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• We are given a collection  of reference sequences. Each  is a 
(large) sequence over the DNA alphabet {A,C,G,T}, .


• Problem. We want to build an index for  so that we can answer the following 
queries efficiently for any k-mer .

- Membership: does  appear in ?

- Count: if so, how many times?

- Color: and in what references?

- Locate: and at what positions in the references?

ℛ = {R1, …, Rm} Ri
1 ≤ i ≤ m

ℛ
x

x ℛ

The reference indexing problem
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The reference indexing problem

• Applications: This problem is crucial for all applications where sequences are first 
matched against known references (i.e., mapping/alignment algorithms): single-cell 
RNA-seq, metagenomics, etc.



A look back to IR
• The reference indexing problem has been studied for decades in Information Retrieval (IR).

•  is a collection of texts in natural-language (e.g., books, articles, Web pages, ect.).

• The classic solution is to use an inverted index.
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Our setting

• All the distinct k-mers in  
are the dictionary .


• What we want for a k-mer  is the map: 
 
 , 
 
where position in  of the -th k-mer of , with  and 

. The collection of all  is the inverted index .

ℛ = {R1, …, Rm}
𝒟

x

x → Lx = {(i, {pij}) |x ∈ Ri}

pij := Ri j Ri 1 ≤ pij ≤ |Ri |
1 ≤ i ≤ m Lx ℒ
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• Queries:

- Membership: does  appear in ? Use the dictionary .

- Count: if so, how many times? The length of .

- Color: and in what references? The set .

- Locate: and at what positions in the references? The set .

x ℛ 𝒟
Lx

{i |x ∈ Ri}
{(i, {pij}) |x ∈ Ri}



One index to rule them all

• Many k-mer based indexes (all of them?) are incarnations/adaptations of this 
general indexing framework, : 
 
- BIGSI [Bradley et al. 2017] 
- Rainbowfish [Almodaresi et al. 2017] 
- Mantis [Pandey et al. 2018] 
- Pufferfish [Almodaresi et al. 2018] 
- COBS [Bingmann et al. 2019] 
- Reindeer [Marchet et al. 2020] 
- Raptor [Seiler et al. 2021] 
- Metagraph [Karasikov et al. 2022] 
- NIQKI [Agret et al. 2022] 
- Pufferfish2 [Fan et al. 2022] 
- etc.

𝒟 + ℒ



1. Since we take all the distinct k-mers 
(i.e., consecutive) from our references, 
they share -symbol overlaps.(k − 1)

What is special about k-mers?
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• It is very likely that, given  in a query sequence  and its answer returned from the index, 
 has a very similar answer (if not identical)  Compression for satellite data.  

Examples: presence/absence, abundance, color, contig identifier in a de Bruijn graph, etc.

• Faster query time: given the answer to , the answer to  can be computed faster 

than the answer for another arbitrary k-mer .
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What is special about k-mers?

1. Since we take all the distinct k-mers (i.e., consecutive) from our references, they share 
-symbol overlaps.


2. There are many of them in each single reference — k-mers encode millions of years of 
evolution vs. words in natural languages that have evolved over just “hundreds” of years. 
 
We will come back to this property later…

(k − 1)

 Let’s focus now the impact of Property 1 on the two abstract data types — 
     the dictionary  and the inverted index .
→

𝒟 ℒ



The dictionary

• Property. The dictionary  is a set of -mers with -symbol overlaps.


• One-to-one correspondence between  and a de Bruijn graph (dBG).

𝒟 k (k − 1)
𝒟



• From the references  we build a reference dBG: each reference 
can be spelled by a tiling of the unitigs in the graph.


• (Each k-mer appears once, in a certain unitig.)

ℛ = {R1, …, Rm}

The dictionary

u1 u3 u2 u3 u4

u1 u3u2 u3

u4 u5 u6 u1

R1 :

R2 :

R3 :

u2 u5

-symbol overlaps(k − 1)

tiling of unitigs: u4 → u5 → u6 → u1

Set of unitigs: .𝒰 = {u1, u2, u3, u4, u5, u6}



The inverted index

• Q. How are the inverted lists of the k-mers in the same unitig, say, ?u2

u1 u3  GTTCGACGu2 : u3 u4

u1 u3 GTTCGACGu2 : u3

u4 u5 u6 u1

R1 :

R2 :

R3 :

 GTTCGACGu2 : u5

k = 3
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u1 u3 GTTCGACGu2 : u3

u4 u5 u6 u1

R1 :

R2 :

R3 :

 GTTCGACGu2 : u5
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• Property. By construction of reference tilings, the inverted lists of the k-mers 
in the same unitig are identical.


