Introduction to Algorithms

IIS A. Pacinotti, Mestre (Venice) 06/06/2023

Giulio Ermanno Pibiri

Ca' Foscari University of Venice giulioermanno.pibiri@unive.it

About me

• As of June 2022:

Assistant Prof. of Computer Science at Ca' Foscari University of Venice.

- Before: \bullet
 - post-doctoral researcher at CNR, Pisa (March 2019 June 2022)
 - Ph.D. in Computer Science from University of Pisa (Jan. 2016 March 2019).
- Research interests:

Algorithms and compressed data structures with applications to real-world problems, for example, in Information Retrieval and Computational Biology.

- Contact:
 - Web page: <u>https://jermp.github.io</u> -
 - Email: <u>giulioermanno.pibiri@unive.it</u>

What is this lecture about?

- This is an introductory lecture to the field of Algorithms and Data Structures.
- problems.

Our goal for today: understand why algorithms are fundamental to solve large-scale

What is this lecture about?

- This is an introductory lecture to the field of Algorithms and Data Structures. •
- problems.
- Algorithms: methods (recipes) to solve a problem.
- Data Structures: ways to organise the data that it is accessed by an algorithm to solve a problem.

Our goal for today: understand why algorithms are fundamental to solve large-scale

What is this lecture about?

- This is an introductory lecture to the field of Algorithms and Data Structures. lacksquare
- problems.
- Algorithms: methods (recipes) to solve a problem.
- **Data Structures:** ways to **organise the data** that it is accessed by an algorithm to solve a problem.
- **Data Compression: better data representation** to enable more efficient algorithms (we will not talk about this today, though).

Our goal for today: understand why algorithms are fundamental to solve large-scale

Overview

• 9:00 - 10:00

Part 1 — Basic definitions, warm-up

• 10:10 - 11:00

Part 2 — Motivations, analysis of algorithms, same applications

• 11:10 - 12:00

Part 3 — Some example problems: integer search and sub-string search

Part 1 — Basic definitions, warm-up

• Informally: a **recipe** to solve a problem.

Informally: a **recipe** to solve a problem. lacksquare

Recipe to make bread (simplified):

- 1. Stir together water, yeast, and flour.
- 2. Add oil and salt.
- 3. Knead the dough.
- 4. Let the dough rest for 1 h.
- 5. Bake the dough for 20 min at 200° C.

some output.

• Formally: a finite sequence of well-defined steps that consumes some input and produces

• some output.

Recipe to make bread (simplified):

- Stir together water, yeast, and flour. 1.
- 2. Add oil and salt.
- Knead the dough. 3.
- Let the dough rest for 1 h. 4.
- Bake the dough for 20 min at 200° C. 5.

input

Formally: a finite sequence of well-defined steps that consumes some input and produces

lacksquaresome output.

Recipe to make bread (simplified):

- Stir together water, yeast, and flour.
- 2. Add oil and salt.
- Knead the dough. 3.
- Let the dough rest for 1 h. 4.
- Bake the dough for 20 min at 200° C. 5.

input

Formally: a finite sequence of well-defined steps that consumes some input and produces

In this lecture, we care about the algorithms that can be implemented on a computer.

Rust, Python, etc.) to let the algorithm be executed on a computer.

idea for a new algorithm

Implementation: write the sequence of steps in a **programming language** (like C/C++, Java,

Rust, Python, etc.) to let the algorithm be executed on a computer.

