
Giulio Ermanno Pibiri
Ca’ Foscari University of Venice

giulioermanno.pibiri@unive.it

Introduction to Algorithms
IIS A. Pacinotti, Mestre (Venice) 
06/06/2023

mailto:giulioermanno.pibiri@unive.it

About me
• As of June 2022: 

 
Assistant Prof. of Computer Science at Ca’ Foscari University of Venice.

• Before:

- post-doctoral researcher at CNR, Pisa (March 2019 - June 2022)

- Ph.D. in Computer Science from University of Pisa (Jan. 2016 - March 2019).

• Research interests: 
 
Algorithms and compressed data structures with applications to real-world
problems, for example, in Information Retrieval and Computational Biology.

• Contact:

- Web page: https://jermp.github.io

- Email: giulioermanno.pibiri@unive.it

https://jermp.github.io
mailto:giulioermanno.pibiri@unive.it

What is this lecture about?

• This is an introductory lecture to the field of Algorithms and Data Structures.

• Our goal for today: understand why algorithms are fundamental to solve large-scale
problems.

What is this lecture about?

• This is an introductory lecture to the field of Algorithms and Data Structures.

• Our goal for today: understand why algorithms are fundamental to solve large-scale
problems.

• Algorithms: methods (recipes) to solve a problem.

• Data Structures: ways to organise the data that it is accessed by an algorithm to
solve a problem.

What is this lecture about?

• This is an introductory lecture to the field of Algorithms and Data Structures.

• Our goal for today: understand why algorithms are fundamental to solve large-scale
problems.

• Algorithms: methods (recipes) to solve a problem.

• Data Structures: ways to organise the data that it is accessed by an algorithm to
solve a problem.

• Data Compression: better data representation to enable more efficient algorithms
(we will not talk about this today, though).

Overview

• 9:00 — 10:00

Part 1 — Basic definitions, warm-up

• 10:10 — 11:00

Part 2 — Motivations, analysis of algorithms, same applications

• 11:10 — 12:00

Part 3 — Some example problems: integer search and sub-string search

Part 1 — Basic definitions, warm-up

Basic definitions — Algorithm

• Informally: a recipe to solve a problem.

Basic definitions — Algorithm

• Informally: a recipe to solve a problem.

Recipe to make bread (simplified):

1. Stir together water, yeast, and flour.

2. Add oil and salt.

3. Knead the dough.

4. Let the dough rest for 1 h.

5. Bake the dough for 20 min at 200° C.

• Formally: a finite sequence of well-defined steps that consumes some input and produces
some output.

Basic definitions — Algorithm

• Formally: a finite sequence of well-defined steps that consumes some input and produces
some output.

Basic definitions — Algorithm

Recipe to make bread (simplified):

1. Stir together water, yeast, and flour.

2. Add oil and salt.

3. Knead the dough.

4. Let the dough rest for 1 h.

5. Bake the dough for 20 min at 200° C.

input

output

• Formally: a finite sequence of well-defined steps that consumes some input and produces
some output.

Basic definitions — Algorithm

Recipe to make bread (simplified):

1. Stir together water, yeast, and flour.

2. Add oil and salt.

3. Knead the dough.

4. Let the dough rest for 1 h.

5. Bake the dough for 20 min at 200° C.

input

output

• In this lecture, we care about the algorithms that can be implemented on a computer.

Programming languages
• Implementation: write the sequence of steps in a programming language (like C/C++, Java,

Rust, Python, etc.) to let the algorithm be executed on a computer.

idea for a new 
algorithm

Programming languages
• Implementation: write the sequence of steps in a programming language (like C/C++, Java,

Rust, Python, etc.) to let the algorithm be executed on a computer.

idea for a new 
algorithm

my_algorithm.cpp

1

code

written in the C++ programming language

Programming languages
• Implementation: write the sequence of steps in a programming language (like C/C++, Java,

Rust, Python, etc.) to let the algorithm be executed on a computer.

idea for a new 
algorithm

my_algorithm.cpp

1

code

written in the C++ programming language

Programming languages
• Implementation: write the sequence of steps in a programming language (like C/C++, Java,

Rust, Python, etc.) to let the algorithm be executed on a computer.

idea for a new 
algorithm

my_algorithm.cpp

1

code

2

result

• Data Structures store the data that is accessed by an algorithm.

• Idea: the algorithm can read/write the data from/to a data structure to solve the problem
faster.

Basic definitions — Data Structure

• Data Structures store the data that is accessed by an algorithm.

• Idea: the algorithm can read/write the data from/to a data structure to solve the problem
faster.

Basic definitions — Data Structure

• Let's introduce the most basic data structure in all Computer Science: the array — 
a sequence of items all of the same type.

• For example, a sequence of integer numbers, or a sequence of characters. 
 
 N = [1,4,5,13,23,0,-9,34]
 1 2 3 4 5 6 7 8

 S = ['p','a','c','i','n','o','t','t','i']
 1 2 3 4 5 6 7 8 9

 N = [1,4,5,13,23,0,-9,34]
 1 2 3 4 5 6 7 8

 S = ['p','a','c','i','n','o','t','t','i']
 1 2 3 4 5 6 7 8 9

• Notation. With |A| we indicate the number of items in the array A (its length) and with A[i]
the i-th item of the array, for all i=1..|A|.

• For example, N[3] is the integer number 5 and S[7] is the character 't'.

Basic definitions — Arrays

 N = [1,4,5,13,23,0,-9,34]
 1 2 3 4 5 6 7 8

 S = ['p','a','c','i','n','o','t','t','i']
 1 2 3 4 5 6 7 8 9

• Notation. With |A| we indicate the number of items in the array A (its length) and with A[i]
the i-th item of the array, for all i=1..|A|.

• For example, N[3] is the integer number 5 and S[7] is the character 't'.

Basic definitions — Arrays

• If we do S[1]='t', then we over-write the first character of S, so that now S is 
 S = ['t','a','c','i','n','o','t','t','i'].

• If we do N[4]+=3, now N[4] is equal to 13+3=16.

 N = [1,4,5,13,23,0,-9,34]
 1 2 3 4 5 6 7 8

 S = ['p','a','c','i','n','o','t','t','i']
 1 2 3 4 5 6 7 8 9

• Notation. With |A| we indicate the number of items in the array A (its length) and with A[i]
the i-th item of the array, for all i=1..|A|.

• For example, N[3] is the integer number 5 and S[7] is the character 't'.

Basic definitions — Arrays

• If we do S[1]='t', then we over-write the first character of S, so that now S is 
 S = ['t','a','c','i','n','o','t','t','i'].

• If we do N[4]+=3, now N[4] is equal to 13+3=16.

• Important note: i must be an integer. It does not make any sense to refer to the element
in position i=3.56...

• In practice, an array is stored in the memory of your computer as a contiguous
sequence of bytes.

• The "byte" is the smallest unit of memory on a computer and corresponds to a
group of 8 bits — 8 binary digits.

• For example, these are 3 bytes. 
 
 01001011 11100010 01010110

Basic definitions — Arrays and memory

• In practice, an array is stored in the memory of your computer as a contiguous
sequence of bytes.

• The "byte" is the smallest unit of memory on a computer and corresponds to a
group of 8 bits — 8 binary digits.

• For example, these are 3 bytes. 
 
 01001011 11100010 01010110

Basic definitions — Arrays and memory

p a c i n o t t i

1 byte

1034 32 -99 2

4 bytes

computer memory abstraction: 
a sequence of memory cells,

each holding 1 byte

Warm up — Counting occurrences

• Problem 1. Suppose we have a string S = "abracadabraabracaba" (an array of characters)
and we want to count the number of occurrences of a given character x (which can be any
character, like a, b, c, etc.).

• How would you do it by hand?

Warm up — Counting occurrences

• Problem 1. Suppose we have a string S = "abracadabraabracaba" (an array of characters)
and we want to count the number of occurrences of a given character x (which can be any
character, like a, b, c, etc.).

• How would you do it by hand?

• Easy with a small string. What if the string is 1 billion (i.e., 1,000,000,000) characters? 
We need an algorithm to do the task for us!

• Our method: "For each character of S, check if it is equal to x: if so, we have found an
occurrence of x."

• Input: the string S.

• Output: an integer number, indicating the number of occurrences of the character x. 
(For example, we expect the answer to be 4 for x='b'.)

Warm up — Counting occurrences

• Problem 1. Suppose we have a string S = "abracadabraabracaba" (an array of characters)
and we want to count the number of occurrences of a given character x (which can be any
character, like a, b, c, etc.).

• How would you do it by hand?

• Easy with a small string. What if the string is 1 billion (i.e., 1,000,000,000) characters? 
We need an algorithm to do the task for us!

