⊥

:Predecessor(13) 1 1 0 1
Predecessor(high(13) = 3)

:Predecessor(3) 1 1

lowhigh

Min()

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

van Emde Boas trees — Example

vEB({2,4,6,7,13,14},16)

children

summary
: 16 

min: 2 
max: 14

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

vEB({1,3},4)

vEB(Ø,2)

children summary
 = 4, min = 1, max = 3U

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2) vEB({0},2)

children vEB({1},2)summary

vEB({0,2,3},4)

 = 4, min = 0, max = 3U

: 2 
min:  
max:

U
⊥
⊥

: 2 
min: 0 
max: 0

U

: 2 
min: 1 
max: 1

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥ vEB(Ø,2)

children summary

vEB({1,2},4)

 = 4, min = 1, max = 2U

: 2 
min:  
max:

U
⊥
⊥

:Predecessor(13) 1 1 0 1
Predecessor(high(13) = 3)

:Predecessor(3) 1 1

lowhigh

Min()

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥ high low

van Emde Boas trees — Example

vEB({2,4,6,7,13,14},16)

children

summary
: 16 

min: 2 
max: 14

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

vEB({1,3},4)

vEB(Ø,2)

children summary
 = 4, min = 1, max = 3U

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2) vEB({0},2)

children vEB({1},2)summary

vEB({0,2,3},4)

 = 4, min = 0, max = 3U

: 2 
min:  
max:

U
⊥
⊥

: 2 
min: 0 
max: 0

U

: 2 
min: 1 
max: 1

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥ vEB(Ø,2)

children summary

vEB({1,2},4)

 = 4, min = 1, max = 2U

: 2 
min:  
max:

U
⊥
⊥

:Predecessor(13) 1 1 0 1
Predecessor(high(13) = 3)

:Predecessor(3) 1 1

lowhigh

Min()

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥ high low

Predecessor(high(3) = 1)

:Predecessor(1) 1
high/low

van Emde Boas trees — Example

vEB({2,4,6,7,13,14},16)

children

summary
: 16 

min: 2 
max: 14

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

vEB({1,3},4)

vEB(Ø,2)

children summary
 = 4, min = 1, max = 3U

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2) vEB({0},2)

children vEB({1},2)summary

vEB({0,2,3},4)

 = 4, min = 0, max = 3U

: 2 
min:  
max:

U
⊥
⊥

: 2 
min: 0 
max: 0

U

: 2 
min: 1 
max: 1

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥ vEB(Ø,2)

children summary

vEB({1,2},4)

 = 4, min = 1, max = 2U

: 2 
min:  
max:

U
⊥
⊥

:Predecessor(13) 1 1 0 1
Predecessor(high(13) = 3)

:Predecessor(3) 1 1

lowhigh

Min()

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥ high low

Predecessor(high(3) = 1)

:Predecessor(1) 1
high/low

van Emde Boas trees — Example

vEB({2,4,6,7,13,14},16)

children

summary
: 16 

min: 2 
max: 14

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

vEB({1,3},4)

vEB(Ø,2)

children summary
 = 4, min = 1, max = 3U

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2) vEB({0},2)

children vEB({1},2)summary

vEB({0,2,3},4)

 = 4, min = 0, max = 3U

: 2 
min:  
max:

U
⊥
⊥

: 2 
min: 0 
max: 0

U

: 2 
min: 1 
max: 1

U

vEB(Ø,2) vEB(Ø,2)

children vEB(Ø,2)summary

vEB(Ø,4)

: 2 
min:  
max:

U
⊥
⊥

: 2 
min:  
max:

U
⊥
⊥

 = 4, min = , max = U ⊥ ⊥

: 2 
min:  
max:

U
⊥
⊥ vEB(Ø,2)

children summary

vEB({1,2},4)

 = 4, min = 1, max = 2U

: 2 
min:  
max:

U
⊥
⊥

:Predecessor(13) 1 1 0 1
Predecessor(high(13) = 3)

:Predecessor(3) 1 1

lowhigh

Min()

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

vEB(Ø,2)

: 2 
min:  
max:

U
⊥
⊥

Max()

high low

Predecessor(high(3) = 1)

:Predecessor(1) 1
high/low

, min, maxU pointers children summary

• , and .S(U) = Θ(1) + Θ(U) + U ⋅ S(U) + S(U) S(2) = Θ(1)

van Emde Boas trees — Space

U min max

vEB(U)summary children

vEB(U) vEB(U)…

U

vEB(U)
• Recall what a stores.vEB(U)

van Emde Boas trees — Space

• , and .S(U) ≃ Θ(U) + U ⋅ S(U) S(2) = Θ(1)

