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Problem definition

• Maintain a sorted integer set , for some universe size , under the 
following operations and queries for an integer . 
 
- : return the smallest element in . 
- : return the largest element in . 
- : return “Yes” if , “No” otherwise. 
- : add  to  (assuming ). 
- : remove  from  (assuming ). 
- : return the smallest  such that , or  if no such element exists. 
- : return the largest  such that , or  if no such element exists.

S ⊆ {0,…, U − 1} U
0 ≤ x < U

Min() S
Max() S
Member(x) x ∈ S
Insert(x) x S x ∉ S
Delete(x) x S x ∈ S
Successor(x) y ∈ S y > x ⊥
Predecessor(x) y ∈ S y < x ⊥



Problem definition
• Problem. Maintain a dynamic, sorted, integer set , for some .


• Notes:


- We assume  fits in  memory words.


-  is a set, hence no duplicates are allowed.


- Balanced binary search trees (like AVL trees and RB trees) 
solve the problem in  time per op/query, 
where . This holds for general keys. 
 
Here, we deal with integers from a bounded domain.

S ⊆ {0,…, U − 1} U

U O(1)

S

O(log n)
n = |S |
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• The solution we are going to describe was first proposed by 
Peter van Emde Boas in 1975, and later refined in 1977. Peter van Emde Boas



Plain bitvector

• Idea. Use a bitvector  of  bits where  iff . 
(Sometimes called the characteristic bitvector of .)


• Example for  and .

B[0..U − 1] U B[x] = 1 x ∈ S
S

U = 16 S = {2,4,7,13}

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0

0 1 2

B
3 4 5 6 7 8 9 10 11 12 13 14 15

• Insert/Delete : flip bit in position .

• : check bit in position .

• Runtime is .

x x
Member(x) x

O(1)
• But Min/Max, Predecessor/Successor are 

slow:  time by scanning .O(U) B



Chunking

• Idea. Split  into chunks of  bits. Define a new bitvector  such that 
 iff chunk  is not empty. (We assume  divides .)


• Intuition. Use the summary as a shortcut, avoiding to scan the entire bitvector.


• In general, ops/queries operate on the summary and at most two chunks:  time, 
which is minimized for .

B R summary[0..U/R − 1]
summary[i] = 1 i R U

O(U/R + R)
R = U

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0

0 1 2

B
3

1 1 0 1summary
0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3
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In general, we 
recurse twice: 

on the summary 
and on a chunk.

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3



Towards van Emde Boas trees — Recursion

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0B

1 1 0 1summary
0 1 2 3

• We let 
 and 

. 
high(x) := ⌊x/ U⌋
low(x) := x mod U

{2} {0,3} Ø {1}

x high(x) low(x)
2 0 2
4 1 0
7 1 3

13 3 1

{0,1,3}

• Now that we have a solution that runs in  time for a universe size , we can use it 
for both the summary and the chunks, recursively, over a universe size .

O( U) U
U

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3



Towards van Emde Boas trees
• Let’s see how efficient this data structure is.
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Letting  and , we have 
  . 

Hence .

w = log2 U R(w) = T(2w)
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T(U) = O(log U)
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Towards van Emde Boas trees
• Let’s see how efficient this data structure is.

Runtime is 
, .T(U) ≤ Θ(1) + T( U) T(2) = Θ(1)

summary {0,1,3}

{2} {0,3} Ø {1}

Letting  and , we have 
  . 

 
Hence .

w = log2 U R(w) = T(2w)
R(w) ≤ Θ(1) + R(w/2) → R(w) = O(log w)
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• Recursive chunking:  runtime for most operations but membership in 
.

O( U)
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• … But imposing a complete binary tree on  gives a solution with  time for 
all operations and queries. 

• Our goal:  time for everything.

• Q. Where is the problem?

B O(log U)

O(log log U)

• A. We recurse twice (or we do not spend  per level): 
 
                                   
 
            whereas         

O(1)

T(U) ≤ Θ(1) + 2T( U) → O(log U)

T(U) ≤ Θ(1) + T( U) → O(log log U)



Towards van Emde Boas trees — min/max out
• Take min and max elements out from every child and summary, without representing them 

recursively.


