Modular reference indexing with the de Bruijn graph: overview and challenges

Giulio Ermanno Pibiri

Ca' Foscari University of Venice and ISTI-CNR

INRIA Rennes, France, 20 October 2022

About myself — Education

- Ph.D. in Computer Science from the University of Pisa in March 2019. (Compressed data structures with focus on application in IR and NLP.)
- Post-doc fellow in Computer Science at ISTI-CNR in Pisa from March 2019 May 2022.
- As of June 2022: Assistant professor (tenure track) of Computer Science at Ca' Foscari University of Venice.
- More info at <u>https://jermp.github.io</u>.

Visiting Ph.D. student at RIKEN AIP (Tokyo, Japan) and University of Melbourne (Melbourne, Australia).

About myself – Research

- Keywords: Data Structures, Algorithms, Data Compression, Indexing, Efficiency
- Design compressed data structures and algorithms to index and search large quantities of data.
- Efficiency is the key to:
 - **build better applications** in terms of reduced latency to access information (enhanced user experience);
 - save computer resources (power and storage machines) \rightarrow save money.

About myself – Research

- Keywords: Data Structures, Algorithms, Data Compression, Indexing, Efficiency
- Design compressed data structures and algorithms to index and search large quantities of data.
- Efficiency is the key to:
 - **build better applications** in terms of reduced latency to access information (enhanced user experience);
 - save computer resources (power and storage machines) \rightarrow save money.

Some Example Problems

- Inverted Indexes (TOIS'17, WSDM'19, TKDE'19, CSUR'20)
- Language Modeling (SIGIR'17, TOIS'19)
- RDF Triples (TKDE'20)
- Query Auto-Completion (SIGIR'20)
- Prefix-Sums (SPE'20)
- Bitmap Compression (DCC'21)
- Rank/Select Queries (INFOSYS'21)
- Minimal Perfect Hashing (SIGIR'21)
- K-mer Dictionaries (ISMB'22, WABI'22)

About myself – Research

- Keywords: Data Structures, Algorithms, Data Compression, Indexing, Efficiency
- Design compressed data structures and algorithms to index and search large quantities of data.
- Efficiency is the key to:
 - **build better applications** in terms of reduced latency to access information (enhanced user experience);
 - save computer resources (power and storage machines) \rightarrow save money.

Some Example Problems

- Inverted Indexes (TOIS'17, WSDM'19, TKDE'19, CSUR'20)
- Language Modeling (SIGIR'17, TOIS'19)
- RDF Triples (TKDE'20)
- Query Auto-Completion (SIGIR'20)
- Prefix-Sums (SPE'20)
- Bitmap Compression (DCC'21)
- Rank/Select Queries (INFOSYS'21)
- Minimal Perfect Hashing (SIGIR'21)
- K-mer Dictionaries (ISMB'22, WABI'22)

https://github.com/jermp

The reference indexing problem

- We are given a collection $\mathscr{R} = \{R_1, \dots, R_m\}$ of reference sequences. Each R_i is a (large) sequence over the DNA alphabet {A,C,G,T}, $1 \le i \le m$.
- **Problem.** We want to build an index for \mathscr{R} so that we can answer the following queries efficiently for any k-mer x.
 - Membership: does x appear in \Re ?
 - **Count**: if so, how many times?
 - **Color**: and in what references?
 - Locate: and at what positions in the references?

The reference indexing problem

- We are given a collection $\mathscr{R} = \{R_1, \dots, R_m\}$ of reference sequences. Each R_i is a (large) sequence over the DNA alphabet {A,C,G,T}, $1 \le i \le m$.
- **Problem.** We want to build an index for \mathscr{R} so that we can answer the following queries efficiently for any k-mer x.
 - Membership: does x appear in \Re ?
 - **Count**: if so, how many times?
 - **Color**: and in what references?
 - Locate: and at what positions in the references?
- Applications: This problem is crucial for all applications where sequences are first matched against known references (i.e., mapping/alignment algorithms): single-cell RNA-seq, metagenomics, etc.