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1 1

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1 1 1

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1 1 1 1

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1 1 1 1 1

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1 1 1 1 1 2

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1 1 1 1 1 2 2

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1 1 1 1 1 2 2 2

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1 1 1 1 1 2 2 2 2

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1 1 1 1 1 2 2 2 2 3

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1 1 1 1 1 2 2 2 2 3 3

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1 1 1 1 1 2 2 2 2 3 3 3

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1 1 1 1 1 2 2 2 2 3 3 3 3

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 4

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

 
 
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

Warm up — Counting occurrences

1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4

" For each character of S, check  
 if it is equal to x: if so, we have 
 found an occurrence of x. "

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = 'b'

count 0

i

• Problem 2. Suppose we have a string S = "abracadabraabracaba" (an array of characters)
and we want to count the number of occurrences of each character appearing in the string.

• Input: the string S.

• Output: ('a',9) ('b',4) ('c',2) ('d',1) ('r',3).

Warm up — Counting occurrences

• Problem 2. Suppose we have a string S = "abracadabraabracaba" (an array of characters)
and we want to count the number of occurrences of each character appearing in the string.

• Input: the string S.

• Output: ('a',9) ('b',4) ('c',2) ('d',1) ('r',3).

Warm up — Counting occurrences

• Idea 1: use the previous occ_count(S,x) algorithm. 
 
all_occ_count_v1(S):
1. for each character x in ['a','b','c','d','e','f',...,'z']:
2. occ = occ_count(S,x)
3. print(x,occ)

• Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).

Warm up — Counting occurrences

p a c i n o t t i

1 byte

1034 32 -99 2

4 bytes

computer memory abstraction: 
a sequence of memory cells,

each holding 1 byte

• Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).

Warm up — Counting occurrences

• Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).

• How many distinct integers can we represent with 8 bits?

Warm up — Counting occurrences

• Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).

• How many distinct integers can we represent with 8 bits?

- With 1 bit: either 0 or 1. (2 integers)

Warm up — Counting occurrences

• Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).

• How many distinct integers can we represent with 8 bits?

- With 1 bit: either 0 or 1. (2 integers)

- With 2 bits: 00, 01, 10, 11. (4 integers)

Warm up — Counting occurrences

• Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).

• How many distinct integers can we represent with 8 bits?

- With 1 bit: either 0 or 1. (2 integers)

- With 2 bits: 00, 01, 10, 11. (4 integers)

- With 3 bits: 000, 001, 010, 011, 100, 101, 110, 111. (8 integers)

- …

- With 8 bits: integers.28 = 256

Warm up — Counting occurrences

• Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).

• How many distinct integers can we represent with 8 bits?

- With 1 bit: either 0 or 1. (2 integers)

- With 2 bits: 00, 01, 10, 11. (4 integers)

- With 3 bits: 000, 001, 010, 011, 100, 101, 110, 111. (8 integers)

- …

- With 8 bits: integers.28 = 256

Warm up — Counting occurrences

• A character, when interpreted as an integer, can therefore be used as an index
into an array of length 256. This is known as the ASCII representation.

Warm up — Counting occurrences
• Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).

ASCII table

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 1

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 1

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 1

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 1

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 1

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 1

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 2

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 2

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 25

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 25

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 256

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 256

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 256 3

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 256 3

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 256 3 3

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 256 3 3

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 256 3 37

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 256 3 37

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 256 3 37 2

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 256 3 37 2

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 256 3 37 28

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 256 3 37 28

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 256 3 37 28 4

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 256 3 37 28 4

int char

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

Warm up — Counting occurrences

S = ['a','b','r','a','c','a','d','a','b','r','a','a','b','r','a','c','a','b','a']
 1 2 3 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19i

C = [0, 0, ... , 0 , 0 , 0 , 0 , ... , 0 , ...]
 0 1 ... 97 98 99 100 ... 114 ...

1 1 12 13 14 2 256 3 37 28 49

int char

We have two different algorithms for the same problem

• Algorithm v2 uses a data structure (an array), whereas algorithm v1 does not.

• Q. Which one should we use?

• To answer this question we need to analyse an algorithm.

v1
v2

Basic definitions — Analysis of algorithms

• When developing a solution to a problem with an algorithm, we are concerned about
two things:

Basic definitions — Analysis of algorithms

• When developing a solution to a problem with an algorithm, we are concerned about
two things:

- the running time of the algorithm; 
Q. After how many seconds will my algorithm terminate?

Basic definitions — Analysis of algorithms

• When developing a solution to a problem with an algorithm, we are concerned about
two things:

- the space taken by the data structure(s) it uses. 
Q. Can I run my algorithm on my computer with 4GB of RAM?

- the running time of the algorithm; 
Q. After how many seconds will my algorithm terminate?

Basic definitions — Analysis of algorithms

• When developing a solution to a problem with an algorithm, we are concerned about
two things:

• The less, the better. We strive for efficient algorithms.

• Analysing an algorithm means understanding its running time and memory usage. 
We will talk more about this soon.

- the space taken by the data structure(s) it uses. 
Q. Can I run my algorithm on my computer with 4GB of RAM?

- the running time of the algorithm; 
Q. After how many seconds will my algorithm terminate?

Part 1 — Summary

• Definition of Algorithm and Data Structure

• Arrays and memory

• Warm up: two algorithms for counting the occurrences of characters in strings

Part 2 — Motivations, analysis of algorithms, 
 same applications

• The romantic/philosophical view: algorithms describe our life.

• Fundamental questions:

- Q. What problems can I solve?

- Q. And how, i.e., what resources do I need?

- Q. Can I do better (use less resources)?

Why algorithms?

• The romantic/philosophical view: algorithms describe our life.

• Fundamental questions:

- Q. What problems can I solve?

- Q. And how, i.e., what resources do I need?

- Q. Can I do better (use less resources)?

Why algorithms?

• Understanding if we can do something better has always been a primary question in the
history of human evolution.

• There are many known algorithms. Yet, probably more need to be invented!

• Democracy: can be invented by anyone, anywhere. You could be next!

Huffman's data compression algorithm

David Huffman 
(1925 - 1999)

Robert Fano 
(1917 - 2016)

• D. Huffman was a graduate student
at MIT in 1951.

• He solved an open problem left by
his teacher R. Fano, during a class
on Information Theory.

