
Modular reference indexing with
the de Bruijn graph:
overview and challenges

INRIA Rennes, France, 20 October 2022

Giulio Ermanno Pibiri
Ca’ Foscari University of Venice and ISTI-CNR

@giulio_pibiri

@jermp

• Ph.D. in Computer Science from the University of Pisa in March 2019. 
(Compressed data structures with focus on application in IR and NLP.) 
 
Visiting Ph.D. student at RIKEN AIP (Tokyo, Japan) and University of Melbourne (Melbourne, Australia).

• Post-doc fellow in Computer Science at ISTI-CNR in Pisa from March 2019 - May 2022.

• As of June 2022: Assistant professor (tenure track) of Computer Science at Ca’ Foscari University of
Venice.

• More info at https://jermp.github.io.

About myself — Education

https://jermp.github.io

• Keywords: Data Structures, Algorithms, Data Compression, Indexing, Efficiency 

• Design compressed data structures and algorithms to index and search large quantities of data.

• Efficiency is the key to:

- build better applications in terms of reduced latency to access information 

(enhanced user experience);

- save computer resources (power and storage machines) save money.→

About myself — Research

• Keywords: Data Structures, Algorithms, Data Compression, Indexing, Efficiency 

• Design compressed data structures and algorithms to index and search large quantities of data.

• Efficiency is the key to:

- build better applications in terms of reduced latency to access information 

(enhanced user experience);

- save computer resources (power and storage machines) save money.→

Some Example Problems
• Inverted Indexes (TOIS’17, WSDM’19, TKDE’19, CSUR’20)

• Language Modeling (SIGIR’17, TOIS’19)

• RDF Triples (TKDE’20)

• Query Auto-Completion (SIGIR’20)

• Prefix-Sums (SPE’20)

• Bitmap Compression (DCC’21)

• Rank/Select Queries (INFOSYS’21)

• Minimal Perfect Hashing (SIGIR’21)

• K-mer Dictionaries (ISMB’22, WABI’22)

About myself — Research

• Keywords: Data Structures, Algorithms, Data Compression, Indexing, Efficiency 

• Design compressed data structures and algorithms to index and search large quantities of data.

• Efficiency is the key to:

- build better applications in terms of reduced latency to access information 

(enhanced user experience);

- save computer resources (power and storage machines) save money.→

Some Example Problems
• Inverted Indexes (TOIS’17, WSDM’19, TKDE’19, CSUR’20)

• Language Modeling (SIGIR’17, TOIS’19)

• RDF Triples (TKDE’20)

• Query Auto-Completion (SIGIR’20)

• Prefix-Sums (SPE’20)

• Bitmap Compression (DCC’21)

• Rank/Select Queries (INFOSYS’21)

• Minimal Perfect Hashing (SIGIR’21)

• K-mer Dictionaries (ISMB’22, WABI’22)

https://github.com/jermp

About myself — Research

https://github.com/jermp

• We are given a collection of reference sequences. Each is a
(large) sequence over the DNA alphabet {A,C,G,T}, .

• Problem. We want to build an index for so that we can answer the following
queries efficiently for any k-mer .

- Membership: does appear in ?

- Count: if so, how many times?

- Color: and in what references?

- Locate: and at what positions in the references?

ℛ = {R1, …, Rm} Ri
1 ≤ i ≤ m

ℛ
x

x ℛ

The reference indexing problem

• We are given a collection of reference sequences. Each is a
(large) sequence over the DNA alphabet {A,C,G,T}, .

• Problem. We want to build an index for so that we can answer the following
queries efficiently for any k-mer .

- Membership: does appear in ?

- Count: if so, how many times?

- Color: and in what references?

- Locate: and at what positions in the references?

ℛ = {R1, …, Rm} Ri
1 ≤ i ≤ m

ℛ
x

x ℛ

The reference indexing problem

• Applications: This problem is crucial for all applications where sequences are first
matched against known references (i.e., mapping/alignment algorithms): single-cell
RNA-seq, metagenomics, etc.