- \mathscr{R} is a collection of texts in natural-language (e.g., books, articles, Web pages, ect.).
- The classic solution is to use an *inverted index*.

• The reference indexing problem has been studied for **decades** in Information Retrieval (IR).

- \bullet
- The classic solution is to use an *inverted index*. \bullet

• The reference indexing problem has been studied for **decades** in Information Retrieval (IR). ${\mathscr R}$ is a collection of texts in natural-language (e.g., books, articles, Web pages, ect.).

	Term		Document
	1	best	2
	2	blue	1, 3
	3	bright	1, 3
	4	bufferfly	1
	5	breeze	1
	6	forget	2
	7	great	2
	8	hangs	1
	9	need	3
	10	retire	2
	11	search	3
	12	sky	2, 3
	13	wind	2

- \bullet
- The classic solution is to use an *inverted index*. \bullet

• The reference indexing problem has been studied for **decades** in Information Retrieval (IR). ${\mathscr R}$ is a collection of texts in natural-language (e.g., books, articles, Web pages, ect.).

Term		Document
1	best	2
2	blue	1, 3
3	bright	1, 3
4	bufferfly	1
5	breeze	1
6	forget	2
7	great	2
8	hangs	1
9	need	3
10	retire	2
11	search	3
12	sky	2, 3
13	wind	2

Query1 = "blue **AND** sky" \rightarrow [1,3] \cap [2,3] = [3]

- The classic solution is to use an *inverted index*. \bullet

• The reference indexing problem has been studied for **decades** in Information Retrieval (IR). \mathscr{R} is a collection of texts in natural-language (e.g., books, articles, Web pages, ect.).

Term		Document
1	best	2
2	blue	1, 3
3	bright	1, 3
4	bufferfly	1
5	breeze	1
6	forget	2
7	great	2
8	hangs	1
9	need	3
10	retire	2
11	search	3
12	sky	2, 3
13	wind	2

Query1 = "blue **AND** sky" \rightarrow [1,3] \cap [2,3] = [3]

Query2 = "breeze **OR** wind **OR** sky" \rightarrow [1] \cup [2] \cup [2,3] = [1,2,3]

Our setting

- All the distinct k-mers in $\mathscr{R} = \{R_1, ..., R_m\}$ are the **dictionary** \mathcal{D} .
- What we want for a k-mer x is the map:

$$x \to L_x = \{(i, \{p_{ij}\}) | x \in R_i\},\$$

where $p_{ij} :=$ position in R_i of the *j*-th k-mer of R_i , with $1 \le p_{ij} \le |R_i|$ and $1 \leq i \leq m$. The collection of all L_x is the **inverted index** \mathscr{L} .

Our setting

- All the distinct k-mers in $\mathscr{R} = \{R_1, \dots, R_m\}$ are the **dictionary** \mathcal{D} .
- What we want for a k-mer x is the map:

$$x \to L_x = \{(i, \{p_{ij}\}) | x \in R_i\},\$$

where $p_{ij} :=$ position in R_i of the *j*-th k-mer of R_i , with $1 \le p_{ij} \le |R_i|$ and $1 \leq i \leq m$. The collection of all L_{y} is the **inverted index** \mathscr{L} .

- Queries:
 - **Membership**: does x appear in \mathscr{R} ? Use the dictionary \mathscr{D} .
 - **Count**: if so, how many times? The length of L_{χ} .
 - **Color**: and in what references? The set $\{i \mid x \in R_i\}$.
 - **Locate**: and at what positions in the references? The set $\{(i, \{p_{ij}\}) | x \in R_i\}$.

