van Emde Boas Irees

Giulio Ermanno Pibiri

Ca’ Foscari University of Venice

o410
A
[=]

Venice, ltaly, 3 February 2026

Problem definition

* Maintain a sorted integer set S C {0,..., U — 1}, for some universe size U, under the
following operations and queries for an integer 0 < x < U.

- Min(): return the smallest element in §.

- Max(): return the largest element in .

- Member(x): return “Yes” if x € S, “No” otherwise.

- Insert(x): add x to S (assuming x & JS).

- Delete(x): remove x from S (assuming x € J9).

- Successor(x): return the smallest y € § such that y > x, or L if no such element exists.
- Predecessor(x): return the largest y € S such that y < x, or L if no such element exists.

Problem definition

* Problem. Maintain a dynamic, sorted, integer set S C {0,..., U — 1}, for some U.

e Notes:

- We assume U fits in O(1) memory words.

- S is a set, hence no duplicates are allowed.

- Balanced binary search trees (like AVL trees and RB trees)
solve the problem in O(log n) time per op/query,

where n = |S|. This holds for general keys.

Here, we deal with integers from a bounded domain.

Problem definition

* Problem. Maintain a dynamic, sorted, integer set S C {0,..., U — 1}, for some U.

e Notes:

- We assume U fits in O(1) memory words.

- S is a set, hence no duplicates are allowed.

- Balanced binary search trees (like AVL trees and RB trees)
solve the problem in O(log n) time per op/query,

where n = |S|. This holds for general keys.

Here, we deal with integers from a bounded domain.

* The solution we are going to describe was first proposed by
Peter van Emde Boas in 1975, and later refined in 1977.

7 a5
-
1' g

g
b

~
1

9

; T
» -

»
.
T il §

; L)
- , Y
'l
: ' e
| -
N - &
: =/
| {/
\
P

) i 8
o
e~

>u I
=y %
. :
f ')
’ ¢ '
i s,
Y

’\\,

LHINK

' THE [218) 4

Peter van Emde Boas

Plain bitvector

» ldea. Use a bitvector B|0..U — 1] of U bits where B[x] = 1 iff x € §.
(Sometimes called the characteristic bitvector of S.)

 ExampleforU = 16and S = {2,4,7,13}.

0 1 2 3 4 5 6 14 8 9 10 11 12 13 14 15

* |nsert/Delete x: flip bit in position Xx.
« Member(x): check bit in position x.
* Runtimeis O(1).

 But Min/Max, Predecessor/Successor are
slow: O(U) time by scanning B.

Chunking

 |Idea. Split B into chunks of R bits. Define a new bitvector summary|0..U/R — 1] such that
summary|i] = 1 iff chunk i is not empty. (We assume R divides U.)

* Intuition. Use the summary as a shortcut, avoiding to scan the entire bitvector.

* |In general, ops/queries operate on the summary and at most two chunks: O(U/R + R) time,
which is minimized for R =4/ U.

0 1 2 3
summary
g oo (of[ofo| Jolofo]ofo]ilofo
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

0 1 2 3

ek e

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

Predecessor(13):

0 1 2 3
summary
g oo (of[ofo| Jolofo]ofo]ilofo
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Chunking

Predecessor(13):
- Retrieve Min from chunk | 13/4].

o 1 2
e '\
» a0 EE0n onnn onoon
o 1 2 3 o 1 2 3 o 1 2 3 0o 1 2 3

Chunking

Predecessor(13):

- Retrieve Min from chunk | 13/4].
- Is Min larger than 13 mod 47

o 1 2
e '\
» a0 EE0n onnn onoon
o 1 2 3 o 1 2 3 o 1 2 3 0o 1 2 3

Chunking

Predecessor(13):

- Retrieve Min from chunk | 13/4].

- Is Min larger than 13 mod 47
- No, so answer Predecessor(|13/4|) = 1 on summary.

0 2
e '\
» a0 EE0n onnn onoon
o 1 2 3 o 1 2 3 o 1 2 3 0o 1 2 3

Chunking

Predecessor(13):

- Retrieve Min from chunk | 13/4].

- Is Min larger than 13 mod 47
- No, so answer Predecessor(|13/4|) = 1 on summary.

- Return Max from chunk 1, which is 3.

0 2
e '\
» a0 EE0n onan onon
o 1 2 3 0o 1 2 3 o 1 2 3 0o 1 2 3

Chunking

Predecessor(13):

- Retrieve Min from chunk | 13/4].

- Is Min larger than 13 mod 47
- No, so answer Predecessor(|13/4|) = 1 on summary.

- Return Max from chunk 1, which is 3.

- Reconstruct answer: 3+ 1 x4 =7/.

0 2
e '\
» a0 EE0n onan onon
o 1 2 3 0o 1 2 3 o 1 2 3 0o 1 2 3

Chunking

Predecessor(13): Insert(9):

- Retrieve Min from chunk | 13/4].