TTGCTCATGCGCCGGTGCCTGCAGTGAACTGAGGAAAATAAGTTGTTTAACCGGCGTCTGGCGCAGCGCGTCGCGCACGTTGAGCGCCGCCTGACGCTCATGGGCGATAAAATCGCCGCCTTCGCCCATGCCGTGTACCAGATAGTAAAC
GGTATCAATGTCGCGAAGCAGCGCGGGTAAATTTTCCGGCCAGTGCAGATCGACCTTATGACAACTGACGTTGGCGAGGCGCTGTTTTTCCAGACGTTCGATGCGTCGCGCCGCCGCTCGCACCTGATGCCCTTGCTGACTTAGCGCAAA
GACCAGGTGCTGGCCGATATAGCCGCTGGCGCCGAGAACCAGAATGCGTTGCGCCACGTTGCTCTCCTTAGCGGGCTAAAAAGGCGCGCCAGTGGGCGACGACGTCGGTAAGCTGTTCGCGAGAGACATCCAGATGCGTCACCAGACGCA
CAATCGGCGCGGCGTTAATCAGGATATTCCGTTCCCGCAAATAGTCGCCAAGCGCGGCGGCCTGTGCTTCGCCAACGCGAACAAACAGCATATTCGTTTCGTGGCGTATGACCTCCGCGCCCGCTTCCCGAAGCTGCTGCGCCAGCCAGG
CGGCGTTATCATGATCCTCTTGCAGACGCGCCACGTTATGCTTCAGCGCATACAGTCCGGCCGCTGCCAGAATCCCGGCCTGACGCATTCCGCCGCCGACCATTTTACGCCAGCGCGTCGCGCGTTTAATGTAATCGCGGTTGCCGACCA
GCAGTGAACCGACCGGCGTTCCGAGACCTTTTGACAGGCAGATGGTAAAAGAGTCGCAATACTGCGTAATCTCTTTTAACTCACAGCCGTAGGCAACCACCGCGTTAAAAATTCGGGCGCCGTCAACGTGCAGCGCCAGTCCACGTTCGC
GGGTAAATGTCCAGGCGTCTTTCAGATACGCGCGCGGCAGCACTTTCCCGTTATGCGTATTTTCCAGACTGAGCAAGCGCGTGCGCGCGAAGTGGATGTCATCCGCTTTAATCTTCGCCGCCACGTTCTCCAGCGGCAGCGTACCGTCCG
CGGCGGCGTCGATGGGCTGCGGCTGAATGCTGCCGAGCACCGCCGCGCCGCCAGCTTCATAGAGATAATTATGCGCGCCCTGACCGACGATATACTCTTCGCCGCGTTCACAATGGCTAAGCAGCGCGACCAGATTGGCCTGGGTGCCGG
TGGGTAAAAAAAGCGCCGCTTCTTTACCGGAAAGGTCGGCGGCGTAGCGCTGAAGGGCGTTAACAGTAGGGTCATCCCCGACCGGGGCGGTCATCATCGCCTCGAGCATGGCGCGGCCCGGTCGGGTAACGGTATCACTGCGTAAATCAA
TCATGGCACATCCCTGGATTTTAAAAGGTGATGTGCACTGTTTTACCTTAGCCAGTTCGTTTTCGCCAGTTCGATCACTTCATCGCCGCGGCCGCTAATAATGGCGCGTAGCATGTACAGGCTAAAGCCTTTCGCTTGTTCCAGTTTGAT
CTGCGGCGGGATCGCCAGCTCTTCTTTTGCCACGACCACGTCAACCAGTACCGGGCCGTCAATGGAAAACGCGCGCTGTAGCGCACCGTCCACGTCTGCGGCTTTTTCCACGCGAATACCGGTAATGCCGCAGGCTTCGGCGATACGCGC
GAAATTGGTGTCGTGCAGTTCGGTACCGTCGGTAAGGTAGCCGCCGGCTTTCATTTCCATCGCCACAAAGCCCAGCACGCTGTTATTAAAGACGACGATTTTTATCGGCAGCTTCATCTGTACCACCGAGAGAAAATCGCCCATCAGCAT
ACTGAAGCCGCCATCACCGCACATCGCGATAACCTGACGACCCGGCGCGGTAGCCTGAGCGCCGAGCGCCTGCGGCATAGCGTTGGCCATTGACCCGTGGTTAAACGAGCCTAGCAGGCGGCGCTTGCCGTTCATTTTTAGATAGCGGGC
CGCCCAGACGGTCGGCGTGCCGACATCGCAGGTAAAAATAGCGTCGTCAGCGGCGAAATGACTAATTTGTTGCGCCAGATATTGTGGGTGGATGGCTTTATCGCTGAGTTTGGCTAAGTCATCAAGTCCCTTACGGGCGTCCCGATAGTG
CTCCAGAGCTTTATCGAGGAATTTACGATTGCTTTTTTCTTCCACCAGCGGCAGCAGGGCGCGAAGCGTGGCTTTAATATCGCCCACTAGCGCCATGTCGACTTTGCTGTGCGCGCCAATACTGCCCGGGTTGATGTCAATCTGAATGAT
TTTGGCATCGCTCGGATAAAAGGCGCGATAGGGGAACTGGGTGCCGAGCAGGATCAGCGTATCGGCGTTCATCATGGTGTGGAAGCCAGAAGAGAAGCCAATCAGGCCGGTCATTCCCACATCATAAGGGTTATCGTACTCAACGTGCTC
TTTGCCGCGCAGGGCATGAGCGATTGGCGCTTTTAGTTTTGCCGCCAACGCGACCAACTCCTCATGCGCGCCCGCGCAGCCGCTACCGCACATCAATGCGATATTGCTGGAGTAGCGCAGCAGTTGCGCCAGTTTTTTCAG

Why algorithms?
• The practical view: to solve problems that are otherwise “impossible” to solve in a

reasonable amount of time.

• Example. Sub-string search. 
Q. Does the following string contain "CGTGGTTAAACGAGC" and, if so, at what position?

In this case, the answer is "yes: at position 1896".

TTGCTCATGCGCCGGTGCCTGCAGTGAACTGAGGAAAATAAGTTGTTTAACCGGCGTCTGGCGCAGCGCGTCGCGCACGTTGAGCGCCGCCTGACGCTCATGGGCGATAAAATCGCCGCCTTCGCCCATGCCGTGTACCAGATAGTAAAC
GGTATCAATGTCGCGAAGCAGCGCGGGTAAATTTTCCGGCCAGTGCAGATCGACCTTATGACAACTGACGTTGGCGAGGCGCTGTTTTTCCAGACGTTCGATGCGTCGCGCCGCCGCTCGCACCTGATGCCCTTGCTGACTTAGCGCAAA
GACCAGGTGCTGGCCGATATAGCCGCTGGCGCCGAGAACCAGAATGCGTTGCGCCACGTTGCTCTCCTTAGCGGGCTAAAAAGGCGCGCCAGTGGGCGACGACGTCGGTAAGCTGTTCGCGAGAGACATCCAGATGCGTCACCAGACGCA
CAATCGGCGCGGCGTTAATCAGGATATTCCGTTCCCGCAAATAGTCGCCAAGCGCGGCGGCCTGTGCTTCGCCAACGCGAACAAACAGCATATTCGTTTCGTGGCGTATGACCTCCGCGCCCGCTTCCCGAAGCTGCTGCGCCAGCCAGG
CGGCGTTATCATGATCCTCTTGCAGACGCGCCACGTTATGCTTCAGCGCATACAGTCCGGCCGCTGCCAGAATCCCGGCCTGACGCATTCCGCCGCCGACCATTTTACGCCAGCGCGTCGCGCGTTTAATGTAATCGCGGTTGCCGACCA
GCAGTGAACCGACCGGCGTTCCGAGACCTTTTGACAGGCAGATGGTAAAAGAGTCGCAATACTGCGTAATCTCTTTTAACTCACAGCCGTAGGCAACCACCGCGTTAAAAATTCGGGCGCCGTCAACGTGCAGCGCCAGTCCACGTTCGC
GGGTAAATGTCCAGGCGTCTTTCAGATACGCGCGCGGCAGCACTTTCCCGTTATGCGTATTTTCCAGACTGAGCAAGCGCGTGCGCGCGAAGTGGATGTCATCCGCTTTAATCTTCGCCGCCACGTTCTCCAGCGGCAGCGTACCGTCCG
CGGCGGCGTCGATGGGCTGCGGCTGAATGCTGCCGAGCACCGCCGCGCCGCCAGCTTCATAGAGATAATTATGCGCGCCCTGACCGACGATATACTCTTCGCCGCGTTCACAATGGCTAAGCAGCGCGACCAGATTGGCCTGGGTGCCGG
TGGGTAAAAAAAGCGCCGCTTCTTTACCGGAAAGGTCGGCGGCGTAGCGCTGAAGGGCGTTAACAGTAGGGTCATCCCCGACCGGGGCGGTCATCATCGCCTCGAGCATGGCGCGGCCCGGTCGGGTAACGGTATCACTGCGTAAATCAA
TCATGGCACATCCCTGGATTTTAAAAGGTGATGTGCACTGTTTTACCTTAGCCAGTTCGTTTTCGCCAGTTCGATCACTTCATCGCCGCGGCCGCTAATAATGGCGCGTAGCATGTACAGGCTAAAGCCTTTCGCTTGTTCCAGTTTGAT
CTGCGGCGGGATCGCCAGCTCTTCTTTTGCCACGACCACGTCAACCAGTACCGGGCCGTCAATGGAAAACGCGCGCTGTAGCGCACCGTCCACGTCTGCGGCTTTTTCCACGCGAATACCGGTAATGCCGCAGGCTTCGGCGATACGCGC
GAAATTGGTGTCGTGCAGTTCGGTACCGTCGGTAAGGTAGCCGCCGGCTTTCATTTCCATCGCCACAAAGCCCAGCACGCTGTTATTAAAGACGACGATTTTTATCGGCAGCTTCATCTGTACCACCGAGAGAAAATCGCCCATCAGCAT
ACTGAAGCCGCCATCACCGCACATCGCGATAACCTGACGACCCGGCGCGGTAGCCTGAGCGCCGAGCGCCTGCGGCATAGCGTTGGCCATTGACCCGTGGTTAAACGAGCCTAGCAGGCGGCGCTTGCCGTTCATTTTTAGATAGCGGGC
CGCCCAGACGGTCGGCGTGCCGACATCGCAGGTAAAAATAGCGTCGTCAGCGGCGAAATGACTAATTTGTTGCGCCAGATATTGTGGGTGGATGGCTTTATCGCTGAGTTTGGCTAAGTCATCAAGTCCCTTACGGGCGTCCCGATAGTG
CTCCAGAGCTTTATCGAGGAATTTACGATTGCTTTTTTCTTCCACCAGCGGCAGCAGGGCGCGAAGCGTGGCTTTAATATCGCCCACTAGCGCCATGTCGACTTTGCTGTGCGCGCCAATACTGCCCGGGTTGATGTCAATCTGAATGAT
TTTGGCATCGCTCGGATAAAAGGCGCGATAGGGGAACTGGGTGCCGAGCAGGATCAGCGTATCGGCGTTCATCATGGTGTGGAAGCCAGAAGAGAAGCCAATCAGGCCGGTCATTCCCACATCATAAGGGTTATCGTACTCAACGTGCTC
TTTGCCGCGCAGGGCATGAGCGATTGGCGCTTTTAGTTTTGCCGCCAACGCGACCAACTCCTCATGCGCGCCCGCGCAGCCGCTACCGCACATCAATGCGATATTGCTGGAGTAGCGCAGCAGTTGCGCCAGTTTTTTCAG

Why algorithms?
• The practical view: to solve problems that are otherwise “impossible” to solve in a

reasonable amount of time.