idea for a new algorithm

my_algorithm.cpp

130	<pre>for (; processed_buckets < num_non_empty_buckets; ++processed_bucket</pre>
131	<pre>auto const& bucket = *buckets;</pre>
132	<pre>assert(bucket.size() > 0);</pre>
133	
134	<pre>for (uint64_t pilot = 0; true; ++pilot) {</pre>
135	uint64_t hashed_pilot = PTHASH_LIKELY(pilot < search_cache_s
136	·····? hashed_pilots_cache[pilot]
137	<pre></pre>
138	
139	<pre>positions.clear();</pre>
140	
141	<pre>auto bucket_begin = bucket.begin(), bucket_end = bucket.end</pre>
142	<pre>for (; bucket_begin != bucket_end; ++bucket_begin) {</pre>
143	<pre>uint64_t hash = *bucket_begin;</pre>
144	<pre>uint64_t p = fastmod::fastmod_u64(hash ^ hashed_pilot, f</pre>
145	<pre>if (taken.get(p)) break;</pre>
146	<pre>positions.push_back(p);</pre>
147	· · · · · · · · · · · · }
148	
149	<pre>if (bucket_begin == bucket_end) { // all keys do not have</pre>
150	
151	············//·check·for·in-bucket·collisions
152	<pre>std::sort(positions.begin(), positions.end());</pre>
153	<pre>auto it = std::adjacent_find(positions.begin(), position</pre>
154	<pre>if (it != positions.end())</pre>
155	continue; ///in-bucket.collision.detected,.try.nex
156	
157	<pre>pilots.emplace_back(bucket.id(), pilot);</pre>
158	<pre>for (auto p : positions) {</pre>
159	<pre>assert(taken.get(p) == false);</pre>
160	<pre>taken.set(p, true);</pre>
161	
162	<pre>if (config.verbose_output) log.update(processed_buckets)</pre>
163	·····break;
164	
165	••••••
166	····}

Implementation: write the sequence of steps in a programming language (like C/C++, Java,

ets. ++buckets) _size) d(); M, table_size); collisions with take ons.end()) xt pilot s, bucket.size(), pilot);

Rust, Python, etc.) to let the algorithm be executed on a computer.

idea for a new algorithm

my_algorithm

130	<pre>for (; processed_buckets < num_non_empty_buckets; ++processed_bucket</pre>
131	<pre>auto.const& bucket = *buckets;</pre>
132	<pre>assert(bucket.size() > 0);</pre>
133	
134	<pre>for (uint64_t pilot = 0; true; ++pilot) {</pre>
135	<pre>uint64_t hashed_pilot = PTHASH_LIKELY(pilot < search_cache_s</pre>
136	·····? hashed_pilots_cache[pilot]
137	<pre></pre>
138	
139	<pre>positions.clear();</pre>
140	
141	<pre>auto bucket_begin = bucket.begin(), bucket_end = bucket.end</pre>
142	<pre>for (; bucket_begin != bucket_end; ++bucket_begin) {</pre>
143	<pre>uint64_t hash = *bucket_begin;</pre>
144	<pre>uint64_t p = fastmod::fastmod_u64(hash ^ hashed_pilot, r)</pre>
145	<pre>if (taken.get(p)) break;</pre>
146	<pre>positions.push_back(p);</pre>
147	
148	
149	<pre>if (bucket_begin == bucket_end) { // all keys do not have</pre>
150	
151	···········//·check·for·in-bucket·collisions
152	<pre>std::sort(positions.begin(), positions.end());</pre>
153	<pre>auto it = std::adjacent_find(positions.begin(), position</pre>
154	<pre>if (it != positions.end())</pre>
155	··················· continue; ··//·in-bucket·collision·detected,·try·nex
156	
157	<pre>pilots.emplace_back(bucket.id(), pilot);</pre>
158	<pre>for (auto p : positions) {</pre>
159	<pre>assert(taken.get(p) == false);</pre>
160	<pre>taken.set(p, true);</pre>
161	····}
162	<pre>if (config.verbose_output) log.update(processed_buckets)</pre>
163	····break;
164	•••••••••••••••••••••••••••••••••••••••
165	•••••••••••••••••••••••••••••••••••••••
166	····}

Implementation: write the sequence of steps in a programming language (like C/C++, Java,

written in the C++ programming language

n.cpp
ed_buckets, ++buckets) {
n_cache_size) ilot] seed);
cket.end(); { _pilot, M, table_size);
ot∙have∙collisions∙with∙taken
<pre>positions.end());</pre>
∙try∙next∙pilot