• Letting , we have: 
 

w = log2 U

S(2w) = Θ(2w/2) + 2w/2S(2w/2) =
= Θ(2w/2) + Θ(23w/4) + 23w/4S(2w/4) =
= Θ(2w/2) + Θ(23w/4) + Θ(27w/8) + 27w/8S(2w/8) = …

= Θ(
log2 w

∑
i=1

2
2i − 1

2i w) = Θ(2w ⋅
log2 w

∑
i=1

2−w/2i) = Θ(2w ⋅
log2 w−1

∑
j=0

2−2j) = Θ(2w) = Θ(U) .

by induction

by linearity change variable j = log2 w − i

truncated Kempner number, 
.≈ 0.81642

Summary
• The vEB tree maintains a sorted integer set, whose elements are less than a known quantity

, in worst-case time and space . (It can be built in time: solution
to the recurrence , with .)

• Key insight. The -bit representation of an integer can be split recursively to speed up
operations and queries.

U O(log log U) O(U) O(U)
T(U) = T(U) + U ⋅ T(U) T(2) = Θ(1)

log2 U

Summary
• The vEB tree maintains a sorted integer set, whose elements are less than a known quantity

, in worst-case time and space . (It can be built in time: solution
to the recurrence , with .)

• Key insight. The -bit representation of an integer can be split recursively to speed up
operations and queries.

U O(log log U) O(U) O(U)
T(U) = T(U) + U ⋅ T(U) T(2) = Θ(1)

log2 U

• Q. Is this better than a balanced search tree?

Summary
• The vEB tree maintains a sorted integer set, whose elements are less than a known quantity

, in worst-case time and space . (It can be built in time: solution
to the recurrence , with .)

• Key insight. The -bit representation of an integer can be split recursively to speed up
operations and queries.

U O(log log U) O(U) O(U)
T(U) = T(U) + U ⋅ T(U) T(2) = Θ(1)

log2 U

• Q. Is this better than a balanced search tree?

• A. It depends on the relationship between (number of keys currently in the set) and .n U

Summary
• The vEB tree maintains a sorted integer set, whose elements are less than a known quantity

, in worst-case time and space . (It can be built in time: solution
to the recurrence , with .)

• Key insight. The -bit representation of an integer can be split recursively to speed up
operations and queries.

U O(log log U) O(U) O(U)
T(U) = T(U) + U ⋅ T(U) T(2) = Θ(1)

log2 U

• Q. Is this better than a balanced search tree?

• A. It depends on the relationship between (number of keys currently in the set) and .n U

• For example, if then and vEB trees are not
asymptotically faster than AVL nor RB trees.

U = O(2n) log2 log2 U = O(log n)

Summary
• The vEB tree maintains a sorted integer set, whose elements are less than a known quantity

, in worst-case time and space . (It can be built in time: solution
to the recurrence , with .)

• Key insight. The -bit representation of an integer can be split recursively to speed up
operations and queries.

U O(log log U) O(U) O(U)
T(U) = T(U) + U ⋅ T(U) T(2) = Θ(1)

log2 U

• Q. Is this better than a balanced search tree?

• A. It depends on the relationship between (number of keys currently in the set) and .n U

• For example, if then and vEB trees are not
asymptotically faster than AVL nor RB trees.

U = O(2n) log2 log2 U = O(log n)

• However, if for some then and vEB trees are
exponentially faster than AVL and RB trees.

U = nc c ≥ 1 log2 log2 U = Θ(log log n)

Optimal predecessor search

• In 2006, Pătrașcu and Thorup published a landmark result 
 
 Time-Space Trade-Offs for Predecessor Search, STOC 2006 
 
showing that vEB is optimal for predecessor search for polynomial universes
(,).

• Intuition: if the set is dense (is close to), it is faster to search over the binary
representation of the integers directly, like vEB. If, instead, the set is sparse, we
should just search the keys.

U = nc c ≥ 1

n U

Mihai Pătrașcu Mikkel Thorup

Caveats and issues

• Caveat: must be known in advance and cannot change.

• Issue: Space usage . 
 
Not practical…

U

Θ(U)

Caveats and issues

• Caveat: must be known in advance and cannot change.

• Issue: Space usage . 
 
Not practical…

U

Θ(U)

But its principles inspired other data structures.

Caveats and issues

• Caveat: must be known in advance and cannot change.

• Issue: Space usage . 
 
Not practical…

U

Θ(U)

• Next week (10 Feb) spoiler: 
y-fast tries combines worst-case query time with space. 
(Insert/Delete is amortised.)

O(log log U) O(n)
O(log log U)

But its principles inspired other data structures.

• P. van Emde Boas, Preserving order in a forest in less than logarithmic time,
FOCS, 75-84, 1975.

• P. van Emde Boas; R. Kaas; E. Zijlstra, Design and implementation of an efficient
priority queue, Math. Syst. Theory, 99–127, 1977.