• Example. Sub-string search. 
Q. Does the following string contain "CGTGGTTAAACGAGC" and, if so, at what position?

Why algorithms?

• Example. Shortest path between two points in a map.

Why algorithms?

• Example. Query suggestion.

• The practical view: for profit.

• Build better systems/applications in terms of reduced latency to use the service. 
 

 Make your users happy so that they will keep using your service (and you will keep earning)!→

Why algorithms?

• The practical view: for profit.

• Build better systems/applications in terms of reduced latency to use the service. 
 

 Make your users happy so that they will keep using your service (and you will keep earning)!→

Why algorithms?

• Save computer resources (power and storage machines).

• These considerations are even more relevant today than in the past.

• Today we are facing a data explosion phenomenon.

The increase of data does not scale with technology

• These considerations are even more relevant today than in the past.

• Today we are facing a data explosion phenomenon.

The increase of data does not scale with technology

 Lesson learnt: a better algorithm is always  
 better than a better computer!
→

Data explosion
• More data…

Data centers
• More computers…

Applications are more data intensive than ever
• More electricity spent more money spent!

• The more efficient an algorithm is, the less electricity it requires to run.

→

• We need good programmers to implement efficient algorithms.

Why algorithms?

Linus Torvalds 
(creator of Linux)

"Bad programmers worry about the code.
 Good programmers worry about data
 structures and their relationships."

• We need good programmers to implement efficient algorithms.

Why algorithms?

Linus Torvalds 
(creator of Linux)

"Bad programmers worry about the code.
 Good programmers worry about data
 structures and their relationships."

• To better understand what we can do with computers.

• To solve real-world problems that could be otherwise impossible to solve.

• To get a well-paid job.

Why algorithms? — Recap

• To better understand what we can do with computers.

• To solve real-world problems that could be otherwise impossible to solve.

• To get a well-paid job.

Why algorithms? — Recap

 No reason not to study Computer Science and algorithms!→

Analysis of algorithms

• When developing a solution to a problem with an algorithm, we are concerned about
two things:

- the running time of the algorithm; 
 

- the space taken by the data structure(s) it uses.

• The less, the better.

• Trade-off between time and space of a solution.

The running time — The scientific method

• Scientific method:

1. Observe.

2. Formulate an hypothesis.

3. Make a prediction.

4. Validate: if prediction is valid, then stop; repeat otherwise. Galileo Galilei

The running time — The scientific method

|S| v1 v2

0.5M 118 ms 3 ms

1M 201 ms 6 ms

2M 372 ms 13 ms

4M 721 ms 26 ms

M = 1 million; 1 ms = 1/1000 sec

??? ???

v1
v2

The running time — The scientific method

|S| v1 v2

0.5M 118 ms 3 ms

1M 201 ms 6 ms

2M 372 ms 13 ms

4M 721 ms 26 ms

1.70≈

1.85≈

1.94≈

2.00≈

2.17≈

2.00≈

M = 1 million; 1 ms = 1/1000 sec

??? ???

v1
v2

The running time — The scientific method

|S| v1 v2

0.5M 118 ms 3 ms

1M 201 ms 6 ms

2M 372 ms 13 ms

4M 721 ms 26 ms

1.70≈

1.85≈

1.94≈

2.00≈

2.17≈

2.00≈

• First observation: as the input doubles in size, 
also the running time of both v1 and v2 doubles.

• First hypothesis: the running time has a linear
dependency from the input size.

M = 1 million; 1 ms = 1/1000 sec

??? ???

v1
v2

The running time — The scientific method

|S| v1 v2

0.5M 118 ms 3 ms

1M 201 ms 6 ms

2M 372 ms 13 ms

4M 721 ms 26 ms

1.70≈

1.85≈

1.94≈

2.00≈

2.17≈

2.00≈

• First observation: as the input doubles in size, 
also the running time of both v1 and v2 doubles.

• First hypothesis: the running time has a linear
dependency from the input size.

39≈

33≈

29≈

27≈

M = 1 million; 1 ms = 1/1000 sec

??? ???

v1
v2

The running time — The scientific method

|S| v1 v2

0.5M 118 ms 3 ms

1M 201 ms 6 ms

2M 372 ms 13 ms

4M 721 ms 26 ms

1.70≈

1.85≈

1.94≈

2.00≈

2.17≈

2.00≈

• First observation: as the input doubles in size, 
also the running time of both v1 and v2 doubles.

• First hypothesis: the running time has a linear
dependency from the input size.

39≈

33≈

29≈

27≈
• Second observation: v1 tends to be 27-30

slower than v2 for large inputs.
≈ ×

M = 1 million; 1 ms = 1/1000 sec

??? ???

v1
v2

• The scientific method is great to validate our hypotheses.

• But one should come up with an hypothesis first. We derived our hypothesis via direct
observation of the running time.

The running time — The scientific method

• The scientific method is great to validate our hypotheses.

• But one should come up with an hypothesis first. We derived our hypothesis via direct
observation of the running time.

The running time — The scientific method

• However, looking at the running time alone does not explain what the algorithm is doing.

• We would like to have a model to predict the running time.

The running time — Deriving a model

• Intuitively: the running time of an algorithm is the sum of the costs of all the operations it
executes.

• Q. What is an "operation" ?

The running time — Deriving a model

• Intuitively: the running time of an algorithm is the sum of the costs of all the operations it
executes.

• Q. What is an "operation" ?

• By "operation" we mean some elementary operation that a computer can execute, like: 
assignments, addition/subtraction, multiplication/division, read a cell of an array,
comparing two integers/characters, etc.

• Simplification: such elementary operations take a (usually, very small) unit of time, say . 
 
Example 1: Example 2: Example 3:  
 
x = 1 S[3] = 5 for i = 1..|S|:
y = 2 z = S[3] * 4 x = i + 3
z = x + y

c

4 ops
5 ops 2|S| ops∼

Counting occurrences — Analysis
• Let's count the number of operations our two algorithms perform. Let .

occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

all_occ_count_v1(S):
1. for each character x in ['a','b','c','d','e','f',...,'z']:
2. occ = occ_count(S,x)
3. print(x,occ)

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

n = |S |

at most 3 ops x times ops on average
assuming the if evaluates to true for 50% of the times

n → ∼ 5/2n

Counting occurrences — Analysis
• Let's count the number of operations our two algorithms perform. Let .

occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

all_occ_count_v1(S):
1. for each character x in ['a','b','c','d','e','f',...,'z']:
2. occ = occ_count(S,x)
3. print(x,occ)

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

n = |S |

at most 3 ops x times ops on average
assuming the if evaluates to true for 50% of the times

n → ∼ 5/2n

2 ops

Counting occurrences — Analysis
• Let's count the number of operations our two algorithms perform. Let .

occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

all_occ_count_v1(S):
1. for each character x in ['a','b','c','d','e','f',...,'z']:
2. occ = occ_count(S,x)
3. print(x,occ)

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

n = |S |

at most 3 ops x times ops on average
assuming the if evaluates to true for 50% of the times

n → ∼ 5/2n

2 ops

Counting occurrences — Analysis

26 calls to the function occ_count that takes
 ops on average total ops∼ 5/2n → ∼ 65n

• Let's count the number of operations our two algorithms perform. Let .

occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

all_occ_count_v1(S):
1. for each character x in ['a','b','c','d','e','f',...,'z']:
2. occ = occ_count(S,x)
3. print(x,occ)

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

n = |S |

a total of + 256 x 2 ops
when is large (e.g., = 1 million)

∼ 3n ≈ 3n
n n

256 ops

 ops∼ 3n

256 ops

at most 3 ops x times ops on average
assuming the if evaluates to true for 50% of the times

n → ∼ 5/2n

2 ops

Counting occurrences — Analysis

26 calls to the function occ_count that takes
 ops on average total ops∼ 5/2n → ∼ 65n

• Let's count the number of operations our two algorithms perform. Let .

occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count

all_occ_count_v1(S):
1. for each character x in ['a','b','c','d','e','f',...,'z']:
2. occ = occ_count(S,x)
3. print(x,occ)

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

n = |S |

• To sum up.

• We can conclude that:

• Both v1 and v2 have running time that grows linearly in (the length of the input string).