Rust, Python, etc.) to let the algorithm be executed on a computer.

idea for a new algorithm

my_algorithm.cpp

130	<pre>for (; processed_buckets < num_non_empty_buckets; ++processed_bucket</pre>
131	<pre>auto.const& bucket = *buckets;</pre>
132	<pre>assert(bucket.size() > 0);</pre>
133	
134	<pre>for (uint64_t pilot = 0; true; ++pilot) {</pre>
135	<pre>uint64_t hashed_pilot = PTHASH_LIKELY(pilot < search_cache_s</pre>
136	·····? hashed_pilots_cache[pilot]
137	<pre></pre>
138	
139	<pre>positions.clear();</pre>
140	
141	<pre>auto bucket_begin = bucket.begin(), bucket_end = bucket.end</pre>
142	<pre>for (; bucket_begin != bucket_end; ++bucket_begin) {</pre>
143	<pre>uint64_t hash = *bucket_begin;</pre>
144	<pre>uint64_t p = fastmod::fastmod_u64(hash ^ hashed_pilot, r)</pre>
145	<pre>if (taken.get(p)) break;</pre>
146	<pre>positions.push_back(p);</pre>
147	
148	
149	<pre>if (bucket_begin == bucket_end) { // all keys do not have</pre>
150	
151	···········//·check·for·in-bucket·collisions
152	<pre>std::sort(positions.begin(), positions.end());</pre>
153	<pre>auto it = std::adjacent_find(positions.begin(), position</pre>
154	<pre>if (it != positions.end())</pre>
155	··················· continue; ··//·in-bucket·collision·detected,·try·nex
156	
157	<pre>pilots.emplace_back(bucket.id(), pilot);</pre>
158	<pre>for (auto p : positions) {</pre>
159	<pre>assert(taken.get(p) == false);</pre>
160	<pre>taken.set(p, true);</pre>
161	····}
162	<pre>if (config.verbose_output) log.update(processed_buckets)</pre>
163	····break;
164	•••••••••••••••••••••••••••••••••••••••
165	•••••••••••••••••••••••••••••••••••••••
166	····}

Implementation: write the sequence of steps in a **programming language** (like C/C++, Java,

written in the C++ programming language

Basic definitions – Data Structure

- **Data Structures** store the data that is accessed by an algorithm. \bullet
- faster.

• Idea: the algorithm can read/write the data from/to a data structure to solve the problem

Basic definitions – Data Structure

- Data Structures store the data that is accessed by an algorithm.
- Idea: the algorithm can read/write the data from/to a data structure to solve the problem faster.
- Let's introduce the most basic data structure in all Computer Science: the array a sequence of items all of the same type.
- For example, a sequence of integer numbers, or a sequence of characters.

$$N = \begin{bmatrix} 1, 4, 5, 13, 23, 0, -9, 34 \end{bmatrix}$$

$$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$$

$$S = \begin{bmatrix} 'p', 'a', 'c', 'i', 'n', 'o', 't', \\ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{bmatrix}$$

't','i'] 89

Basic definitions – Arrays

- N = [1, 4, 5, 13, 23, 0, -9, 34]1 2 3 4 5 6 7 8
- S = ['p', 'a', 'c', 'i', 'n', 'o', 't', 't', 'i']1 2 3 4 5 6 7 8 9
- Notation. With |A| we indicate the number of items in the array A (its length) and with A[i] the i-th item of the array, for all i=1..|A|.
- For example, N[3] is the integer number 5 and S[7] is the character 't'.

Basic definitions – Arrays

- N = [1, 4, 5, 13, 23, 0, -9, 34]12345678
- S = ['p', 'a', 'c', 'i', 'n', 'o', 't', 't', 'i']1 2 3 4 5 6 7 8 9
- the i-th item of the array, for all i=1.. |A|.
- For example, N[3] is the integer number 5 and S[7] is the character 't'.
- If we do S[1]='t', then we over-write the first character of S, so that now S is S = ['t', 'a', 'c', 'i', 'n', 'o', 't', 't', 'i'].
- If we do N[4] += 3, now N[4] is equal to 13 + 3 = 16.