- Is Min larger than 13 mod 47
- No, so answer Predecessor(|13/4|) = 1 on summary.

- Return Max from chunk 1, which is 3.

- Reconstruct answer: 3+ 1 x4 =7/.

0 2
e '\
» a0 EE0n onan onon
o 1 2 3 0o 1 2 3 o 1 2 3 0o 1 2 3

Chunking

Predecessor(13): Insert(9):

- Retrieve Min from chunk [13/4]. - Is chunk |9/4 | empty? Yes.

- Is Min larger than 13 mod 47
- No, so answer Predecessor(|13/4|) = 1 on summary.

- Return Max from chunk 1, which is 3.

- Reconstruct answer: 3+ 1 x4 =7/.

0 2
e '\
» a0 EE0n onan onon
o 1 2 3 0o 1 2 3 o 1 2 3 0o 1 2 3

Chunking

Predecessor(13): Insert(9):
- Retrieve Min from chunk | 13/4]. - Is chunk |9/4| empty? Yes.
- Is Min larger than 13 mod 47 - Insert(9 mod 4) in chunk |9/4].

- No, so answer Predecessor(|13/4|) = 1 on summary.

- Return Max from chunk 1, which is 3.

- Reconstruct answer: 3+ 1 x4 =7/.

0 2
e '\
» a0 EE0n DRan onoon
o 1 2 3 0o 1 2 3 o 1 2 3 0o 1 2 3

Chunking

Predecessor(13): Insert():
- Retrieve Min from chunk | 13/4]. - Is chunk |9/4| empty? Yes.
- Is Min larger than 13 mod 47 - Insert(9 mod 4) in chunk |9/4].
- No, so answer Predecessor(|13/4]|) = 1 on summary. - Previous query returned “Yes”, so

- Return Max from chunk 1, which is 3. Insert(|9/4]) on summary.

- Reconstruct answer: 3+ 1 x4 =7/.

0 2
e '\
» a0 EE0n DRan onoon
o 1 2 3 0o 1 2 3 o 1 2 3 0o 1 2 3

Chunking

Predecessor(13): Insert():
- Retrieve Min from chunk | 13/4]. - Is chunk |9/4| empty? Yes.
- Is Min larger than 13 mod 47 - Insert(9 mod 4) in chunk |9/4].
- No, so answer Predecessor(|13/4]|) = 1 on summary. - Previous query returned “Yes”, so

- Return Max from chunk 1, which is 3. Insert(|9/4]) on summary.

- Reconstruct answer: 3+ 1 x4 =7/.
Delete(9):

0 2
e '\
» a0 EE0n DRan onoon
o 1 2 3 0o 1 2 3 o 1 2 3 0o 1 2 3

Chunking

Predecessor(13): Insert():
- Retrieve Min from chunk | 13/4]. - Is chunk |9/4| empty? Yes.
- Is Min larger than 13 mod 47 - Insert(9 mod 4) in chunk |9/4].
- No, so answer Predecessor(|13/4]|) = 1 on summary. - Previous query returned “Yes”, so

- Return Max from chunk 1, which is 3. Insert(|9/4]) on summary.

- Reconstruct answer: 3+ 1 x4 =7/.
Delete(9):

- Delete(9 mod 4) from chunk [9/4].

0 2
e '\
» a0 EE0n DDan onon
o 1 2 3 0o 1 2 3 o 1 2 3 0o 1 2 3

Chunking

Predecessor(13): Insert():
- Retrieve Min from chunk | 13/4]. - Is chunk |9/4| empty? Yes.
- Is Min larger than 13 mod 47 - Insert(9 mod 4) in chunk |9/4].
- No, so answer Predecessor(|13/4]|) = 1 on summary. - Previous query returned “Yes”, so

- Return Max from chunk 1, which is 3. Insert(|9/4]) on summary.

- Reconstruct answer: 3+ 1 x4 =7/.
Delete(9):

- Delete(9 mod 4) from chunk [9/4].
- Is chunk |9/4 | empty?

0 2
e '\
» a0 EE0n DDan onon
o 1 2 3 0o 1 2 3 o 1 2 3 0o 1 2 3

Chunking

Predecessor(13): Insert():
- Retrieve Min from chunk | 13/4]. - Is chunk |9/4| empty? Yes.
- Is Min larger than 13 mod 47 - Insert(9 mod 4) in chunk |9/4].
- No, so answer Predecessor(|13/4]|) = 1 on summary. - Previous query returned “Yes”, so

- Return Max from chunk 1, which is 3. Insert(|9/4]) on summary.

- Reconstruct answer: 3+ 1 x4 =7/.
Delete(9):

- Delete(9 mod 4) from chunk [9/4].
- Is chunk |9/4 | empty?