A look back to IR
• The reference indexing problem has been studied for decades in Information Retrieval (IR).

• is a collection of texts in natural-language (e.g., books, articles, Web pages, ect.).

• The classic solution is to use an inverted index.

ℛ

A look back to IR
• The reference indexing problem has been studied for decades in Information Retrieval (IR).

• is a collection of texts in natural-language (e.g., books, articles, Web pages, ect.).

• The classic solution is to use an inverted index.

ℛ

The bright blue
butterfly hangs
on the breeze.

It is best
to forget the

great sky and to
retire from every

wind.

Under blue
sky, in bright
sunlight, one

need not search
around.

a

and

around

every

for

from

in

is

it

not

on

one

the

to

under

Term Document
ID1 best 2

2 blue 1, 3
3 bright 1, 3
4 bufferfly 1
5 breeze 1
6 forget 2
7 great 2
8 hangs 1
9 need 3
10 retire 2
11 search 3
12 sky 2, 3
13 wind 2

Stopwords

1
3

2

A look back to IR
• The reference indexing problem has been studied for decades in Information Retrieval (IR).

• is a collection of texts in natural-language (e.g., books, articles, Web pages, ect.).

• The classic solution is to use an inverted index.

ℛ

The bright blue
butterfly hangs
on the breeze.

It is best
to forget the

great sky and to
retire from every

wind.

Under blue
sky, in bright
sunlight, one

need not search
around.

a

and

around

every

for

from

in

is

it

not

on

one

the

to

under

Term Document
ID1 best 2

2 blue 1, 3
3 bright 1, 3
4 bufferfly 1
5 breeze 1
6 forget 2
7 great 2
8 hangs 1
9 need 3
10 retire 2
11 search 3
12 sky 2, 3
13 wind 2

Stopwords

1
3

2

Query1 = “blue AND sky” 
 → [1,3] ∩ [2,3] = [3]

A look back to IR
• The reference indexing problem has been studied for decades in Information Retrieval (IR).

• is a collection of texts in natural-language (e.g., books, articles, Web pages, ect.).

• The classic solution is to use an inverted index.

ℛ

The bright blue
butterfly hangs
on the breeze.

It is best
to forget the

great sky and to
retire from every

wind.

Under blue
sky, in bright
sunlight, one

need not search
around.

a

and

around

every

for

from

in

is

it

not

on

one

the

to

under

Term Document
ID1 best 2

2 blue 1, 3
3 bright 1, 3
4 bufferfly 1
5 breeze 1
6 forget 2
7 great 2
8 hangs 1
9 need 3
10 retire 2
11 search 3
12 sky 2, 3
13 wind 2

Stopwords

1
3

2

Query1 = “blue AND sky” 
 → [1,3] ∩ [2,3] = [3]

Query2 = “breeze OR wind OR sky” 
→ [1] ∪ [2] ∪ [2,3] = [1,2,3]

Our setting

• All the distinct k-mers in  
are the dictionary .

• What we want for a k-mer is the map: 
 
 , 
 
where position in of the -th k-mer of , with and

. The collection of all is the inverted index .

ℛ = {R1, …, Rm}
𝒟

x

x → Lx = {(i, {pij}) |x ∈ Ri}

pij := Ri j Ri 1 ≤ pij ≤ |Ri |
1 ≤ i ≤ m Lx ℒ

Our setting

• All the distinct k-mers in  
are the dictionary .

• What we want for a k-mer is the map: 
 
 , 
 
where position in of the -th k-mer of , with and

. The collection of all is the inverted index .

ℛ = {R1, …, Rm}
𝒟

x

x → Lx = {(i, {pij}) |x ∈ Ri}

pij := Ri j Ri 1 ≤ pij ≤ |Ri |
1 ≤ i ≤ m Lx ℒ

• Queries:

- Membership: does appear in ? Use the dictionary .