• Notation. With |A| we indicate the number of items in the array A (its length) and with A[i]

Basic definitions – Arrays

- N = [1, 4, 5, 13, 23, 0, -9, 34]12345678
- S = ['p', 'a', 'c', 'i', 'n', 'o', 't', 't', 'i']1 2 3 4 5 6 7 8 9
- the i-th item of the array, for all i=1.. |A|.
- For example, N[3] is the integer number 5 and S[7] is the character 't'.
- If we do S[1]='t', then we over-write the first character of S, so that now S is S = ['t', 'a', 'c', 'i', 'n', 'o', 't', 't', 'i'].
- If we do N[4] += 3, now N[4] is equal to 13 + 3 = 16.
- in position i=3.56...

• Notation. With |A| we indicate the number of items in the array A (its length) and with A[i]

Important note: i must be an integer. It does not make any sense to refer to the element

Basic definitions – Arrays and memory

- In practice, an array is stored in the memory of your computer as a contiguous sequence of bytes.
- The "byte" is the smallest unit of memory on a computer and corresponds to a group of 8 *bits* – 8 binary digits.
- For example, these are 3 bytes.

01001011 11100010 01010110

Basic definitions – Arrays and memory

- In practice, an array is stored in the memory of your computer as a contiguous sequence of bytes.
- The "byte" is the smallest unit of memory on a computer and corresponds to a group of 8 *bits* - 8 binary digits.
- For example, these are 3 bytes.

computer memory abstraction: a sequence of memory cells, each holding 1 byte

- **Problem 1.** Suppose we have a string S = "abracadabraabracaba" (an array of characters) and we want to count the **number of occurrences** of a given character x (which can be any character, like a, b, c, etc.).
- How would you do it by hand?

- character, like a, b, c, etc.).
- How would you do it by hand? •
- We need an algorithm to do the task for us!

• **Problem 1.** Suppose we have a string S = "abracadabraabracaba" (an array of characters) and we want to count the **number of occurrences** of a given character x (which can be any

Easy with a small string. What if the string is 1 billion (i.e., 1,000,000,000) characters?

- character, like a, b, c, etc.).
- How would you do it by hand? •
- We need an algorithm to do the task for us!
- occurrence of x."
- **Input:** the string S.
- **Output:** an integer number, indicating the number of occurrences of the character x. (For example, we expect the answer to be 4 for x=b'.)

Problem 1. Suppose we have a string S = "abracadabraabraabracaba" (an array of characters)and we want to count the **number of occurrences** of a given character x (which can be any

Easy with a small string. What if the string is 1 billion (i.e., 1,000,000,000) characters?

Our method: "For each character of S, check if it is equal to x: if so, we have found an

```
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count
```

" For each character of S, check if it is equal to x: if so, we have found an occurrence of x. "

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

" For each character of S, check if it is equal to x: if so, we have found an occurrence of x. "

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

" For each character of S, check if it is equal to x: if so, we have found an occurrence of x. "

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

$$x = 'b'$$

$$S = ['a', 'b', 'r', 'a', 'c', 'a', 'd', 'a', 'b']$$

$$i \rightarrow 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\uparrow \uparrow \uparrow \uparrow$$

$$f = f$$

$$f = f$$

$$f = f$$

$$f = f$$

" For each character of S, check if it is equal to x: if so, we have found an occurrence of x. "

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

$$x = 'b'$$

$$S = ['a', 'b', 'r', 'a', 'c', 'a', 'd', 'a', 'b']$$

$$i \rightarrow 1 2 3 4 5 6 7 8 9$$

$$\uparrow \uparrow \uparrow \uparrow \uparrow$$

$$f \uparrow \uparrow \uparrow$$

$$f \uparrow \uparrow \uparrow$$

" For each character of S, check if it is equal to x: if so, we have found an occurrence of x. "