0 2
summary '\— Yes, so also Delete(|9/4|) from summary.
» A Aa0N oDon anon
o 1 2 3 0o 1 2 3 0o 1 2 3 0 1 2 3

Chunking

Predecessor(13): Insert():
- Retrieve Min from chunk | 13/4]. - Is chunk |9/4| empty? Yes.
- Is Min larger than 13 mod 47 - Insert(9 mod 4) in chunk |9/4].
- No, so answer Predecessor(|13/4]|) = 1 on summary. - Previous query returned “Yes”, so

- Return Max from chunk 1, which is 3. Insert(|9/4]) on summary.

- Reconstruct answer: 3+ 1 x4 =7/.
Delete(9):

- Delete(9 mod 4) from chunk [9/4].
- Is chunk |9/4 | empty?

0 2
summary - Yes, so also Delete(|9/4|) from summary.
In general, we
recurse twice:
-aoi0NpoD appEEREE oo
o 1 2 3 o 1 2 3 o 1 2 3 o 1 2 3

and on a chunk.

Towards van Emde Boas trees

» Now that we have a solution that runs in O(y/ U) time for a universe size U, we can use it
for both the summary and the chunks, recursively, over a universe size 1/ U.

e We let
o1 2 high(x) := Lx/\ﬁfj and
summary 10,1,35 ow(x) := x mod /U.

X high(x) | low(x)
2 0 2
i oo |offr]ojo] fofofofofio] o]0 RENEEENE
o 1 2 3 o 1 2 3 o 1 2 3 o 1 2 3 ! 1 >
13 3 1

2] 10,3} 3 oy

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

summary {0,1,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Min():

summary {0,1,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Min():

- Answer i = Min() on summary.

summary @1,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Min():
- Answer i = Min() on summary.

- Ifi =1, return L.
- Otherwise, return Min() on child i.

summary @1,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Min(): Runtime is
- Answer i = Min() on summary. I(U) <0() + 2T(\ﬁ]), 1(2) = O(1).
- Ifi =1, return L.
- Otherwise, return Min() on child i.

summary @1,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Min(): Runtime is
- Answer i = Min() on summary. I(U) <0() + ZT(\/?]), 1(2) = O(1).
- If1 =1, return L. Letting w = log, U and R(w) = T(2"), we have
- Otherwise, return Min() on child i. Rw) <0O(1)+ 2Rw/2) - R(w) = O(w).

Hence T(U) = O(log U).

summary @1,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

summary {0,1,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Insert(9):

summary {0,1,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Insert(9):
- Insert(9 mod 4) in child |9/4].

summary {0,1,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Insert(9):
- Insert(9 mod 4) in child |9/4].

- Insert(|9/4]) in summary.

summary {0,1,2,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Insert(9):
- Insert(9 mod 4) in child |9/4].

- Insert(|9/4|) in summary.

Runtime is

T(U) < O(1) + 2T(L/U), T(2) = ©(1) — O(log U).

summary {0,1,2,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

summary {0,1,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Predecessor(13):

summary {0,1,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Predecessor(13):

- Retrieve Min from child | 13/4].
- Is Min larger than 13 mod 47

summary {0,1,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Predecessor(13):

- Retrieve Min from child | 13/4].
- Is Min larger than 13 mod 47
- No, so answer Predecessor(|13/4|) = 1 on summary.

summary {03}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Predecessor(13):

- Retrieve Min from child | 13/4].
- Is Min larger than 13 mod 47
- No, so answer Predecessor(|13/4|) = 1 on summary.

- Return Max from child 1, which is 3.

- Reconstruct answer: 3+ 1 x4 =17.

summary {03}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Runtime is
Predecessor(13): T(U) < O(log U)
- Retrieve Min from child | 13/4].

- Is Min larger than 13 mod 47
- No, so answer Predecessor(|13/4|) = 1 on summary.

- Return Max from child 1, which is 3.

- Reconstruct answer: 3+ 1 x4 =17.

summary {03}

T/ U), T(2) = 6(1).

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Runtime is

Predecessor(13): T(U) < O(IOg U) T(\ﬁ]), T(Z) — @(1)
- Retrieve Min from child | 13/4].

Letting w = log, U and R(w) = T(2"), we have

- Is Min larger than 13 mod 47 R(w) < O(w) + R(w/2) = R(w) = O(w).
- No, so answer Predecessor(|13/4|) = 1 on summary. Hence T(U) = O(log U).

- Return Max from child 1, which is 3.

- Reconstruct answer: 3+ 1 x4 =17.

summary {03}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

summary {0,1,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Member('7):
- Answer Member(7 mod 4) from chunk |7/4].

summary {0,1,3}

10,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Member('7):
- Answer Member(7 mod 4) from chunk |7/4].

Runtime is

T(U) < 0(1) + TG/U), T(2) = 6(1).

summary {0,1,3}

10,3}

Towards van Emde Boas trees

e | et’s see how efficient this data structure is.

Member('7):
- Answer Member(7 mod 4) from chunk |7/4].

Runtime is
T(U) < 0(1) + TG/U), T(2) = 6(1).