• But v2 executes way fewer operations, hence it is much faster (20-30X faster).

n

≈

v1 v2

num. operations ~65n ~3n

Counting occurrences — Analysis

• To sum up.

• We can conclude that:

• Both v1 and v2 have running time that grows linearly in (the length of the input string).

• But v2 executes way fewer operations, hence it is much faster (20-30X faster).

n

≈

v1 v2

num. operations ~65n ~3n

Counting occurrences — Analysis

• Linear running time is not the only possibility!

n

T(n)

Growth of running time

n

T(n)

Growth of running time

very fast!

n

T(n)

Growth of running time

very fast!

fast!

n

T(n)

Growth of running time

very fast!

fast!

slow

extremely slow

The space

• Intuitively: all the bytes that are maintained/manipulated by the algorithm during its
execution.

The space

• Intuitively: all the bytes that are maintained/manipulated by the algorithm during its
execution.

4 bytes x 256 = 1024 bytes = 1 KiB

4-byte integer

Part 2 — Summary

• Three good reasons to study algorithms:

- understand; solve; earn.

• Analysis of algorithms:

- scientific method is good to confirm/reject hypotheses;

- we need a model to predict the running time and space consumed by an algorithm.

• Model: count the number of operations performed by an algorithm.

• Alg. v2 is 30X faster than algorithm v1 but also consumes 1KiB of extra memory.

Part 3 — Some example problems: 
 integer search and sub-string search

Integer search

• Problem. We are given a sorted integer array A, say of length , and an integer x. We want to
determine whether x is in A and, if so, return its position in A.

n

Integer search

• Problem. We are given a sorted integer array A, say of length , and an integer x. We want to
determine whether x is in A and, if so, return its position in A.

n

x=34

• Example. 
 
 
 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

(return 7)

Integer search

• Problem. We are given a sorted integer array A, say of length , and an integer x. We want to
determine whether x is in A and, if so, return its position in A.

n

x=34

• Example. 
 
 
 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

(return 7)

x=95 (return -1)

Integer search

• Problem. We are given a sorted integer array A, say of length , and an integer x. We want to
determine whether x is in A and, if so, return its position in A.

n

• We will see two algorithms to solve this problem, with radically different running times.

x=34

• Example. 
 
 
 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

(return 7)

x=95 (return -1)

Linear search

• Idea 1. For each integer A[i], i = 1..n, check if it is equal to x. If so, return i. If no integer
is equal to x, then return -1.

• Pseudo code. 
 
linear_search(A,x):
 for i = 1..n:
 if A[i] is equal to x:
 return i
 return -1

Linear search

• Idea 1. For each integer A[i], i = 1..n, check if it is equal to x. If so, return i. If no integer
is equal to x, then return -1.

• Pseudo code. 
 
linear_search(A,x):
 for i = 1..n:
 if A[i] is equal to x:
 return i
 return -1

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 34

• Example.

Linear search

• Idea 1. For each integer A[i], i = 1..n, check if it is equal to x. If so, return i. If no integer
is equal to x, then return -1.

• Pseudo code. 
 
linear_search(A,x):
 for i = 1..n:
 if A[i] is equal to x:
 return i
 return -1

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 34

• Example.

Linear search

• Idea 1. For each integer A[i], i = 1..n, check if it is equal to x. If so, return i. If no integer
is equal to x, then return -1.

• Pseudo code. 
 
linear_search(A,x):
 for i = 1..n:
 if A[i] is equal to x:
 return i
 return -1

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 34

• Example.

Linear search

• Idea 1. For each integer A[i], i = 1..n, check if it is equal to x. If so, return i. If no integer
is equal to x, then return -1.

• Pseudo code. 
 
linear_search(A,x):
 for i = 1..n:
 if A[i] is equal to x:
 return i
 return -1

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 34

• Example.

Linear search

• Idea 1. For each integer A[i], i = 1..n, check if it is equal to x. If so, return i. If no integer
is equal to x, then return -1.

• Pseudo code. 
 
linear_search(A,x):
 for i = 1..n:
 if A[i] is equal to x:
 return i
 return -1

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 34

• Example.

Linear search

• Idea 1. For each integer A[i], i = 1..n, check if it is equal to x. If so, return i. If no integer
is equal to x, then return -1.

• Pseudo code. 
 
linear_search(A,x):
 for i = 1..n:
 if A[i] is equal to x:
 return i
 return -1

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 34

• Example.

Linear search

• Idea 1. For each integer A[i], i = 1..n, check if it is equal to x. If so, return i. If no integer
is equal to x, then return -1.

• Pseudo code. 
 
linear_search(A,x):
 for i = 1..n:
 if A[i] is equal to x:
 return i
 return -1

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 34

• Example.

Linear search

• Idea 1. For each integer A[i], i = 1..n, check if it is equal to x. If so, return i. If no integer
is equal to x, then return -1.

• Pseudo code. 
 
linear_search(A,x):
 for i = 1..n:
 if A[i] is equal to x:
 return i
 return -1

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 34

• Example.

Linear search

• Idea 1. For each integer A[i], i = 1..n, check if it is equal to x. If so, return i. If no integer
is equal to x, then return -1

• Pseudo code. 
 
linear_search(A,x):
 for i = 1..n:
 if A[i] is equal to x:
 return i
 return -1 • Q. How many operations?

Linear search

• Idea 1. For each integer A[i], i = 1..n, check if it is equal to x. If so, return i. If no integer
is equal to x, then return -1

• Pseudo code. 
 
linear_search(A,x):
 for i = 1..n:
 if A[i] is equal to x:
 return i
 return -1 • Q. How many operations?

- Best case: x is found in first position (i=1), so just 2 ops.

Linear search

• Idea 1. For each integer A[i], i = 1..n, check if it is equal to x. If so, return i. If no integer
is equal to x, then return -1

• Pseudo code. 
 
linear_search(A,x):
 for i = 1..n:
 if A[i] is equal to x:
 return i
 return -1 • Q. How many operations?

- Best case: x is found in first position (i=1), so just 2 ops.

- Worst case: x is not found at all, so ops.2n

Linear search

• Idea 1. For each integer A[i], i = 1..n, check if it is equal to x. If so, return i. If no integer
is equal to x, then return -1

• Pseudo code. 
 
linear_search(A,x):
 for i = 1..n:
 if A[i] is equal to x:
 return i
 return -1 • Q. How many operations?

- Best case: x is found in first position (i=1), so just 2 ops.

- Average case: ops.∼ 1/2 ⋅ 2n = n
- Worst case: x is not found at all, so ops.2n

Linear search

• Idea 1. For each integer A[i], i = 1..n, check if it is equal to x. If so, return i. If no integer
is equal to x, then return -1

• Pseudo code. 
 
linear_search(A,x):
 for i = 1..n:
 if A[i] is equal to x:
 return i
 return -1 • Q. How many operations?

• So the running time is linear in the length of the array.

- Best case: x is found in first position (i=1), so just 2 ops.

- Average case: ops.∼ 1/2 ⋅ 2n = n
- Worst case: x is not found at all, so ops.2n

A better search strategy

• Idea 2. Exploit that fact that the array A is sorted.

• Intuition: Suppose you have x=34 and you look at a random position in A, say at position 11. 
What can you say about the position of x?

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 34

A better search strategy

• Idea 2. Exploit that fact that the array A is sorted.

• Intuition: Suppose you have x=34 and you look at a random position in A, say at position 11. 
What can you say about the position of x?

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 34

• If you think, this is exactly the way
we search for a word in a dictionary!

• If we are searching for the word
"freshness" we do not start from the
beginning of the dictionary...but
probably look for words that start
with f.

• In fact, words in a vocabulary are
sorted lexicographically...

A better search strategy

Binary search

• Our refined strategy. Look at the element in middle position, y=A[n/2]: 
if x = y, then we are done; 
if x < y, then continue searching in the left half (i.e., A[1..n/2-1]); 
otherwise continue the search in the right half (i.e., A[n/2+1..n]).

• Example.

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 66

left rightmiddle

Binary search

• Our refined strategy. Look at the element in middle position, y=A[n/2]: 
if x = y, then we are done; 
if x < y, then continue searching in the left half (i.e., A[1..n/2-1]); 
otherwise continue the search in the right half (i.e., A[n/2+1..n]).

• Example.

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 66

left rightmiddle

Binary search

• Our refined strategy. Look at the element in middle position, y=A[n/2]: 
if x = y, then we are done; 
if x < y, then continue searching in the left half (i.e., A[1..n/2-1]); 
otherwise continue the search in the right half (i.e., A[n/2+1..n]).

• Example.

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 66

left rightmiddle left rightmiddle

Binary search

• Our refined strategy. Look at the element in middle position, y=A[n/2]: 
if x = y, then we are done; 
if x < y, then continue searching in the left half (i.e., A[1..n/2-1]); 
otherwise continue the search in the right half (i.e., A[n/2+1..n]).