• So instead of keeping a separate inverted list for each -mer in , we store 
inverted lists at the unitig level: much fewer lists.

k 𝒟



• Our map was  but now it looks like this: 
 

, 
 
where  is now the position in  of the -th unitig of .

x → Lx = {(i, {pij}) |x ∈ Ri}
x → unitig(x) → Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

pij Ri j Ri

The inverted index

u1 u3  GTTCGACGu2 : u3 u4

u1 u3 GTTCGACGu2 : u3

u4 u5 u6 u1

R1 :

R2 :

R3 :

 GTTCGACGu2 :

k = 3

p11 p12 p13 p14 p15 p16








…

Lu1
= {(1,{p11})(2,{p23})(3,{p34})}

Lu2
= {(1,{p13, p16})(2,{p21})}

Lu3
= {(1,{p12, p14})(2,{p22, p24})}

u5

p17



Bringing the two together
• Our map is .


• But we need the position of the k-mer in the reference (not that of the unitig)!
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𝒟 x → (unitig(x), offset(x))
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• But we need the position of the k-mer in the reference (not that of the unitig)!

x → unitig(x) → Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

• TCG 
• The result is:

x =

{(1,{3 + p13 − 1, 3 + p16 − 1}), (2,{3 + p21 − 1})}

u1 u3  GTTCGACGu2 : u3 u4

u1 u3 GTTCGACGu2 : u3

R1 :

R2 :

 GTTCGACGu2 :

k = 3

p13p21 p16

offset(TCG) = 3

u5

• Solution. Use the dictionary  to compute the “local” position of the k-mer  in  on-the-fly. 
Let’s call it .


• We need  to implement the map: .


• Lastly, the positions of  in  are computed as: .

𝒟 x unitig(x)
offset(x)

𝒟 x → (unitig(x), offset(x))

x ℛ {(i, {offset(x) + pij − 1}) |unitig(x) ∈ Ri}



• We have therefore decomposed our problem into two distinct mappings 
with simple APIs. 
 
1. From k-mer to unitig. 
 
     
 
 
2. From unitig to inverted list. 
 
    

x 𝒟 (unitig(x), offset(x))

unitig(x) ℒ Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

Modular reference indexing

• Depending on the application at hand: 
+ query layer (e.g., to support streaming queries) 
+ output layer for displaying results



• We have overviewed a general modular indexing framework with two abstract data 
types — a dictionary  and an inverted index . 

• We have described the (minimal) API.


• Take-away: any algorithmic effort spent on the reference indexing problem should 
be devoted to the improvement of  and/or .


• So let’s now consider:


- what data structures can be used for  and ;

- what are (some of) the open challenges/questions.

𝒟 ℒ

𝒟 ℒ

𝒟 ℒ

Modular reference indexing



The dictionary data structure

• From k-mer to unitig: 


• Q. Any solutions?

x 𝒟 (unitig(x), offset(x))



The dictionary data structure

• From k-mer to unitig: 


• Q. Any solutions?

x 𝒟 (unitig(x), offset(x))

• A. SSHash — Sparse and Skew Hashing of k-mers [P., 2022]  

- Fast and compact (builds on minimal perfect hashing and minimizers)

- Exact, associative, weighted

- Support for point/streaming/navigational queries

- Scale to large datasets using external memory

- Order-preserving: consecutive k-mers in the unitigs get consecutive hash codes  

(that’s how we implement the mapping)


• SSHash can index any spectrum-preserving string set (SPSS). In this case, we are 
interested in the unitigs of the compacted reference dBG. We can use Cuttlefish2 
[Khan et al. 2022] to compute the unitigs. (Excellent speed and scalability.)



• Q. BWT-based indexes (e.g., FM-index, BOSS, SBWT, etc.)? 
 
A. Not immediately clear. 
 
Would probably need an extra level of indirection to implement the mapping 
because k-mers are sorted lexicographically, not by their order of appearance 
in the unitigs. 
 
This indirection could outweigh the space savings offered by the BWT.

The dictionary data structure — Drop in?



The inverted index data structure

• From unitig to inverted list: 


• Lists are sorted (for example, first by reference identifier , then by positions) and 
compressed.


• Plethora of compression techniques developed in IR with different space/time trade-offs.


• See for example:


- “Techniques for Inverted Index Compression” 
[P. and Venturini, ACM Computing Surveys, 2021]


- Crash course on data compression: 
https://github.com/jermp/data_compression_course

unitig(x) ℒ Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

i

https://github.com/jermp/data_compression_course


What is special about k-mers? — Reprise

2. There are many of them in each single reference — k-mers encode millions of years of 
evolution vs. words in natural languages that have evolved over just “hundreds” of years. 
 