Letting w = log, U and R(w) = T(2"), we have
R(w) <0O(1)+ Rw/2) - R(w) = O(logw).

|
Hence T(U) = O(log log U). summary {0,1,3}

10,3}

The story so far

» Chunking: 0(\/5) runtime.

« Recursive chunking: O(log U) runtime for most operations but membership in
O(loglog U).

The story so far

« Chunking: O(y/ U) runtime.
« Recursive chunking: O(log U) runtime for most operations but membership in

O(loglog U).

e ... Butimposing a complete binary tree on B gives a solution with O(log U) time for
all operations and queries.

e Our goal: O(log log U) time for everything.
* Q. Where is the problem?

The story so far

» Chunking: 0(\/6) runtime.

« Recursive chunking: O(log U) runtime for most operations but membership in

O(loglog U).

e ... Butimposing a complete binary tree on B gives a solution with O(log U) time for
all operations and queries.

e Our goal: O(log log U) time for everything.
* Q. Where is the problem?

« A. We recurse twice (or we do not spend O(1) per level):
T(U) < (1) +2T(/U) - O(log U)

whereas T(U) < O(1) + T(+/U) — O(loglog U)

Towards van Emde Boas trees

* Take min and max elements out from every child and summary, without representing them
recursively.

 [Intuition. Now Min() and Max(), as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries.

With this change, we can always get the nice recurrence T(U) < (1) + T(\ﬁ]), 1(2) = O(1).

summary {0,1,3}

Towards van Emde Boas trees

* Take min and max elements out from every child and summary, without representing them
recursively.

 [Intuition. Now Min() and Max(), as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries.

With this change, we can always get the nice recurrence T(U) < (1) + T(\ﬁ]), 1(2) = O(1).

min: O
max: 3

summary {1}

min: 2 min: 0 min: L min: 1
max: 2

max: 3 max: | max: 1

0

Towards van Emde Boas trees

* Take min and max elements out from every child and summary, without representing them
recursively.

 [Intuition. Now Min() and Max(), as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries.

With this change, we can always get the nice recurrence T(U) < (1) + T(\ﬁ]), 1(2) = O(1).

Predecessor(13):

- Retrieve Min from chunk | 13/4|. Now in ©(1).

- Is Min larger than 13 mod 47

- No, so answer Predecessor(|13/4|) = 1 on summary.

- Return Max from chunk 1, which is 3. Now in ®(1).
summary 1} - Reconstruct answer: 3 + 1 X4 =17.

min: O
max: 3

min: 2 min: O
max: 2

min: L min: 1

max: 3 max: | max: T

% % D

Towards van Emde Boas trees

* Take min and max elements out from every child and summary, without representing them
recursively.

 [Intuition. Now Min() and Max(), as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries.

With this change, we can always get the nice recurrence T(U) < (1) + T(\ﬁ]), 1(2) = O(1).

min: O
max: 3

summary {1}

min: 2 min: 0 min: L min: 1
max: 2

max: 3 max: | max: 1

0

Towards van Emde Boas trees

* Take min and max elements out from every child and summary, without representing them
recursively.

 [Intuition. Now Min() and Max(), as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries.

With this change, we can always get the nice recurrence T(U) < (1) + T(\ﬁ]), 1(2) = O(1).

Insert(9):
min: O
max: 3
summary {1}
min: 2 min: O min: L min: 1
max: 2 max: 3 max: | max: 1

0

Towards van Emde Boas trees

* Take min and max elements out from every child and summary, without representing them
recursively.

 [Intuition. Now Min() and Max(), as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries.

With this change, we can always get the nice recurrence T(U) < (1) + T(\ﬁ]), 1(2) = O(1).

Insert(9):
- Is chunk |9/4| empty? Yes. Now in O(1).

min: O
max: 3

summary {1}

min: 2 min: 0 min: L min: 1
max: 2

max: 3 max: | max: 1

0

Towards van Emde Boas trees

* Take min and max elements out from every child and summary, without representing them
recursively.

 [Intuition. Now Min() and Max(), as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries.

With this change, we can always get the nice recurrence T(U) < (1) + T(\ﬁ]), 1(2) = O(1).

Insert(9):
- Is chunk |9/4| empty? Yes. Now in O(1).

- Insert(9 mod 4) in chunk [9/4]. Now in O(1).

min: O
max: 3

summary {1}

min: 1
max: max: 1

min: 2 min: O
max: 2

max: 3

0

Towards van Emde Boas trees

* Take min and max elements out from every child and summary, without representing them
recursively.

 [Intuition. Now Min() and Max(), as well as determining if a tree is empty, Insert/Delete into/from
an empty tree, become constant-time ops/queries.

With this change, we can always get the nice recurrence T(U) < (1) + T(\ﬁ]), 1(2) = O(1).

Insert(9):
- Is chunk |9/4| empty? Yes. Now in O(1).