• Example.

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 66

left rightmiddle left rightmiddle

Binary search

• Our refined strategy. Look at the element in middle position, y=A[n/2]: 
if x = y, then we are done; 
if x < y, then continue searching in the left half (i.e., A[1..n/2-1]); 
otherwise continue the search in the right half (i.e., A[n/2+1..n]).

• Example.

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 66

left rightmiddle left rightmiddleleft right

middle

Binary search

• Our refined strategy. Look at the element in middle position, y=A[n/2]: 
if x = y, then we are done; 
if x < y, then continue searching in the left half (i.e., A[1..n/2-1]); 
otherwise continue the search in the right half (i.e., A[n/2+1..n]).

• Example.

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 66

left rightmiddle left rightmiddleleft right

middle

Binary search

• Our refined strategy. Look at the element in middle position, y=A[n/2]: 
if x = y, then we are done; 
if x < y, then continue searching in the left half (i.e., A[1..n/2-1]); 
otherwise continue the search in the right half (i.e., A[n/2+1..n]).

• Example.

 A = [3,5,7,13,14,15,34,45,66,78,123,443,601]
 1 2 3 4 5 6 7 8 9 10 11 12 13

x = 66

left rightmiddle left rightmiddleleft right

middle

left
right

middle

Binary search

• Our refined strategy. Look at the element in middle position, y=A[n/2]: 
if x = y, then we are done; 
if x < y, then continue searching in the left half (i.e., A[1..n/2-1]); 
otherwise continue the search in the right half (i.e., A[n/2+1..n]).

• Example.

• Q. How many operations (comparisons) do we need to search an array of length ?n

Binary search — Analysis

• Q. How many operations (comparisons) do we need to search an array of length ?n

Binary search — Analysis

1 op: (n < 2)

• Q. How many operations (comparisons) do we need to search an array of length ?n

Binary search — Analysis

2 ops: (2 ≤ n < 4)

1 op: (n < 2)

• Q. How many operations (comparisons) do we need to search an array of length ?n

Binary search — Analysis

2 ops: (2 ≤ n < 4)

3 ops: (4 ≤ n < 8)

1 op: (n < 2)

• Q. How many operations (comparisons) do we need to search an array of length ?n

Binary search — Analysis

2 ops: (2 ≤ n < 4)

3 ops: (4 ≤ n < 8)

1 op: (n < 2)

...

 ops:p

2p−1 − 1 2p−1 − 1

(2p−1 ≤ n < 2p)

• Q. How many operations (comparisons) do we need to search an array of length ?n

Binary search — Analysis

2 ops: (2 ≤ n < 4)

3 ops: (4 ≤ n < 8)

1 op: (n < 2)

...

 ops:p

2p−1 − 1 2p−1 − 1

(2p−1 ≤ n < 2p)

→ log2(n) < p ≤ log2(n) + 1

Linear search vs. binary search

num.
operations n = 100,000 n = 1,000,000 n = 10,000,000

Linear
search ~ n 305 ms 3,400 ms 36,000 ms

Binary
search ~ log2(n) 0 ms 1 ms 3 ms

Running time to search for 10,000 integers.

IP address lookup

• Each packet has an IP destination address which is a big integer number.

• This number is searched,
at each hop, in a sorted
table of destinations IP
addresses.

• Search is done via
binary search.

• Hence binary search is
probably the most run
algorithm in the world!

Sub-string search

• Problem. We are given two strings, and , respectively of length and , with usually
, and we are asked to find all the occurrences of in .

• is also called the text and is called the pattern.

• Example. 

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

T P n m
n ≫ m P T

T P

7 17

Sub-string search

• Problem. We are given two strings, and , respectively of length and , with usually
, and we are asked to find all the occurrences of in .

• is also called the text and is called the pattern.

• Example. 

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

T P n m
n ≫ m P T

T P

The Linux utility grep

search for all occurrences of "flower" 
in the file "GoogleBooks.2-grams"

Brute-force algorithm

• Idea 1. Compare every sub-string of of length , ,
for , with and check if they are equal.

T m T[i . . i + m − 1]
1 ≤ i ≤ n − m + 1 P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

Brute-force algorithm

• Idea 1. Compare every sub-string of of length , ,
for , with and check if they are equal.

T m T[i . . i + m − 1]
1 ≤ i ≤ n − m + 1 P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

S I P

Brute-force algorithm

• Idea 1. Compare every sub-string of of length , ,
for , with and check if they are equal.

T m T[i . . i + m − 1]
1 ≤ i ≤ n − m + 1 P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

S I P
S I P

Brute-force algorithm

• Idea 1. Compare every sub-string of of length , ,
for , with and check if they are equal.

T m T[i . . i + m − 1]
1 ≤ i ≤ n − m + 1 P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

S I P
S I P
S I P

Brute-force algorithm

• Idea 1. Compare every sub-string of of length , ,
for , with and check if they are equal.

T m T[i . . i + m − 1]
1 ≤ i ≤ n − m + 1 P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

S I P
S I P
S I P

S I P

Brute-force algorithm

• Idea 1. Compare every sub-string of of length , ,
for , with and check if they are equal.

T m T[i . . i + m − 1]
1 ≤ i ≤ n − m + 1 P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

S I P
S I P
S I P

S I P
S I P

Brute-force algorithm

• Idea 1. Compare every sub-string of of length , ,
for , with and check if they are equal.

T m T[i . . i + m − 1]
1 ≤ i ≤ n − m + 1 P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

S I P
S I P
S I P

S I P
S I P

S I P

Brute-force algorithm

• Idea 1. Compare every sub-string of of length , ,
for , with and check if they are equal.

T m T[i . . i + m − 1]
1 ≤ i ≤ n − m + 1 P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

S I P
S I P
S I P

S I P
S I P

S I P
S I P

Brute-force algorithm

• Idea 1. Compare every sub-string of of length , ,
for , with and check if they are equal.

T m T[i . . i + m − 1]
1 ≤ i ≤ n − m + 1 P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

...

S I P
S I P
S I P

S I P
S I P

S I P
S I P

Brute-force algorithm

• Idea 1. Compare every sub-string of of length , ,
for , with and check if they are equal.

T m T[i . . i + m − 1]
1 ≤ i ≤ n − m + 1 P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

...

• Q. How many operations?

S I P
S I P
S I P

S I P
S I P

S I P
S I P

Brute-force algorithm

• Idea 1. Compare every sub-string of of length , ,
for , with and check if they are equal.

T m T[i . . i + m − 1]
1 ≤ i ≤ n − m + 1 P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

...

• Q. How many operations?

- We compare two sub-strings of length spending
 operations.

- We have a total of total sub-string
comparisons, which is when .

- Hence, a total of operations.

m
∼ m

n − m + 1
≈ n n ≫ m

∼ mn

S I P
S I P
S I P

S I P
S I P

S I P
S I P

• Summary. Compare to , from left to right, for every .

• Very easy to implement; analysis is straightforward.

• Usually sufficiently fast if is small.

P T[i . . i + m − 1] 1 ≤ i ≤ n − m + 1

m

Brute-force algorithm

• Summary. Compare to , from left to right, for every .

• Very easy to implement; analysis is straightforward.

• Usually sufficiently fast if is small.

P T[i . . i + m − 1] 1 ≤ i ≤ n − m + 1

m

Brute-force algorithm

• Could be slow if is sufficiently long.

• Q. How to make it faster?

m

Boyer-Moore algorithm

• Intuition. Compare from right to left. If the last character does not match, then stop
comparing and jump ahead.

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

Boyer-Moore algorithm

• Intuition. Compare from right to left. If the last character does not match, then stop
comparing and jump ahead.

S I P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

Boyer-Moore algorithm

• Intuition. Compare from right to left. If the last character does not match, then stop
comparing and jump ahead.

S I P
S I P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

Boyer-Moore algorithm

• Intuition. Compare from right to left. If the last character does not match, then stop
comparing and jump ahead.

S I P
S I P

S I P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

Boyer-Moore algorithm

• Intuition. Compare from right to left. If the last character does not match, then stop
comparing and jump ahead.

S I P
S I P

S I P
S I P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

Boyer-Moore algorithm

• Intuition. Compare from right to left. If the last character does not match, then stop
comparing and jump ahead.

S I P
S I P

S I P
S I P
S I P

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

Boyer-Moore algorithm

• Intuition. Compare from right to left. If the last character does not match, then stop
comparing and jump ahead.

S I P
S I P

S I P
S I P
S I P

S I P

'L' does not belong to the pattern: 
jump characters ahead!m

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

Boyer-Moore algorithm

• Intuition. Compare from right to left. If the last character does not match, then stop
comparing and jump ahead.