Natural language: many many documents, but “relatively few” terms; 
DNA: relatively few documents, but many many terms.

vs.natural language
k-mers



Occurrence distribution
7 Humans 4000 E. Coli 30k Human gut

• y-axis: cumulative % of occurrences in the inverted 
index for unitigs that appear < x times.



Occurrence distribution
7 Humans 4000 E. Coli 30k Human gut

• y-axis: cumulative % of occurrences in the inverted 
index for unitigs that appear < x times.

4096 4096 4096

65%

>95% 100%≈

• For comparison: on Web-page datasets — Gov2, ClueWeb09, 
CCNews — we retain 93%, 94%, 98% of the occurrences!



Sampling vs. Compression

• In [Fan, Khan, P., Patro 2022] we use a simple sampling scheme where we keep 1 unitig every  
unitigs in the inverted index: if a unitig is not sampled, we do not store its occurrences.


• It is still possible to “re-construct” exactly its occurrences by walking back over the reference tilings. 

s
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• In [Fan, Khan, P., Patro 2022] we use a simple sampling scheme where we keep 1 unitig every  
unitigs in the inverted index: if a unitig is not sampled, we do not store its occurrences.


• It is still possible to “re-construct” exactly its occurrences by walking back over the reference tilings. 

s
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R1 :

R2 :

u2

-symbol overlaps(k − 1)

Suppose  = CGGT is not sampled, but  and  are sampled.u3 u1 u2
ℒ

u3 ???k = 3
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u1

u2 G A G

G G

successor nucleotides

CGGT = u3
C
A  query the dictionary for CCG and ACG:→

 and .unitig(CCG) = u1 unitig(ACG) = u2

C A A C

predecessor nucleotides



Sampling the inverted index

(2.15×)
(1.70×)

(2.08×)
(1.63×)

(1.90×)
(1.59×)
(2.50×)
(1.90×)

Index



Sampling the inverted index



Sampling the inverted index

AWS EC2 instances pricing:

• https://instances.vantage.sh/aws/ec2/x2gd.xlarge 

64 GiB of RAM — 243 USD per month

• https://instances.vantage.sh/aws/ec2/x2gd.2xlarge 

128 GiB of RAM — 478 USD per month

• https://instances.vantage.sh/aws/ec2/x2gd.4xlarge 

256 GiB of RAM — 975 USD per month

https://instances.vantage.sh/aws/ec2/x2gd.xlarge
https://instances.vantage.sh/aws/ec2/x2gd.2xlarge
https://instances.vantage.sh/aws/ec2/x2gd.4xlarge


Conclusions

• The reference indexing problem admits a modular solutions made up of two distinct abstract 
data types: a dictionary  and an inverted index .


• While substantial work has been done for , little work has been done for  (for DNA 
references).


• We have shown that, by exploiting k-mer overlaps, we can reduce the number of lists stored 
in .


• Reasoning in terms of reference tilings opens the possibility for sampling tiles’ occurrences.


• Depending on how  is represented (e.g., lossless/lossy, sampled/compressed, …): 
a whole class of related reference indexing data structures can be obtained.

𝒟 ℒ

𝒟 ℒ

ℒ

ℒ



Challenges — Part 1
1. Improve the space/time/scalability trade-off of the dictionary.


2. How the compression techniques developed for IR (e.g., Interpolative Coding, Elias-Fano, 
DINT, PFor, etc.) fare in this case?


3. Hybrid strategies combining sampling with compression?


4. Investigate different sampling schemes. For example, instead of either sampling or not a 
unitig entirely (all its occurrences), we could sample the inverted lists directly, or the 
reference tilings.


5. What is the performance of more complex queries (for example, with query operators AND/
OR, etc.) rather than just enumeration? This would improve the expressiveness of the index. 
 
For example:  AND , where  are k-mers. Or weighted-and: return all documents where 
 AND  occur but at least for  times, for some user-defined .

x y x, y
x y t t > 0



6. What is the “best” set of tiles for  the references ? 
 
We have used the unitigs, but it is also possible to use other “tigs” with some extra bookkeeping. 
However, here it is not clear if a smaller SPSS (longer “tigs”) also implies a smaller reference tiling.


7. What happens on pan-genomes? If  is a pan-genome, we expect: 
- The dictionary not to grow that much by adding related genomes to ; 
- The reference tilings to be very similar. This will also reflect on the inverted lists.


8. In this talk we have focused on exact (i.e., lossless) approaches: exact k-mer membership and 
exact colors/positions. 
 
What happens if we allow an approximation or false-positives? 
 
- Approximation: do not index all tiles. 
- False-positives: result of a query contains some “wrong” answers.

ℛ = {R1, …, Rm}

ℛ
ℛ

Challenges — Part 2



Thank you for the attention!

A special thank to 
Jason Fan, Jamshed Khan, and Rob Patro  

University of Maryland (USA)