- Count: if so, how many times? The length of .

- Color: and in what references? The set .

- Locate: and at what positions in the references? The set .

x ℛ 𝒟
Lx

{i |x ∈ Ri}
{(i, {pij}) |x ∈ Ri}

One index to rule them all

• Many k-mer based indexes (all of them?) are incarnations/adaptations of this
general indexing framework, : 
 
- BIGSI [Bradley et al. 2017] 
- Rainbowfish [Almodaresi et al. 2017] 
- Mantis [Pandey et al. 2018] 
- Pufferfish [Almodaresi et al. 2018] 
- COBS [Bingmann et al. 2019] 
- Reindeer [Marchet et al. 2020] 
- Raptor [Seiler et al. 2021] 
- Metagraph [Karasikov et al. 2022] 
- NIQKI [Agret et al. 2022] 
- Pufferfish2 [Fan et al. 2022] 
- etc.

𝒟 + ℒ

1. Since we take all the distinct k-mers
(i.e., consecutive) from our references,
they share -symbol overlaps.(k − 1)

What is special about k-mers?

1. Since we take all the distinct k-mers
(i.e., consecutive) from our references,
they share -symbol overlaps.(k − 1)

What is special about k-mers?

• It is very likely that, given in a query sequence and its answer returned from the index,
 has a very similar answer (if not identical) Compression for satellite data.  

Examples: presence/absence, abundance, color, contig identifier in a de Bruijn graph, etc.

• Faster query time: given the answer to , the answer to can be computed faster

than the answer for another arbitrary k-mer .

x Q
next(x) →

x next(x)
y ≠ next(x)

1. Since we take all the distinct k-mers
(i.e., consecutive) from our references,
they share -symbol overlaps.(k − 1)

What is special about k-mers?

Examples:

• findere/fimpera [Robidou and Peterlongo, 2021/22]

• SSHash — “Sparse and skew hashing of k-mers” [P., 2022]

• NEW: LPHash — “Locality-preserving minimal perfect hashing of k-mers”

[P., Shibuya, Limasset 2022]

• It is very likely that, given in a query sequence and its answer returned from the index,
 has a very similar answer (if not identical) Compression for satellite data.  

Examples: presence/absence, abundance, color, contig identifier in a de Bruijn graph, etc.

• Faster query time: given the answer to , the answer to can be computed faster

than the answer for another arbitrary k-mer .

x Q
next(x) →

x next(x)
y ≠ next(x)

What is special about k-mers?

1. Since we take all the distinct k-mers (i.e., consecutive) from our references, they share
-symbol overlaps.

2. There are many of them in each single reference — k-mers encode millions of years of
evolution vs. words in natural languages that have evolved over just “hundreds” of years. 
 
We will come back to this property later…

(k − 1)

 Let’s focus now the impact of Property 1 on the two abstract data types — 
 the dictionary and the inverted index .
→

𝒟 ℒ

The dictionary

• Property. The dictionary is a set of -mers with -symbol overlaps.

• One-to-one correspondence between and a de Bruijn graph (dBG).

𝒟 k (k − 1)
𝒟

• From the references we build a reference dBG: each reference
can be spelled by a tiling of the unitigs in the graph.

• (Each k-mer appears once, in a certain unitig.)

ℛ = {R1, …, Rm}

The dictionary

u1 u3 u2 u3 u4

u1 u3u2 u3

u4 u5 u6 u1

R1 :

R2 :

R3 :

u2 u5

-symbol overlaps(k − 1)

tiling of unitigs: u4 → u5 → u6 → u1

Set of unitigs: .𝒰 = {u1, u2, u3, u4, u5, u6}

The inverted index

• Q. How are the inverted lists of the k-mers in the same unitig, say, ?u2

u1 u3 GTTCGACGu2 : u3 u4

u1 u3 GTTCGACGu2 : u3

u4 u5 u6 u1

R1 :

R2 :

R3 :

 GTTCGACGu2 : u5

k = 3

The inverted index

• Q. How are the inverted lists of the k-mers in the same unitig, say, ?u2

u1 u3 GTTCGACGu2 : u3 u4

u1 u3 GTTCGACGu2 : u3

u4 u5 u6 u1

R1 :

R2 :

R3 :

 GTTCGACGu2 : u5

k = 3

• Property. By construction of reference tilings, the inverted lists of the k-mers
in the same unitig are identical.