• P. van Emde Boas, Preserving order in a forest in less than logarithmic time and
linear space, Inf. Process. Lett. 6, 80–82, 1977.

• M. Pătraşcu, and M. Thorup. Time-space trade-offs for predecessor search,
STOC, 2006.

References

Bonus slides

Imposing a binary tree

• Idea. Impose a complete binary tree on top of . The leaves of the tree correspond to the bits
of ; an internal node stores the logical OR between the bits of its children.

• Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

B
B

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0

0 1 2

B
3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 0 0 1 0

1 1 0 1

1 1

1 • : from ,
navigate up in the tree until we
enter a node from the right that
has a 1 in its left child. Then return
the max of the subtree rooted in

. (If is the root and the bit in
 is 0, return .)

Predecessor(x) B[x]

v

v . left v
v . left ⊥

Imposing a binary tree

• Idea. Impose a complete binary tree on top of . The leaves of the tree correspond to the bits
of ; an internal node stores the logical OR between the bits of its children.

• Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

B
B

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0

0 1 2

B
3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 0 0 1 0

1 1 0 1

1 1

1 • : from ,
navigate up in the tree until we
enter a node from the right that
has a 1 in its left child. Then return
the max of the subtree rooted in

. (If is the root and the bit in
 is 0, return .)

Predecessor(x) B[x]

v

v . left v
v . left ⊥

Imposing a binary tree

• Idea. Impose a complete binary tree on top of . The leaves of the tree correspond to the bits
of ; an internal node stores the logical OR between the bits of its children.

• Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

B
B

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0

0 1 2

B
3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 0 0 1 0

1 1 0 1

1 1

1 • : from ,
navigate up in the tree until we
enter a node from the right that
has a 1 in its left child. Then return
the max of the subtree rooted in

. (If is the root and the bit in
 is 0, return .)

Predecessor(x) B[x]

v

v . left v
v . left ⊥

Imposing a binary tree

• Idea. Impose a complete binary tree on top of . The leaves of the tree correspond to the bits
of ; an internal node stores the logical OR between the bits of its children.

• Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

B
B

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0

0 1 2

B
3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 0 0 1 0

1 1 0 1

1 1

1 • : from ,
navigate up in the tree until we
enter a node from the right that
has a 1 in its left child. Then return
the max of the subtree rooted in

. (If is the root and the bit in
 is 0, return .)

Predecessor(x) B[x]

v

v . left v
v . left ⊥

Imposing a binary tree

• Idea. Impose a complete binary tree on top of . The leaves of the tree correspond to the bits
of ; an internal node stores the logical OR between the bits of its children.

• Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

B
B

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0

0 1 2

B
3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 0 0 1 0

1 1 0 1

1 1

1 • : from ,
navigate up in the tree until we
enter a node from the right that
has a 1 in its left child. Then return
the max of the subtree rooted in

. (If is the root and the bit in
 is 0, return .)

Predecessor(x) B[x]

v

v . left v
v . left ⊥

v

Imposing a binary tree

• Idea. Impose a complete binary tree on top of . The leaves of the tree correspond to the bits
of ; an internal node stores the logical OR between the bits of its children.

• Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

B
B

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0

0 1 2

B
3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 0 0 1 0

1 1 0 1

1 1

1 • : from ,
navigate up in the tree until we
enter a node from the right that
has a 1 in its left child. Then return
the max of the subtree rooted in

. (If is the root and the bit in
 is 0, return .)

Predecessor(x) B[x]

v

v . left v
v . left ⊥

v

Imposing a binary tree

• Idea. Impose a complete binary tree on top of . The leaves of the tree correspond to the bits
of ; an internal node stores the logical OR between the bits of its children.

• Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

B
B

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0

0 1 2

B
3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 0 0 1 0

1 1 0 1

1 1

1 • : from ,
navigate up in the tree until we
enter a node from the right that
has a 1 in its left child. Then return
the max of the subtree rooted in

. (If is the root and the bit in
 is 0, return .)

Predecessor(x) B[x]

v

v . left v
v . left ⊥

v

Imposing a binary tree

• Idea. Impose a complete binary tree on top of . The leaves of the tree correspond to the bits
of ; an internal node stores the logical OR between the bits of its children.

• Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

B
B

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0

0 1 2

B
3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 0 0 1 0

1 1 0 1

1 1

1 • : from ,
navigate up in the tree until we
enter a node from the right that
has a 1 in its left child. Then return
the max of the subtree rooted in

. (If is the root and the bit in
 is 0, return .)

Predecessor(x) B[x]

v

v . left v
v . left ⊥

v

The height of the tree is
 so all ops/queries 

run in .
log2 U

O(log U)