S I P
S I P

S I P
S I P
S I P

S I P
S I P

'L' does not belong to the pattern: 
jump characters ahead!m

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

Boyer-Moore algorithm

• Intuition. Compare from right to left. If the last character does not match, then stop
comparing and jump ahead.

S I P
S I P

S I P
S I P
S I P

S I P
S I P

S I P

'L' does not belong to the pattern: 
jump characters ahead!m

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

Boyer-Moore algorithm

• Intuition. Compare from right to left. If the last character does not match, then stop
comparing and jump ahead.

S I P
S I P

S I P
S I P
S I P

S I P
S I P
S I P

S I P

'L' does not belong to the pattern: 
jump characters ahead!m

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

Boyer-Moore algorithm

• Intuition. Compare from right to left. If the last character does not match, then stop
comparing and jump ahead.

S I P
S I P

S I P
S I P
S I P

S I P
S I P
S I P

S I P

'L' does not belong to the pattern: 
jump characters ahead!m

• If the above case is frequent
(as it usually is in practice),
then we perform
operations!

∼ n/m

 P = S I P

 T = M I S S I S S I P P I L I P P I S I P

Karp-Rabin algorithm

• Idea. Calculate a function that returns an integer number and compare this number
to . If the two numbers are equal, then we have found a match.

• Two integers can be compared with 1 operation, which is much faster than doing a string
comparison (operations).

h(P)
h(T[i . . i + m − 1])

∼ m

Karp-Rabin algorithm

• Idea. Calculate a function that returns an integer number and compare this number
to . If the two numbers are equal, then we have found a match.

• Two integers can be compared with 1 operation, which is much faster than doing a string
comparison (operations).

h(P)
h(T[i . . i + m − 1])

∼ m

• Key. Calculate the function efficiently for every sub-string , using a
constant number of operations, and not operations.

• Note. Function is called a hash function.

h T[i . . i + m − 1]
m

h

Karp-Rabin algorithm — Rolling hash function

• How to compute , i.e., obtain an integer number from a string?

• Remember the ASCII table (e.g., of size), mapping characters to integers.

• Each string can be treated as a "large" number in base .

h

127

b = 127

Karp-Rabin algorithm — Rolling hash function

• How to compute , i.e., obtain an integer number from a string?

• Remember the ASCII table (e.g., of size), mapping characters to integers.

• Each string can be treated as a "large" number in base .

h

127

b = 127

P = S I P

ASCII 83 73 80

Karp-Rabin algorithm — Rolling hash function

• How to compute , i.e., obtain an integer number from a string?

• Remember the ASCII table (e.g., of size), mapping characters to integers.

• Each string can be treated as a "large" number in base .

h

127

b = 127

P = S I P

ASCII 83 73 80
 for .→ h(P) = 83 × b2 + 73 × b + 80 = 1,348,058 b = 127

Karp-Rabin algorithm — Rolling hash function

• Key. Calculate the function efficiently for every sub-string , using a
constant number of operations, and not operations.

h T[i . . i + m − 1]
m

Karp-Rabin algorithm — Rolling hash function

• Problem. How to calculate 
 

 
 
from 
 

  
 
using a constant number of operations ?

h(T[i + 1..i + m]) = T[i + 1] ⋅ bm−1 + T[i + 2] ⋅ bm−2 + T[i + 3] ⋅ bm−3 + ⋯ + T[i + m]

h(T[i . . i + m − 1]) = T[i] ⋅ bm−1 + T[i + 1] ⋅ bm−2 + T[i + 2] ⋅ bm−3 + ⋯ + T[i + m − 1]

Karp-Rabin algorithm — Rolling hash function

T[1..3] = M I S → h(T[1..3]) = T[1] ⋅ b2 + T[2] ⋅ b + T[3]

• Let's consider an example.

T[2..4] = I S S → h(T[2..4]) = T[2] ⋅ b2 + T[3] ⋅ b + T[4]

T = M I S S I S S I P P I L I P P I S I P

Karp-Rabin algorithm — Rolling hash function

T[1..3] = M I S → h(T[1..3]) = T[1] ⋅ b2 + T[2] ⋅ b + T[3]

• Let's consider an example.

T[2..4] = I S S → h(T[2..4]) = T[2] ⋅ b2 + T[3] ⋅ b + T[4]

T = M I S S I S S I P P I L I P P I S I P

subtract

add

Karp-Rabin algorithm — Rolling hash function

T[1..3] = M I S → h(T[1..3]) = T[1] ⋅ b2 + T[2] ⋅ b + T[3]

• Let's consider an example.

T[2..4] = I S S → h(T[2..4]) = T[2] ⋅ b2 + T[3] ⋅ b + T[4]

T = M I S S I S S I P P I L I P P I S I P

subtract

add

Karp-Rabin algorithm — Rolling hash function

T[1..3] = M I S → h(T[1..3]) = T[1] ⋅ b2 + T[2] ⋅ b + T[3]

• Let's consider an example.

T[2..4] = I S S → h(T[2..4]) = T[2] ⋅ b2 + T[3] ⋅ b + T[4]

T = M I S S I S S I P P I L I P P I S I P

• Hence, it is easy to derive that 
 

.h(T[i + 1..i + m]) = (h(T[i . . i + m − 1]) − T[i] ⋅ bm−1) ⋅ b + T[i + m]

 can be pre-computedbm−1• Just 4 operations (not) !m

subtract

add

Karp-Rabin algorithm — Rolling hash function

T[1..3] = M I S → h(T[1..3]) = T[1] ⋅ b2 + T[2] ⋅ b + T[3]

• Let's consider an example.

T[2..4] = I S S → h(T[2..4]) = T[2] ⋅ b2 + T[3] ⋅ b + T[4]

T = M I S S I S S I P P I L I P P I S I P

• Hence, it is easy to derive that 
 

.h(T[i + 1..i + m]) = (h(T[i . . i + m − 1]) − T[i] ⋅ bm−1) ⋅ b + T[i + m]

Karp-Rabin algorithm

 P = S I P 1348058

 T = M I S S I S S I P P I L I P P I S I P

→ h(P) =

• The function is computed using a constant number of operations for each sub-string: this
leads to a simple linear-time algorithm operations.

h
→ ∼ n

Karp-Rabin algorithm

 P = S I P 1348058

 T = M I S S I S S I P P I L I P P I S I P

→ h(P) =

• The function is computed using a constant number of operations for each sub-string: this
leads to a simple linear-time algorithm operations.

h
→ ∼ n

M I S h(MIS) = 1251287

Karp-Rabin algorithm

 P = S I P 1348058

 T = M I S S I S S I P P I L I P P I S I P

→ h(P) =

• The function is computed using a constant number of operations for each sub-string: this
leads to a simple linear-time algorithm operations.

h
→ ∼ n

M I S h(MIS) = 1251287
I S S h(ISS) = 1188041

Karp-Rabin algorithm

 P = S I P 1348058

 T = M I S S I S S I P P I L I P P I S I P

→ h(P) =

• The function is computed using a constant number of operations for each sub-string: this
leads to a simple linear-time algorithm operations.

h
→ ∼ n

M I S h(MIS) = 1251287
I S S h(ISS) = 1188041

...

S S I
S I S

I S S
S S I

S I P

h(SSI) = 1349321
h(SIS) = 1348061

h(ISS) = 1188041
h(SSI) = 1349321

h(SIP) = 1348058

Karp-Rabin algorithm

 P = S I P 1348058

 T = M I S S I S S I P P I L I P P I S I P

→ h(P) =

• The function is computed using a constant number of operations for each sub-string: this
leads to a simple linear-time algorithm operations.

h
→ ∼ n

M I S h(MIS) = 1251287
I S S h(ISS) = 1188041

...

S S I
S I S

I S S
S S I

S I P

h(SSI) = 1349321
h(SIS) = 1348061

h(ISS) = 1188041
h(SSI) = 1349321

h(SIP) = 1348058

• Caveat. When increases, the integers output by increase as well. Thus we take the
, where is a big prime number.

m h
h mod p p

Summary of sub-string search

k is the
alphabet size

time to search all occurrences of the
pattern P = "not only all that"

num.
operations space Moby Dick 

(1.3 MB)
Sherlock Holmes 

(6.5 MB)

Brute force ~ mn constant 3.5 ms 15.1 ms

Boyer-Moore ~ n/m ~ k 0.9 ms 4.5 ms

Karp-Rabin ~ 4n constant 1.3 ms 6.3 ms

This is not the end of the story...

• There are many more string search algorithms!

• So far, we have considered solutions to the sub-string search problem that do not use a data
structure built from the text.

This is not the end of the story...

• There are many more string search algorithms!

• So far, we have considered solutions to the sub-string search problem that do not use a data
structure built from the text.

• Intuition: if we pre-process the text into a data structure, we can find the occurrences of
the pattern faster.