- Insert(9 mod 4) in chunk [9/4]. Now in O(1).

- Previous query returned “Yes”, so
Insert(|9/4|) on summary:.

min: O
max: 3

summary {1,2}

min: 1
max: max: 1

min: 2 min: O
max: 2

max: 3

0

van Emde Boas trees

» A van Emde Boas tree for a universe U, VEB(U), is:

/

VEB(U)

. O /s

summary — [0V children _’!llll! it U > 2

Important note: the min/max elements are not recursively
represented in the children.

van Emde Boas trees

VEB({1,3},4)

U=4, mn=1, max=3

vEB({2,4,6,7,13,14}, 16/ Ch"dren summary =% VEB(0.2)
U: 2

summary _
U:16 min: L
min: 2 children VEB(@ 2) VEB(@aZ) max: L
max: 14 -2 s
min: L min: L
max: 1 max: 1
VEB(@A‘) vEB({0,2,3},4) VEB(@,4) vEB({1,2}1,4)
U=4 min=1, max=_1 U=4 min=0, max = 3 U= 4, min = 1L, max= L U= 4 min=1. max =2
children summary — VEB(Q,2) children summary —VEB({1},2) children summary — vEB((®,2) children summary —> VEB(3,2)
’1 U: 2 " U 2 U: 2 ‘ U: 2
min: L min: 1 min: L min: 1
VEB(@,2) VEB(@,2) max: L VEB(©.2) VEB({0},2) max:1 VvEB(@,2) VEB(@.2) max: L VEB(@.2) VEB(9.2) i
U:2 U: 2 U:2 U:2 U: 2 U: 2 U: 2 U: 2
min: L min: L min: L min: O min: L min: L min: L min: L
max: | max: 1 max: L max: 0 max: L max: | max: L max: L

van Emde Boas trees

VEB({1,3},4)

U=4 min=1, max=3
summary =% VEB(@,2)

U 16 summary

min: 2 children VEB(@ 2) VEB(®,2)

max: 14 -2 -
min: L mi.n: 1
max: L max; L

vEB(Q,4)

U=4, mn=1, max=_1

VEB({0,2,3},4)
U=4 min=0,max =3

children summary — VEB(®,2) children summary —=&»VEB({1},2)

U: 2 " U: 2
min: L min: 1
VEB(0,2) VEB(9Q,2) max: L vEB(0,2) VEB({0},2) max: 1
U: 2 U:2 U: 2 U:2
min: L min: L min: L min: O

max: 1 max: L max; L max: 0

U:2
min: L
max: L

vVEB(0,4)

U=4, mn=1, max=_1
children summary — vEB((.2)

N

vVEB(0,2) VvEB(Q,2)

U:2
min: L
max: L

U:2
min: L
max: L

1101

Predecessor(13):

vVEB({1,2},4)

U=4 min=1, max =2
children summary —> VEB(Q,2)

U:2 { U:2
min: L min: L

max: | VvEB(@,2) VEB(9,2) max: L
U:2 U: 2
min: L min: L
max: L max: L

van Emde Boas trees

VEB({1,3},4)

U=4,mn=1, max=3 high low
h||dren summary =% VEB(@,2)
VEB({2.4.6,7,13,14},16 °
(: / . Predecessor(13): 1 1 0 1
summary .
U-16 min: L
min: 2 children VEB(@ 2) VEB(@’Z) e
max: 14 .. U:- 2 U o
min: L min: L
max: 1 max: 1
VEB(9.4) vEB({0,2,3},4) VEB(3.,4) VEB({1,2}.4)
=4, flin = Ly (s L U =4, min =0, max =3 U=4,min=1,max=1 U=4 min=1, max = 2
children summary — VEB(0,2) children summary —VEB({1},2) children summary — vEB((,2) children summary —> VEB(0,2)
’ U:2 r‘ U: 2 [J: 2 ‘ U: 2
min: L min: 1 mi.n: 1L min: L
vEB(@,2) VEB(@,2) max: L VEB(9,2) VEB({0},2) max: 1 VEB(®,2) VEB(@,2) nax: | VEB(@,2) VEB(9.2) max: L
U:2 U: 2 U:2 U:2 U: 2 U: 2 U: 2 U: 2
min: L min: L min: L min: O min: L min: L min: L min: L

max: | max: 1 max: L max: 0 max: L max: | max: L max: L

van Emde Boas trees

VEB({1,3},4)