• Intuition. Now  and , as well as determining if a tree is empty, Insert/Delete into/from 
an empty tree, become constant-time ops/queries. 
With this change, we can always get the nice recurrence , .
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van Emde Boas trees — Rec. definition (graphical) 

• A van Emde Boas tree for a universe , , is:U vEB(U)

vEB(U)

U min max

U min max

if U = 2

if U > 2vEB( U)summary children

vEB( U) vEB( U)…

U

Important note: the min/max elements are not recursively 
represented in the children.
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, min, maxU pointers children summary

• , and .S(U) = Θ(1) + Θ( U) + U ⋅ S( U) + S( U) S(2) = Θ(1)

van Emde Boas trees — Space

U min max

vEB( U)summary children

vEB( U) vEB( U)…

U

vEB(U)
• Recall what a  stores.vEB(U)



van Emde Boas trees — Space

• , and .S(U) ≃ Θ( U) + U ⋅ S( U) S(2) = Θ(1)

• Letting , we have: 
 

w = log2 U

S(2w) = Θ(2w/2) + 2w/2S(2w/2) =
= Θ(2w/2) + Θ(23w/4) + 23w/4S(2w/4) =
= Θ(2w/2) + Θ(23w/4) + Θ(27w/8) + 27w/8S(2w/8) = …

= Θ(
log2 w

∑
i=1

2
2i − 1

2i w) = Θ(2w ⋅
log2 w

∑
i=1

2−w/2i) = Θ(2w ⋅
log2 w−1

∑
j=0

2−2j) = Θ(2w) = Θ(U) .

by induction

by linearity change variable j = log2 w − i

truncated Kempner number, 
.≈ 0.81642



Summary
• The vEB tree maintains a sorted integer set, whose elements are less than a known quantity 

, in worst-case time  and space . (It can be built in  time: solution 
to the recurrence , with .)


• Key insight. The -bit representation of an integer can be split recursively to speed up 
operations and queries.

U O(log log U) O(U) O(U)
T(U) = T( U) + U ⋅ T( U) T(2) = Θ(1)

log2 U
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• Q. Is this better than a balanced search tree?

• A. It depends on the relationship between  (number of keys currently in the set) and .n U

• For example, if  then  and vEB trees are not 
asymptotically faster than AVL nor RB trees.

U = O(2n) log2 log2 U = O(log n)



Summary
• The vEB tree maintains a sorted integer set, whose elements are less than a known quantity 

, in worst-case time  and space . (It can be built in  time: solution 
to the recurrence , with .)


• Key insight. The -bit representation of an integer can be split recursively to speed up 
operations and queries.

U O(log log U) O(U) O(U)
T(U) = T( U) + U ⋅ T( U) T(2) = Θ(1)

log2 U

• Q. Is this better than a balanced search tree?

• A. It depends on the relationship between  (number of keys currently in the set) and .n U

• For example, if  then  and vEB trees are not 
asymptotically faster than AVL nor RB trees.

U = O(2n) log2 log2 U = O(log n)

• However, if  for some  then  and vEB trees are 
exponentially faster than AVL and RB trees.

U = nc c ≥ 1 log2 log2 U = Θ(log log n)



Optimal predecessor search

• In 2006, Pătrașcu and Thorup published a landmark result 
 
    Time-Space Trade-Offs for Predecessor Search, STOC 2006 
 
showing that vEB is optimal for predecessor search for polynomial universes 
( , ).


• Intuition: if the set is dense (  is close to ), it is faster to search over the binary 
representation of the integers directly, like vEB. If, instead, the set is sparse, we 
should just search the keys.

U = nc c ≥ 1

n U

Mihai Pătrașcu Mikkel Thorup



Caveats and issues

• Caveat:  must be known in advance and cannot change.


• Issue: Space usage . 
 
Not practical…

U
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Caveats and issues

• Caveat:  must be known in advance and cannot change.


• Issue: Space usage . 
 
Not practical…

U

Θ(U)

• Next week (10 Feb) spoiler: 
y-fast tries combines  worst-case query time with  space. 
(Insert/Delete is  amortised.)

O(log log U) O(n)
O(log log U)

But its principles inspired other data structures.
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Imposing a binary tree

• Idea. Impose a complete binary tree on top of . The leaves of the tree correspond to the bits 
of ; an internal node stores the logical OR between the bits of its children.


• Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

B
B

0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0

0 1 2

B
3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 0 0 1 0

1 1 0 1

1 1

1 • : from , 
navigate up in the tree until we 
enter a node  from the right that 
has a 1 in its left child. Then return 
the max of the subtree rooted in 

. (If  is the root and the bit in 
 is 0, return .)

Predecessor(x) B[x]

v

v . left v
v . left ⊥
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The height of the tree is 
 so all ops/queries 

run in .
log2 U

O(log U)