One index to rule them all

- Many k-mer based indexes (all of them?) are incarnations/adaptations of this general indexing framework, $\mathcal{D} + \mathcal{L}$:
 - BIGSI [Bradley et al. 2017]
 - Rainbowfish [Almodaresi et al. 2017]
 - Mantis [Pandey et al. 2018]
 - Pufferfish [Almodaresi et al. 2018]
 - COBS [Bingmann et al. 2019]
 - Reindeer [Marchet et al. 2020]
 - Raptor [Seiler et al. 2021]
 - Metagraph [Karasikov et al. 2022]
 - NIQKI [Agret et al. 2022]
 - Pufferfish2 [Fan et al. 2022]
 - etc.

C Marchet, C Boucher, SJ Puglisi, P Medvedev, M Salson, R Chikhi Genome Research

Data structures based on k-mers for querying large collections of sequencing data sets

1. Since we take *all* the distinct k-mers (i.e., consecutive) from our references, they share (k-1)-symbol overlaps.

ACGGTAGAACCGATTCAAATTCGACGTAGC... ACGGTAGAACCGA CGGTAGAACCGAT GGTAGAACCGATT GTAGAACCGATTC Example for k = 13. TAGAACCGATTCA AGAACCGATTCAA GAACCGATTCAAA AACCGATTCAAAT

. . .

1. Since we take *all* the distinct k-mers (i.e., consecutive) from our references, they share (k-1)-symbol overlaps.

- than the answer for another arbitrary k-mer $y \neq next(x)$.

• It is very likely that, given x in a query sequence Q and its answer returned from the index, next(x) has a very similar answer (if not identical) \rightarrow Compression for satellite data. Examples: presence/absence, abundance, color, contig identifier in a de Bruijn graph, etc. • **Faster query time**: given the answer to x, the answer to next(x) can be computed faster

1. Since we take *all* the distinct k-mers (i.e., consecutive) from our references, they share (k-1)-symbol overlaps.

- than the answer for another arbitrary k-mer $y \neq next(x)$.

Examples:

- findere/fimpera [Robidou and Peterlongo, 2021/22]
- SSHash "Sparse and skew hashing of k-mers" [P., 2022]
- **NEW:** LPHash "Locality-preserving minimal perfect hashing of k-mers" [P., Shibuya, Limasset 2022]

• It is very likely that, given x in a query sequence Q and its answer returned from the index, next(x) has a very similar answer (if not identical) \rightarrow Compression for satellite data. Examples: presence/absence, abundance, color, contig identifier in a de Bruijn graph, etc. • **Faster query time**: given the answer to x, the answer to next(x) can be computed faster

- (k-1)-symbol overlaps.

We will come back to this property later...

 \rightarrow Let's focus now the impact of **Property 1** on the two abstract data types the dictionary \mathcal{D} and the inverted index \mathcal{L} .

1. Since we take all the distinct k-mers (i.e., consecutive) from our references, they share

2. There are many of them in each single reference – k-mers encode millions of years of evolution vs. words in natural languages that have evolved over just "hundreds" of years.

The dictionary

- **Property.** The dictionary \mathcal{D} is a set of k-mers with (k-1)-symbol overlaps.
- One-to-one correspondence between \mathcal{D} and a *de Bruijn* graph (dBG).

The dictionary

- can be spelled by a **tiling of the unitigs** in the graph.
- (Each k-mer appears once, in a certain unitig.)

• From the references $\mathscr{R} = \{R_1, \dots, R_m\}$ we build a *reference* dBG: each reference

Set of unitigs: $\mathcal{U} = \{u_1, u_2, u_3, u_4, u_5, u_6\}.$

tiling of unitigs: $u_4 \rightarrow u_5 \rightarrow u_6 \rightarrow u_1$

The inverted index

• Q. How are the inverted lists of the k-mers in the same unitig, say, u_2 ?