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

$$x = 'b'$$

$$S = ['a', 'b', 'r', 'a', 'c', 'a', 'd', 'a', 'b']$$

$$i \rightarrow 1 2 3 4 5 6 7 8 9$$

$$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$$

$$f \uparrow \uparrow \uparrow \uparrow \uparrow$$

$$f \uparrow \uparrow \uparrow \uparrow$$

" For each character of S, check if it is equal to x: if so, we have found an occurrence of x. "

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

" For each character of S, check if it is equal to x: if so, we have found an occurrence of x. "

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

" For each character of S, check if it is equal to x: if so, we have found an occurrence of x. "

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

" For each character of S, check if it is equal to x: if so, we have found an occurrence of x. "

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

" For each character of S, check if it is equal to x: if so, we have found an occurrence of x. "

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

occ_count(S,x): 1. count = 0 2. for i = 1..|S|: 3. if S[i] is equal to x: 4. count += 1 5. return count

- **Problem 2.** Suppose we have a string S = "abracadabraabracaba" (an array of characters) and we want to count the number of occurrences **of each character** appearing in the string.
- Input: the string S.
- Output: ('a',9) ('b',4) ('c',2) ('d',1) ('r',3).

- **Problem 2.** Suppose we have a string S = "abracadabraabracaba" (an array of characters) and we want to count the number of occurrences of each character appearing in the string.
- **Input**: the string S.
- Output: ('a',9) ('b',4) ('c',2) ('d',1) ('r',3).
- **Idea 1**: use the previous occ count(S, x) algorithm.

```
all occ count v1(S):
1. for each character x in ['a', 'b', 'c', 'd', 'e', 'f', ..., 'z']:
2. occ = occ count(S,x)
   print(x,occ)
3.
```

• Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).

 \bullet

Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).

- How many distinct integers can we represent with 8 bits? \bullet

• Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).

- How many distinct integers can we represent with 8 bits?
 - With 1 bit: either 0 or 1. (2 integers)

• Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).

- Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).
- How many distinct integers can we represent with 8 bits? \bullet
 - With 1 bit: either 0 or 1. (2 integers)
 - With 2 bits: 00, 01, 10, 11. (4 integers)

- Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).
- How many distinct integers can we represent with 8 bits?
 - With 1 bit: either 0 or 1. (2 integers)
 - With 2 bits: 00, 01, 10, 11. (4 integers)
 - With 3 bits: 000, 001, 010, 011, 100, 101, 110, 111. (8 integers)

- With 8 bits: $2^8 = 256$ integers.

. . .

- How many distinct integers can we represent with 8 bits?
 - With 1 bit: either 0 or 1. (2 integers)
 - With 2 bits: 00, 01, 10, 11. (4 integers)
 - With 3 bits: 000, 001, 010, 011, 100, 101, 110, 111. (8 integers)

- With 8 bits: $2^8 = 256$ integers.
- A character, when interpreted as an integer, can therefore be used as an index into an array of length 256. This is known as the **ASCII** representation.

• Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).

lacksquare

ASCII table

Decima	l Hex C	har	Decimal	Hex	Char	Decimal	l Hex C	Char	Decimal	Hex C	Char
0	0	[NULL]	32	20	[SPACE]	64	40	0	96	60	×
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	а
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	с
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1.1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	ĥ
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	А	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	κ	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	Ν	110	6E	n
15	F	[SHIFT IN]	47	2F	/	79	4F	0	111	6F	ο
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	Р	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[END OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	١	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	-	127	7F	[DEL]

Idea 2: exploit the fact that each character is actually a small integer (1 byte = 8 bits).