• So instead of keeping a separate inverted list for each -mer in , we store
inverted lists at the unitig level: much fewer lists.

k 𝒟

• Our map was but now it looks like this: 
 

, 
 
where is now the position in of the -th unitig of .

x → Lx = {(i, {pij}) |x ∈ Ri}
x → unitig(x) → Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

pij Ri j Ri

The inverted index

u1 u3 GTTCGACGu2 : u3 u4

u1 u3 GTTCGACGu2 : u3

u4 u5 u6 u1

R1 :

R2 :

R3 :

 GTTCGACGu2 :

k = 3

p11 p12 p13 p14 p15 p16

…

Lu1
= {(1,{p11})(2,{p23})(3,{p34})}

Lu2
= {(1,{p13, p16})(2,{p21})}

Lu3
= {(1,{p12, p14})(2,{p22, p24})}

u5

p17

Bringing the two together
• Our map is .

• But we need the position of the k-mer in the reference (not that of the unitig)!

x → unitig(x) → Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

Bringing the two together
• Our map is .

• But we need the position of the k-mer in the reference (not that of the unitig)!

x → unitig(x) → Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

• Solution. Use the dictionary to compute the “local” position of the k-mer in on-the-fly. 
Let’s call it .

• We need to implement the map: .

• Lastly, the positions of in are computed as: .

𝒟 x unitig(x)
offset(x)

𝒟 x → (unitig(x), offset(x))

x ℛ {(i, {offset(x) + pij − 1}) |unitig(x) ∈ Ri}

Bringing the two together
• Our map is .

• But we need the position of the k-mer in the reference (not that of the unitig)!

x → unitig(x) → Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

• TCG
• The result is:

x =

{(1,{3 + p13 − 1, 3 + p16 − 1}), (2,{3 + p21 − 1})}

u1 u3 GTTCGACGu2 : u3 u4

u1 u3 GTTCGACGu2 : u3

R1 :

R2 :

 GTTCGACGu2 :

k = 3

p13p21 p16

offset(TCG) = 3

u5

• Solution. Use the dictionary to compute the “local” position of the k-mer in on-the-fly. 
Let’s call it .

• We need to implement the map: .

• Lastly, the positions of in are computed as: .

𝒟 x unitig(x)
offset(x)

𝒟 x → (unitig(x), offset(x))

x ℛ {(i, {offset(x) + pij − 1}) |unitig(x) ∈ Ri}

• We have therefore decomposed our problem into two distinct mappings
with simple APIs. 
 
1. From k-mer to unitig. 
 
  
 
 
2. From unitig to inverted list. 
 

x 𝒟 (unitig(x), offset(x))

unitig(x) ℒ Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

Modular reference indexing

• Depending on the application at hand: 
+ query layer (e.g., to support streaming queries) 
+ output layer for displaying results

• We have overviewed a general modular indexing framework with two abstract data
types — a dictionary and an inverted index .

• We have described the (minimal) API.

• Take-away: any algorithmic effort spent on the reference indexing problem should
be devoted to the improvement of and/or .

• So let’s now consider:

- what data structures can be used for and ;

- what are (some of) the open challenges/questions.