• Clear trade-off between space and time of the solution.

• These trade-offs are at the heart of all problems in Computer Science.

T
P

The Suffix Array data structure
• Idea. Build a data structure from the text to allow faster pattern search.

• We will build a data structure known as the suffix array (SA) of .

T

T

The Suffix Array data structure
• Idea. Build a data structure from the text to allow faster pattern search.

• We will build a data structure known as the suffix array (SA) of .

T

T

 1 2 3 4 5 6 7 8 9 10 11 12
 = m i s s i s s i p p i $T

• Example.

The Suffix Array data structure
• Idea. Build a data structure from the text to allow faster pattern search.

• We will build a data structure known as the suffix array (SA) of .

T

T

 1 2 3 4 5 6 7 8 9 10 11 12
 = m i s s i s s i p p i $T

• Example.
 1
 i s s i s s i p p i $ 2
 s s i s s i p p i $ 3
 s i s s i p p i $ 4
 i s s i p p i $ 5
 s s i p p i $ 6
 s i p p i $ 7
 i p p i $ 8
 p p i $ 9
 p i $ 10
 i $ 11
 $ 12

Step 1: we take all the suffixes of . 
('$' is the smallest character.)

T

The Suffix Array data structure
• Idea. Build a data structure from the text to allow faster pattern search.

• We will build a data structure known as the suffix array (SA) of .

T

T

 1 2 3 4 5 6 7 8 9 10 11 12
 = m i s s i s s i p p i $T

• Example.
 1
 i s s i s s i p p i $ 2
 s s i s s i p p i $ 3
 s i s s i p p i $ 4
 i s s i p p i $ 5
 s s i p p i $ 6
 s i p p i $ 7
 i p p i $ 8
 p p i $ 9
 p i $ 10
 i $ 11
 $ 12

Step 1: we take all the suffixes of . 
('$' is the smallest character.)

T

Step 2: we sort them lexicographically.

12 $
11 i $
8 i p p i $
5 i s s i p p i $
2 i s s i s s i p p i $
1 m i s s i s s i p p i $
10 p i $
9 p p i $
7 s i p p i $
4 s i s s i p p i $
6 s s i p p i $
3 s s i s s i p p i $

SA

The Suffix Array data structure
• Idea. Build a data structure from the text to allow faster pattern search.

• We will build a data structure known as the suffix array (SA) of .

T

T

 1 2 3 4 5 6 7 8 9 10 11 12
 = m i s s i s s i p p i $T

• Example.
 1
 i s s i s s i p p i $ 2
 s s i s s i p p i $ 3
 s i s s i p p i $ 4
 i s s i p p i $ 5
 s s i p p i $ 6
 s i p p i $ 7
 i p p i $ 8
 p p i $ 9
 p i $ 10
 i $ 11
 $ 12

Step 1: we take all the suffixes of . 
('$' is the smallest character.)

T

Step 2: we sort them lexicographically.

12 $
11 i $
8 i p p i $
5 i s s i p p i $
2 i s s i s s i p p i $
1 m i s s i s s i p p i $
10 p i $
9 p p i $
7 s i p p i $
4 s i s s i p p i $
6 s s i p p i $
3 s s i s s i p p i $

• The SA of looks like this.

• Examples.  
 
 SA[3] = 8

means that the 3-rd smallest suffix
of T begins at position 8; 
 
 SA[6] = 1 
 
means that the 6-th smallest suffix
of T begins at position 1.

• Let's now see how, with SA and ,
we can search for a pattern .

T

T
P

 [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]
 1 2 3 4 5 6 7 8 9 10 11 12

 = SA

$ i
$

i
p
p
i
$

i
s
s
i
p
p
i
$

s
s
i
p
p
i
$

p
i
$

p
p
i
$

s
i
p
p
i
$

s
i
s
s
i
p
p
i
$

s
s
i
s
s
i
p
p
i
$

i
s
s
i
s
s
i
p
p
i
$

m
i
s
s
i
s
s
i
p
p
i
$

 1 2 3 4 5 6 7 8 9 10 11 12
 = m i s s i s s i p p i $T

The Suffix Array data structure

• With and we can search for by binary search:

1. compare with the string starting at

2. if equal, then a match if found in at

3. if smaller, recurse on

4. otherwise, recurse on

T SA P
P T[SA[⌊n/2⌋]]

T SA[⌊n/2⌋]
SA[1..⌊n/2⌋ − 1]
SA[⌊n/2⌋ + 1..n]

 = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]
 1 2 3 4 5 6 7 8 9 10 11 12
SA

ssiP =

T = m i s s i s s i p p i $
 1 2 3 4 5 6 7 8 9 10 11 12

Searching with the Suffix Array

• Example.

• With and we can search for by binary search:

1. compare with the string starting at

2. if equal, then a match if found in at

3. if smaller, recurse on

4. otherwise, recurse on

T SA P
P T[SA[⌊n/2⌋]]

T SA[⌊n/2⌋]
SA[1..⌊n/2⌋ − 1]
SA[⌊n/2⌋ + 1..n]

1

 = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]
 1 2 3 4 5 6 7 8 9 10 11 12
SA

ssiP =

T = m i s s i s s i p p i $
 1 2 3 4 5 6 7 8 9 10 11 12

Searching with the Suffix Array

• Example.

• With and we can search for by binary search:

1. compare with the string starting at

2. if equal, then a match if found in at

3. if smaller, recurse on

4. otherwise, recurse on

T SA P
P T[SA[⌊n/2⌋]]

T SA[⌊n/2⌋]
SA[1..⌊n/2⌋ − 1]
SA[⌊n/2⌋ + 1..n]

21

 = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]
 1 2 3 4 5 6 7 8 9 10 11 12
SA

ssiP =

T = m i s s i s s i p p i $
 1 2 3 4 5 6 7 8 9 10 11 12

Searching with the Suffix Array

• Example.

• With and we can search for by binary search:

1. compare with the string starting at

2. if equal, then a match if found in at

3. if smaller, recurse on

4. otherwise, recurse on

T SA P
P T[SA[⌊n/2⌋]]

T SA[⌊n/2⌋]
SA[1..⌊n/2⌋ − 1]
SA[⌊n/2⌋ + 1..n]

2 31

 = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]
 1 2 3 4 5 6 7 8 9 10 11 12
SA

ssiP =

T = m i s s i s s i p p i $
 1 2 3 4 5 6 7 8 9 10 11 12

Searching with the Suffix Array

• Example.

• With and we can search for by binary search:

1. compare with the string starting at

2. if equal, then a match if found in at

3. if smaller, recurse on

4. otherwise, recurse on

T SA P
P T[SA[⌊n/2⌋]]

T SA[⌊n/2⌋]
SA[1..⌊n/2⌋ − 1]
SA[⌊n/2⌋ + 1..n]

2 431

 = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]
 1 2 3 4 5 6 7 8 9 10 11 12
SA

ssiP =

T = m i s s i s s i p p i $
 1 2 3 4 5 6 7 8 9 10 11 12

Searching with the Suffix Array

• Example.

Searching with the Suffix Array — Analysis

• Q. Space and time of this solution?

Searching with the Suffix Array — Analysis

• Q. Space and time of this solution?

- Recall that binary search takes operations to search an array of length .

- Each string comparison, between and , takes at most operations.

- Hence can be searched in operations.

∼ log2(n) n

P T[i . . i + m − 1] m

P ∼ m log2(n)

Searching with the Suffix Array — Analysis

• Q. Space and time of this solution?

- Recall that binary search takes operations to search an array of length .

- Each string comparison, between and , takes at most operations.

- Hence can be searched in operations.

∼ log2(n) n

P T[i . . i + m − 1] m

P ∼ m log2(n)

- Space?

Searching with the Suffix Array — Analysis

• Q. Space and time of this solution?

- Recall that binary search takes operations to search an array of length .

- Each string comparison, between and , takes at most operations.

- Hence can be searched in operations.

∼ log2(n) n

P T[i . . i + m − 1] m

P ∼ m log2(n)

- Space?

- The SA is an integer array; each integer takes a value in the range and
therefore requires bits to be represented.

- Hence, the SA takes a total of bits. (More than the text itself!)

[1..n]
⌈log2(n)⌉

n⌈log2(n)⌉

Summary of sub-string search — Update

num.
operations space Moby Dick 

(1.3 MB)
Sherlock Holmes 

(6.5 MB)

Brute force ~ mn constant 3.5 ms 15.1 ms

Boyer-Moore ~ n/m ~ k 0.9 ms 4.5 ms

Karp-Rabin ~ 4n constant 1.3 ms 6.3 ms

Suffix Array ~ m log2(n) n log2(n) 0.001 ms 0.001 ms

k is the
alphabet size

time to search all occurrences of the
pattern P = "not only all that"

Thank you!
Questions?