Predecessor(high(13) = 3) U=4,min=1,max =3 high low
summary unz '
U-16 min: L
min: 2 children VEB(@ 2) VEB(@’z) e
max: 14 U:- 2 _
- mine L o Predecessor(3): 1 1
max: L max: L
VEB(9.4) vEB({0,2,3},4) VEB(3.,4) VEB({1,2}.4)
U=4,min=1,max=_1 U=4,mn=0,max=3 U=4min=1, max=1 U=4 min=1, max =2
children summary — VEB((,2) children summary —VEB({1},2) children summary — vEB((,2) children summary —> VEB(0,2)
’1 U:ZJ_ " rln]|n21 ,1 bz f‘ U-:Zl
min: . in: J_ min:
VEB(@,2) VEB(2,2) mac L VEB(@.2) VEB({0}.2) max:1 VEB(@,2) VEB(9.2) ol VEB@2) VEB(@.2) max: 1
U:2 U: 2 U:2 U:2 U: 2 U: 2 U: 2 U: 2
min: L min: L min: L min: O min: L min: L min: L min: L

max: | max: 1 max: L max: 0 max: L max: | max: L max: L

van Emde Boas trees

VEB({1,3},4)

Predecessor(high(13) = 3) U=4,min=1,max =3 high low
summary bz '
U-16 min: L |
min: 2 children VEB(@ 2) VEB(@Z) max: L high low
max: 14 U:- 2 _
- mine L o Predecessor(3): 1 1
max: L max: 1
VEB(9.4) vEB({0,2,3},4) VEB(3.,4) VEB({1,2}.4)
U=4,min=1, max=1 U=4,mn=0, max=3 U=4min=1, max=1 U=4 min=1, max =2
children summary — VEB(0,2) children summary —VEB({1},2) children summary — vEB((,2) children summary —> VEB(0,2)
’1 U:ZJ_ " rln]|n21 ,1 bz f‘ U-:Zl
min: . in: J_ min:
VEB(@,2) VEB(2,2) mac L VEB(@.2) VEB({0}.2) max:1 VEB(@,2) VEB(9.2) ol VEB@2) VEB(@.2) max: 1
U:2 U: 2 U:2 U:2 U: 2 U: 2 U: 2 U: 2
min: L min: L min: L min: O min: L min: L min: L min: L

max: | max: 1 max: L max: 0 max: L max: | max: L max: L

van Emde Boas trees

VEB({1,3},4)

Predecessor(high(13) = 3) U=4,mn=1max=3 Predecessor(high(3) = 1) high low
summary bz '
U-16 min: L |
min: 2 children VEB(@ 2) VEB(@,Z) max: L high low
max: 14 U:- 2 _
- mine L o Predecessor(3): 1 1
max: 1 max: L
high/low
Predecessor(l): 1
VEB(9.4) vEB({0,2,3},4) VEB(3.,4) VEB({1,2}.4)
U=4,min=1,max=1 U=4, mn=0, max=3 U=4min=1, max=1 U=4 min=1, max =2
children summary — VEB((,2) children summary —VEB({1},2) children summary — vEB((,2) children summary —> VEB(0,2)
S S N S
min: L mln.. 1 min: L min: L
vEB(®.,2) VEB(®,2) max: L VEB(@,2) VEB({0},2) LS VEB(@,2) VEB(G,2) nax: | VEB(@,2) VEB(9.2) max: L
U:2 U: 2 U:2 U:2 U: 2 U: 2 U: 2 U: 2
min: L min: L min: L min: O min: L min: L min: L min: L

max: | max: 1 max: L max: 0 max: L max: | max: L max: L

van Emde Boas trees

VEB({1,3},4)

Predecessor(high(13) = 3) U=4,mn=1max=3 Predecessor(high(3) = 1) high low
summary bz '
U-16 min: L |
min: 2 children VEB(@ 2) VEB(@,Z) max: L high low
max: 14 U:- 2 _
- mine L o Predecessor(3): 1 1
max: 1 max: L
high/low
Predecessor(l): 1
VEB(9.4) vEB({0,2,3},4) VEB(3.,4) VEB({1,2}.4)
U=4,min=1,max=1 U=4, mn=0, max=3 U=4min=1, max=1 U=4 min=1, max =2
children summary — VEB((,2) children summary —VEB({1},2) children summary — vEB((,2) children summary —> VEB(0,2)
S S N S
min: L mln.. 1 min: L min: L
vEB(®.,2) VEB(®,2) max: L VEB(@,2) VEB({0},2) LS VEB(@,2) VEB(G,2) nax: | VEB(@,2) VEB(9.2) max: L
U:2 U: 2 U:2 U:2 U: 2 U: 2 U: 2 U: 2
min: L min: L min: L min: O min: L min: L min: L min: L

max: | max: 1 max: L max: 0 max: L max: | max: L max: L

van Emde Boas trees

VEB({1,3},4)

Predecessor(high(13) = 3) U=4,mn=1max=3 Predecessor(high(3) = 1) high low
hlldren summary =% VEB(@,2)
VEB({2,4,6,7,13,141,16) ¢ _

U: 16 SHTED min: L |

min: 2 children VEB(@ 2) VEB(@,Z) max: L high low

max: 14 U: 2 :