𝒟 ℒ

𝒟 ℒ

𝒟 ℒ

Modular reference indexing

The dictionary data structure

• From k-mer to unitig:

• Q. Any solutions?

x 𝒟 (unitig(x), offset(x))

The dictionary data structure

• From k-mer to unitig:

• Q. Any solutions?

x 𝒟 (unitig(x), offset(x))

• A. SSHash — Sparse and Skew Hashing of k-mers [P., 2022]  

- Fast and compact (builds on minimal perfect hashing and minimizers)

- Exact, associative, weighted

- Support for point/streaming/navigational queries

- Scale to large datasets using external memory

- Order-preserving: consecutive k-mers in the unitigs get consecutive hash codes  

(that’s how we implement the mapping)

• SSHash can index any spectrum-preserving string set (SPSS). In this case, we are
interested in the unitigs of the compacted reference dBG. We can use Cuttlefish2
[Khan et al. 2022] to compute the unitigs. (Excellent speed and scalability.)

• Q. BWT-based indexes (e.g., FM-index, BOSS, SBWT, etc.)? 
 
A. Not immediately clear. 
 
Would probably need an extra level of indirection to implement the mapping
because k-mers are sorted lexicographically, not by their order of appearance
in the unitigs. 
 
This indirection could outweigh the space savings offered by the BWT.

The dictionary data structure — Drop in?

The inverted index data structure

• From unitig to inverted list:

• Lists are sorted (for example, first by reference identifier , then by positions) and
compressed.

• Plethora of compression techniques developed in IR with different space/time trade-offs.

• See for example:

- “Techniques for Inverted Index Compression” 
[P. and Venturini, ACM Computing Surveys, 2021]

- Crash course on data compression: 
https://github.com/jermp/data_compression_course

unitig(x) ℒ Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

i

https://github.com/jermp/data_compression_course

What is special about k-mers? — Reprise

2. There are many of them in each single reference — k-mers encode millions of years of
evolution vs. words in natural languages that have evolved over just “hundreds” of years. 
 
Natural language: many many documents, but “relatively few” terms; 
DNA: relatively few documents, but many many terms.

vs.natural language
k-mers

Occurrence distribution
7 Humans 4000 E. Coli 30k Human gut

• y-axis: cumulative % of occurrences in the inverted
index for unitigs that appear < x times.

Occurrence distribution
7 Humans 4000 E. Coli 30k Human gut

• y-axis: cumulative % of occurrences in the inverted
index for unitigs that appear < x times.

4096 4096 4096

65%

>95% 100%≈

• For comparison: on Web-page datasets — Gov2, ClueWeb09,
CCNews — we retain 93%, 94%, 98% of the occurrences!

Sampling vs. Compression

• In [Fan, Khan, P., Patro 2022] we use a simple sampling scheme where we keep 1 unitig every
unitigs in the inverted index: if a unitig is not sampled, we do not store its occurrences.

• It is still possible to “re-construct” exactly its occurrences by walking back over the reference tilings. 

s

Sampling vs. Compression

• In [Fan, Khan, P., Patro 2022] we use a simple sampling scheme where we keep 1 unitig every
unitigs in the inverted index: if a unitig is not sampled, we do not store its occurrences.

• It is still possible to “re-construct” exactly its occurrences by walking back over the reference tilings. 

s

u1 u3 u2 u3 u4

u1 u3u2 u3

R1 :

R2 :

u2

-symbol overlaps(k − 1)

Suppose = CGGT is not sampled, but and are sampled.u3 u1 u2
ℒ

u3 ???k = 3

u5

Sampling vs. Compression

• In [Fan, Khan, P., Patro 2022] we use a simple sampling scheme where we keep 1 unitig every
unitigs in the inverted index: if a unitig is not sampled, we do not store its occurrences.

• It is still possible to “re-construct” exactly its occurrences by walking back over the reference tilings. 

s

u1 u3 u2 u3 u4

u1 u3u2 u3

R1 :

R2 :

u2

-symbol overlaps(k − 1)

Suppose = CGGT is not sampled, but and are sampled.u3 u1 u2
ℒ

u3 ???k = 3

u5

CGGT = u3
C
A query the dictionary for CCG and ACG:→

 and .unitig(CCG) = u1 unitig(ACG) = u2

C A A C

predecessor nucleotides

Sampling vs. Compression

• In [Fan, Khan, P., Patro 2022] we use a simple sampling scheme where we keep 1 unitig every
unitigs in the inverted index: if a unitig is not sampled, we do not store its occurrences.