The inverted index

- Q. How are the inverted lists of the k-mers in the same unitig, say, u_2 ?
- Property. By construction of reference tilings, the inverted lists of the k-mers in the same unitig are identical.
- So instead of keeping a separate inverted list for each k-mer in \mathcal{D} , we store inverted lists at the unitig level: **much fewer lists.**

The inverted index

• Our map was $x \to L_x = \{(i, \{p_{ij}\}) | x \in R_i\}$ but now it looks like this: $x \to unitig(x) \to L_{unitig(x)} = \{(i, \{p_{ij}\}) | unitig(x) \in R_i\},\$ where p_{ij} is now the position in R_i of the *j*-th unitig of R_i .

Bringing the two together

- Our map is $x \to unitig(x) \to L_{unitig(x)} = \{(i, \{p_{ij}\}) | unitig(x) \in R_i\}.$
- But we need the **position of the k-mer** in the reference (not that of the unitig)!

Bringing the two together

- Our map is $x \to unitig(x) \to L_{unitig(x)} = \{(i, \{p_{ij}\}) \mid unitig(x) \in R_i\}.$
- But we need the **position of the k-mer** in the reference (not that of the unitig)!
- **Solution.** Use the dictionary \mathcal{D} to compute the "local" position of the k-mer x in unitig(x) on-the-fly. Let's call it offset(x).
- We need \mathcal{D} to implement the map: $x \to (unitig(x), offset(x))$. Lastly, the positions of x in \mathscr{R} are computed as: $\{(i, \{offset(x) + p_{ij} - 1\}) | unitig(x) \in R_i\}$.

Bringing the two together

- Our map is $x \rightarrow unitig(x) \rightarrow L_{unitig(x)} = \{(i, \{p_{ij}\}) \mid unitig(x) \in R_i\}.$
- But we need the **position of the k-mer** in the reference (not that of the unitig)!
- **Solution.** Use the dictionary \mathcal{D} to compute the "local" position of the k-mer x in unitig(x) on-the-fly. Let's call it offset(x).
- We need \mathcal{D} to implement the map: $x \to (unitig(x), offset(x))$. Lastly, the positions of x in \mathscr{R} are computed as: $\{(i, \{offset(x) + p_{ii} - 1\}) | unitig(x) \in R_i\}$.

Modular reference indexing

We have therefore decomposed our problem into two distinct mappings lacksquarewith **simple** APIs.

1. From k-mer to unitig.

$$x \xrightarrow{\mathscr{D}} (unitig(x), offset(x))$$

2. From unitig to inverted list.

$$unitig(x) \xrightarrow{\mathscr{L}} L_{unitig(x)} = \{(i, \{p\}$$

Depending on the application at hand: + query layer (e.g., to support streaming queries) + output layer for displaying results

$p_{ij}\}) | unitig(x) \in R_i \}$

Modular reference indexing

- We have overviewed a general modular indexing framework with two abstract data types – a dictionary \mathcal{D} and an inverted index \mathcal{L} .
- We have described the (minimal) API.
- Take-away: any algorithmic effort spent on the reference indexing problem should be devoted to the improvement of \mathcal{D} and/or \mathcal{L} .
- So let's now consider:
 - what data structures can be used for \mathcal{D} and \mathcal{L} ;
 - what are (some of) the **open challenges/questions**.

The dictionary data structure

- From k-mer to unitig: $x \xrightarrow{\mathscr{D}} (unitig(x), offset(x))$
- **Q.** Any solutions? •

The dictionary data structure

- From k-mer to unitig: $x \xrightarrow{\mathscr{D}} (unitig(x), offset(x))$
- **Q.** Any solutions?
- A. SSHash Sparse and Skew Hashing of k-mers [P., 2022]
 - Fast and compact (builds on minimal perfect hashing and minimizers)
 - Exact, associative, weighted
 - Support for point/streaming/navigational queries
 - Scale to large datasets using external memory
 - Order-preserving: consecutive k-mers in the unitigs get consecutive hash codes (that's how we implement the mapping)
- SSHash can index *any* spectrum-preserving string set (SPSS). In this case, we are interested in the unitigs of the compacted reference dBG. We can use **Cuttlefish2** [Khan et al. 2022] to compute the unitigs. (Excellent speed and scalability.)