1 2 v:2 Predecessor(3): 1 1
max: 1 max: L

high/low

Predecessor(l): 1

VEB(9.4) vEB({0,2,3},4) VEB(0,4) VEB({1,2}.4)
U=4 min=1, max=_1 U=4 mn=0 max =3 U=4 min=1, max =1 U=4 min =1, max =2
children summary — VEB((,2) children summary —VEB({1},2) children summary — vEB((,2) children summary —> VEB(0,2)
min: L min: 1 mi.n: 1 min: L
vEB(@,2) VEB(@,2) max: L VEB(©.2) VEB({0},2) max:1 VEB(@.2) VEB(@.2) max: L VEB(@.2) VEB(9.2) TERE L
U:2 U: 2 U:2 U:2 U: 2 U: 2 U: 2 U: 2
min: L min: L min: L min: O min: L min: L min: L min: L

max: | max: 1 max: L max: 0 max: L max: | max: L max: L

van Emde Boas trees

» Recall what a VEB(U) stores.
VEB(U)

summary — [RU=:1eV4% children _'!llll!

. S(U) =0(1) +BOH/U) +y/U-S4/U) + S4G/U), and S(2) = O(1).

U, min, max pointers children summary

van Emde Boas trees — Space

. S(U) ~OH/U)++/U-SH/U),and S(2) = O(1).

e Letting w = log, U, we have:

S(2%) = O(2"%) 4 2W2S§ (2% = by induction
truncated Kempner number,
= O(2"?) + O34 4 23WE5(W) = l ~ 0.81642.
— @(ZW/Z) i @(23w/4) 4 @(27w/8) n 27W/SS(2w/8) —
log, w log, w log, w—1

o525 ol 52)-

by linearity change variable j = log, w — 1

(Z 2—2’) — O2") = O(U).

Summary

* The VEB tree maintains a sorted integer set, whose elements are less than a known quantity
U, in worst-case time O(log log U) and space O(U). (It can be built in O(U) time: solution
VU

to the recurrence T(U) = T(\/U) + U T(\ﬁ]), with 7(2) = O(1).)

 Key insight. The log, U-bit representation of an integer can be split recursively to speed up
operations and queries.

Summary

* The VEB tree maintains a sorted integer set, whose elements are less than a known quantity
U, in worst-case time O(log log U) and space O(U). (It can be built in O(U) time: solution
VU

to the recurrence T(U) = T(\/U) + U T(\ﬁ]), with 7(2) = O(1).)

 Key insight. The log, U-bit representation of an integer can be split recursively to speed up
operations and queries.

e Q. Is this better than a balanced search tree?

Summary

* The VEB tree maintains a sorted integer set, whose elements are less than a known quantity
U, in worst-case time O(log log U) and space O(U). (It can be built in O(U) time: solution
VU

to the recurrence T(U) = T(\/U) + U T(\ﬁ]), with 7(2) = O(1).)

 Key insight. The log, U-bit representation of an integer can be split recursively to speed up
operations and queries.

e Q. Is this better than a balanced search tree?

* A. It depends on the relationship between n (number of keys currently in the set) and U.

Summary

* The VEB tree maintains a sorted integer set, whose elements are less than a known quantity
U, in worst-case time O(log log U) and space O(U). (It can be built in O(U) time: solution
VU

to the recurrence T(U) = T(\/U) + U T(\ﬁ]), with 7(2) = O(1).)

 Key insight. The log, U-bit representation of an integer can be split recursively to speed up
operations and queries.

e Q. Is this better than a balanced search tree?

* A. It depends on the relationship between n (number of keys currently in the set) and U.

« For example, if U = O(2") then log, log, U = O(log n) and vEB trees are not
asymptotically faster than AVL nor RB trees.

Summary

* The VEB tree maintains a sorted integer set, whose elements are less than a known quantity
U, in worst-case time O(log log U) and space O(U). (It can be built in O(U) time: solution
VU

to the recurrence T(U) = T(\/U) + U T(\ﬁ]), with 7(2) = O(1).)

 Key insight. The log, U-bit representation of an integer can be split recursively to speed up
operations and queries.

e Q. Is this better than a balanced search tree?

* A. It depends on the relationship between n (number of keys currently in the set) and U.

« For example, if U = O(2") then log, log, U = O(log n) and vEB trees are not
asymptotically faster than AVL nor RB trees.

» However, if U = n° for some ¢ > 1 then log, log, U = ©(log log n) and vEB trees are
exponentially faster than AVL and RB trees.

Optimal predecessor search

* |n 2006, Patrascu and Thorup published a landmark result

Time-Space Trade-Offs for Predecessor Search, STOC 2006

showing that vEB is optimal for predecessor search for polynomial universes

(U=nc>1.

Intuition: if the set is dense (n is close to U), it is faster to search over the binary

representation of the integers directly, like VEB. If, instead, the set is sparse, we

should just search the keys.

Mihai Patrascu

Mikkel Thorup

Caveats and issues

e Caveat: U must be known in advance and cannot change.

 |Issue: Space usage O(U).