• It is still possible to “re-construct” exactly its occurrences by walking back over the reference tilings. 

s

u1 u3 u2 u3 u4

u1 u3u2 u3

R1 :

R2 :

u2

-symbol overlaps(k − 1)

Suppose = CGGT is not sampled, but and are sampled.u3 u1 u2
ℒ

u3 ???k = 3

u5

u1

u2 G A G

G G

successor nucleotides

CGGT = u3
C
A query the dictionary for CCG and ACG:→

 and .unitig(CCG) = u1 unitig(ACG) = u2

C A A C

predecessor nucleotides

Sampling the inverted index

(2.15×)
(1.70×)

(2.08×)
(1.63×)

(1.90×)
(1.59×)
(2.50×)
(1.90×)

Index

Sampling the inverted index

Sampling the inverted index

AWS EC2 instances pricing:

• https://instances.vantage.sh/aws/ec2/x2gd.xlarge 

64 GiB of RAM — 243 USD per month

• https://instances.vantage.sh/aws/ec2/x2gd.2xlarge 

128 GiB of RAM — 478 USD per month

• https://instances.vantage.sh/aws/ec2/x2gd.4xlarge 

256 GiB of RAM — 975 USD per month

https://instances.vantage.sh/aws/ec2/x2gd.xlarge
https://instances.vantage.sh/aws/ec2/x2gd.2xlarge
https://instances.vantage.sh/aws/ec2/x2gd.4xlarge

Conclusions

• The reference indexing problem admits a modular solutions made up of two distinct abstract
data types: a dictionary and an inverted index .

• While substantial work has been done for , little work has been done for (for DNA
references).

• We have shown that, by exploiting k-mer overlaps, we can reduce the number of lists stored
in .

• Reasoning in terms of reference tilings opens the possibility for sampling tiles’ occurrences.

• Depending on how is represented (e.g., lossless/lossy, sampled/compressed, …): 
a whole class of related reference indexing data structures can be obtained.

𝒟 ℒ

𝒟 ℒ

ℒ

ℒ

Challenges — Part 1
1. Improve the space/time/scalability trade-off of the dictionary.

2. How the compression techniques developed for IR (e.g., Interpolative Coding, Elias-Fano,
DINT, PFor, etc.) fare in this case?

3. Hybrid strategies combining sampling with compression?

4. Investigate different sampling schemes. For example, instead of either sampling or not a
unitig entirely (all its occurrences), we could sample the inverted lists directly, or the
reference tilings.

5. What is the performance of more complex queries (for example, with query operators AND/
OR, etc.) rather than just enumeration? This would improve the expressiveness of the index. 
 
For example: AND , where are k-mers. Or weighted-and: return all documents where
 AND occur but at least for times, for some user-defined .

x y x, y
x y t t > 0

6. What is the “best” set of tiles for the references ? 
 
We have used the unitigs, but it is also possible to use other “tigs” with some extra bookkeeping. 
However, here it is not clear if a smaller SPSS (longer “tigs”) also implies a smaller reference tiling.

7. What happens on pan-genomes? If is a pan-genome, we expect: 
- The dictionary not to grow that much by adding related genomes to ; 
- The reference tilings to be very similar. This will also reflect on the inverted lists.

8. In this talk we have focused on exact (i.e., lossless) approaches: exact k-mer membership and
exact colors/positions. 
 
What happens if we allow an approximation or false-positives? 
 
- Approximation: do not index all tiles. 
- False-positives: result of a query contains some “wrong” answers.

ℛ = {R1, …, Rm}

ℛ
ℛ

Challenges — Part 2

Thank you for the attention!

A special thank to 
Jason Fan, Jamshed Khan, and Rob Patro  

University of Maryland (USA)