The dictionary data structure — Drop in?

• Q. BWT-based indexes (e.g., FM-index, BOSS, SBWT, etc.)?

A. Not immediately clear.

Would probably need an extra level of indirection to implement the mapping because k-mers are sorted lexicographically, not by their order of appearance in the unitigs.

This indirection could outweigh the space savings offered by the BWT.

The inverted index data structure

- From unitig to inverted list: $unitig(x) \xrightarrow{\mathscr{L}}$
- Lists are **sorted** (for example, first by reference identifier *i*, then by positions) and \bullet compressed.
- lacksquare
- See for example:
 - "Techniques for Inverted Index Compression" [P. and Venturini, ACM Computing Surveys, 2021]
 - Crash course on data compression: https://github.com/jermp/data_compression_course

$$L_{unitig(x)} = \{ (i, \{p_{ij}\}) | unitig(x) \in R_i \}$$

Plethora of compression techniques developed in IR with different space/time trade-offs.

What is special about k-mers? — Reprise

Natural language: many many documents, but "relatively few" terms; DNA: relatively few documents, but many many terms.

2. There are many of them in each single reference — k-mers encode millions of years of evolution vs. words in natural languages that have evolved over just "hundreds" of years.

Occurrence distribution

Data	# unitigs (10^6)	Total unitig occs (10^9)	•
7 humans	46.5	2.2	
4000 E. Coli	91.7	0.9	
30k human gut	560.7	11.2	

y-axis: cumulative % of occurrences in the inverted index for unitigs that appear < x times.

Occurrence distribution

Data	# unitigs (10^6)	Total unitig occs (10^9)	•
7 humans	46.5	2.2	
4000 E. Coli	91.7	0.9	•
30k human gut	560.7	11.2	

y-axis: cumulative % of occurrences in the inverted index for unitigs that appear < x times.

For comparison: on Web-page datasets — Gov2, ClueWeb09, CCNews — we retain 93%, 94%, 98% of the occurrences!

- unitigs in the inverted index: if a unitig is not sampled, we do **not** store its occurrences.

• In [Fan, Khan, P., Patro 2022] we use a simple sampling scheme where we keep 1 unitig every s

• It is still possible to "re-construct" exactly its occurrences by walking back over the reference tilings.

- unitigs in the inverted index: if a unitig is not sampled, we do **not** store its occurrences.

Suppose $u_3 = CGGT$ is **not** sampled, but u_1 and u_2 are sampled.

• In [Fan, Khan, P., Patro 2022] we use a simple sampling scheme where we keep 1 unitig every s

• It is still possible to "re-construct" exactly its occurrences by walking back over the reference tilings.

- unitigs in the inverted index: if a unitig is not sampled, we do **not** store its occurrences.
- lacksquare

Suppose $u_3 = CGGT$ is **not** sampled, but u_1 and u_2 are sampled.

In [Fan, Khan, P., Patro 2022] we use a simple sampling scheme where we keep 1 unitig every s

It is still possible to "re-construct" exactly its occurrences by walking back over the reference tilings.

- unitigs in the inverted index: if a unitig is not sampled, we do **not** store its occurrences.

In [Fan, Khan, P., Patro 2022] we use a simple sampling scheme where we keep 1 unitig every s

It is still possible to "re-construct" exactly its occurrences by walking back over the reference tilings.