Not practical...

Caveats and issues

« Caveat: U must be known in advance and cannot change.

 Issue: Space usage O(U).

Not practical...

But its principles inspired other data structures.

Caveats and issues

e Caveat: U must be known in advance and cannot change.

 |Issue: Space usage O(U).

Not practical...

But its principles inspired other data structures.

 Next week (10 Feb) spoiller:
y-fast tries combines O(log log U) worst-case query time with O(n) space.
(Insert/Delete is O(log log U) amortised.)

References

 P.van Emde Boas, Preserving order in a forest in less than logarithmic time,
FOGCS, 75-84, 1975.

 P.van Emde Boas; R. Kaas; E. Zijistra, Design and implementation of an efficient
priority queue, Math. Syst. Theory, 99-127, 1977.

 P.van Emde Boas, Preserving order in a forest in less than logarithmic time and
linear space, Inf. Process. Lett. 6, 80-82, 1977.

M. Patrascu, and M. Thorup. Time-space trade-offs for predecessor search,
STOC, 2006.

Bonus slides

Imposing a binary tree

* |dea. Impose a complete binary tree on top of B. The leaves of the tree correspond to the bits
of B; an internal node stores the logical OR between the bits of its children.

* Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

/ \ « Predecessor(x): from B|[x],
navigate up in the tree until we
enter a node v from the right that
/ \ / \ has a 1 in its left child. Then return
the max of the subtree rooted In

N /N /N N\ ptemerdtand e
FATATLEE

v.leftis O, return 1))

Imposing a binary tree

* |dea. Impose a complete binary tree on top of B. The leaves of the tree correspond to the bits
of B; an internal node stores the logical OR between the bits of its children.

* Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

/ \ « Predecessor(x): from B|[x],
navigate up in the tree until we
enter a node v from the right that
/ \ / \ has a 1 in its left child. Then return
the max of the subtree rooted In

N /N /N N\ ptemerdtand e
FATATLEE

v.leftis O, return 1))

Imposing a binary tree

* |dea. Impose a complete binary tree on top of B. The leaves of the tree correspond to the bits
of B; an internal node stores the logical OR between the bits of its children.

* Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

/ \ « Predecessor(x): from B|[x],
navigate up in the tree until we
enter a node v from the right that
/ \ / \ has a 1 in its left child. Then return
the max of the subtree rooted In

N /N /N N\ et e
FATATLEE

v.leftis O, return 1))

Imposing a binary tree

* |dea. Impose a complete binary tree on top of B. The leaves of the tree correspond to the bits
of B; an internal node stores the logical OR between the bits of its children.

* Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

/ \ « Predecessor(x): from B|[x],
navigate up in the tree until we
enter a node v from the right that
/ \ / \ has a 1 in its left child. Then return
the max of the subtree rooted In

N /N /N N\ pmtemerdtand e
FATATLEE

v.leftis O, return 1))

Imposing a binary tree

* |dea. Impose a complete binary tree on top of B. The leaves of the tree correspond to the bits
of B; an internal node stores the logical OR between the bits of its children.

* Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

v
/ \ « Predecessor(x): from B|[x],
navigate up in the tree until we
enter a node v from the right that
/ \ / \ has a 1 in its left child. Then return
the max of the subtree rooted In

N /N /N N\ pmtemerdtand e
FATATLEE

v.leftis O, return 1))

Imposing a binary tree

* |dea. Impose a complete binary tree on top of B. The leaves of the tree correspond to the bits
of B; an internal node stores the logical OR between the bits of its children.

* Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

v
/ \ « Predecessor(x): from B|[x],
navigate up in the tree until we
enter a node v from the right that
/ \ / \ has a 1 in its left child. Then return
the max of the subtree rooted In

N /N /N N\ pmtemerdtand e
L

v.leftis O, return 1))

Imposing a binary tree

* |dea. Impose a complete binary tree on top of B. The leaves of the tree correspond to the bits
of B; an internal node stores the logical OR between the bits of its children.

* Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

v
/ \ « Predecessor(x): from B|[x],
navigate up in the tree until we
enter a node v from the right that
/ \ / \ has a 1 in its left child. Then return
the max of the subtree rooted In

éhﬁﬁﬁhék-‘*-‘hﬁ

v.leftis O, return 1))
I R R

Imposing a binary tree

* |dea. Impose a complete binary tree on top of B. The leaves of the tree correspond to the bits
of B; an internal node stores the logical OR between the bits of its children.

* Intuition. Use the tree to avoid scanning long runs on zeros upon Predecessor/Successor.

v
/ \ « Predecessor(x): from B|[x],
navigate up in the tree until we
enter a node v from the right that
/ \ / \ has a 1 in its left child. Then return
the max of the subtree rooted In

éhﬁﬁh&hék-‘*-‘hﬁ

The height of the tree is
log, U so all ops/queries

run in O(log U).

V. Ieft is 0, return L.)
| |1 |