Sampling the inverted index

Dataset	Sampling strategy	Index size (GB)	100K reads (secs)
	None	16.8	139.4
7 Humans	Random $(s = 3, t = .05)$	7.8 (2.15×)	$8092.8~(58.04 \times)$
	Random (s = 3, t = .25)	9.9 (1.70×)	$1466.2 (10.52 \times)$
	None	7.7	12.6
$4000 \ E. \ coli$	Random $(s = 3, t = .05)$	$3.7(2.08 \times)$	$15.6~(1.24 \times)$
	Random (s = 3, t = .25)	4.7 (1.63×)	$15.5~(1.23 \times)$
	None	86.3	178.7
	Random $(s = 3, t = .05)$	45.6 (1.90×)	570.2~(3.19 imes)
30K Human gut	Random $(s = 3, t = .25)$	$54.4 (1.59 \times)$	576.9~(3.23 imes)
	Random $(s = 6, t = .05)$	$34.6 (2.50 \times)$	644.8~(3.61 imes)
	Random (s = 6, t = .25)	45.6 (1.90×)	$646.1~(3.56 \times)$

Sampling the inverted index

Dataset	u2occ with pufferfish2	k2u with SSHash	New index	original pufferfish index
7 Human	9.9	3.2	13.1	28.0
$4000 \ E. \ coli$	3.7	7.3	11.0	26.1
30K Human gut	34.6	22.0	55.6	131.7

Sampling the inverted index

Dataset	u2occ with pufferfish2	k2u with SSHash	New index	Original pufferfish index	
7 Human	9.9	3.2	13.1	28.0	
4000 E. coli	3.7	7.3	11.0	26.1	
30K Human gut	34.6	22.0	55.6	131.7	
AWS EC2 instances pricing: • <u>https://instances.vantage.sh/aws/ec2/x2gd.xlarge</u> 64 GiB of RAM — 243 USD per month • <u>https://instances.vantage.sh/aws/ec2/x2gd.2xlarge</u> 128 GiB of RAM — 478 USD per month • <u>https://instances.vantage.sh/aws/ec2/x2gd.4xlarge</u>					

- 256 GiB of RAM 975 USD per month

Conclusions

- The reference indexing problem admits a modular solutions made up of two distinct abstract data types: a dictionary \mathcal{D} and an inverted index \mathcal{L} .
- While substantial work has been done for $\mathscr{D},$ little work has been done for \mathscr{L} (for DNA references).
- We have shown that, by exploiting k-mer overlaps, we can reduce the number of lists stored in $\mathscr{L}.$
- Reasoning in terms of reference tilings opens the possibility for sampling tiles' occurrences.
- Depending on how \mathscr{L} is represented (e.g., lossless/lossy, sampled/compressed, ...): a whole *class* of related reference indexing data structures can be obtained.

Challenges – Part 1

- 1. Improve the space/time/scalability trade-off of the dictionary.
- DINT, PFor, etc.) fare in this case?
- 3. *Hybrid* strategies combining sampling with compression?
- reference tilings.

For example: x AND y, where x, y are k-mers. Or weighted-and: return all documents where x AND y occur but at least for t times, for some user-defined t > 0.

2. How the compression techniques developed for IR (e.g., Interpolative Coding, Elias-Fano,

4. Investigate different sampling schemes. For example, instead of either sampling or not a unitig entirely (all its occurrences), we could sample the inverted lists directly, or the

5. What is the performance of more complex queries (for example, with query operators AND/ OR, etc.) rather than just enumeration? This would improve the expressiveness of the index.

Challenges – Part 2

6. What is the "best" set of tiles for the references $\mathscr{R} = \{R_1, \ldots, R_m\}$?

- 7. What happens on pan-genomes? If \mathscr{R} is a pan-genome, we expect:
 - The dictionary not to grow that much by adding related genomes to \mathscr{R} ;
 - The reference tilings to be very similar. This will also reflect on the inverted lists.
- 8. In this talk we have focused on *exact* (i.e., *lossless*) approaches: exact k-mer membership and exact colors/positions.

What happens if we allow an *approximation* or *false-positives*?

- Approximation: do not index all tiles.
- False-positives: result of a query contains some "wrong" answers.

We have used the unitigs, but it is also possible to use other "tigs" with some extra bookkeeping. However, here it is not clear if a smaller SPSS (longer "tigs") also implies a smaller reference tiling.

Thank you for the attention!

A special thank to Jason Fan, Jamshed Khan, and Rob Patro University of Maryland (USA)