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

C = [0, 0, ..., 0, 0, 0, 0, 0, ..., 0 1 ... 97 98 99 100 ... 1 S = ['a','b','r','a','c','a','d','a','b','r' i → 1 2 3 5 5 6 7 8 9 10

int	char
96	×
97	а
98	b
99	с
100	d
101	е
102	f
103	g
104	h
105	- i -
106	j
107	k
108	- I -
109	m
110	n
111	ο
112	р
113	q
114	r
	96 97 98 99 100 101 102 102 103 104 105 106 107 106 107 108 109 110 111 112 112 113

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

 $C = \begin{bmatrix} 0, 0, \dots, 0, 0, 0, 0, 0, \dots, 0 \\ 0 & 1 & \dots & 97 & 98 & 99 & 100 & \dots & 114 \end{bmatrix}$ $S = \begin{bmatrix} 'a', 'b', 'r', 'a', 'c', 'a', 'd', 'a', 'b', 'r', 'a \\ i \rightarrow 1 & 2 & 3 & 5 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \uparrow$

ccurrences	int	char
	96	×
	97	а
	98	b
	99	С
	100	d
	101	е
	102	f
	103	g
	104	h
	105	i
	106	j
	107	k
	108	- E
	109	m
	110	n
	111	ο
ρ	112	р
., 0,]	113	q
. 114	114	r

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

 $C = \begin{bmatrix} 0, 0, \dots, 1, 0, 0, 0, 0, \dots, 0\\ 0 & 1 & \dots & 97 & 98 & 99 & 100 & \dots & 114 \end{bmatrix}$ $S = \begin{bmatrix} 'a', 'b', 'r', 'a', 'c', 'a', 'd', 'a', 'b', 'r', 'a'\\ 1 & 2 & 3 & 5 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \uparrow$

ccurrences	int	char
	96	×
	97	а
	98	b
	99	С
	100	d
	101	е
	102	f
	103	g
	104	h
	105	i
	106	j
	107	k
	108	- E
	109	m
	110	n
	111	ο
ρ	112	р
., 0,]	113	q
. 114	114	r

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

ccurrences	int	char
	96	×
	97	а
	98	b
	99	С
	100	d
	101	е
	102	f
	103	g
	104	h
	105	i
	106	j
	107	k
	108	- E
	109	m
	110	n
	111	ο
ρ	112	р
., 0,]	113	q
. 114	114	r

ccurrences	int	char
	96	×
	97	а
	98	b
	99	С
	100	d
	101	е
	102	f
	103	g
	104	h
	105	i
	106	j
	107	k
	108	- E
	109	m
	110	n
	111	ο
ρ	112	р
., 0,]	113	q
. 114	114	r

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

 $C = \begin{bmatrix} 0, 0, \dots, 1, 1, 1, 0, 0, \dots, 0 \\ 0 & 1 & \dots & 97 & 98 & 99 & 100 & \dots & 114 \end{bmatrix}$ $S = \begin{bmatrix} 'a', 'b', 'r', 'a', 'c', 'a', 'd', 'a', 'b', 'r', 'a' \\ i \longrightarrow 1 & 2 & 3 & 5 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \uparrow \uparrow \uparrow \uparrow \uparrow$

ccurrences	int	char
	96	×
	97	а
	98	b
	99	С
	100	d
	101	е
	102	f
	103	g
	104	h
	105	i
	106	j
	107	k
	108	- E
	109	m
	110	n
	111	ο
ρ	112	р
., 0,]	113	q
. 114	114	r

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

 $C = \begin{bmatrix} 0, 0, \dots, 1, 1, 1, 0, 0, \dots, 1, \dots \\ 0 & 1 & \dots & 97 & 98 & 99 & 100 & \dots & 114 & \dots \end{bmatrix}$ $S = \begin{bmatrix} 'a', 'b', 'r', 'a', 'c', 'a', 'd', 'a', 'b', 'r', 'a', 'a' \\ i \longrightarrow 1 & 2 & 3 & 5 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \uparrow \uparrow \uparrow \uparrow \uparrow$

int	char
96	× .
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i i
106	j
107	k
108	- I -
109	m
110	n
111	ο
112	р
113	q
114	r
	96 97 98 99 100 101 102 102 103 104 104 105 106 107 107 108 109 110 110 111 112 112 113

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

 $C = \begin{bmatrix} 0, 0, \dots, 1, 1, 1, 0, 0, \dots, 1, \dots \\ 0 & 1 & \dots & 97 & 98 & 99 & 100 & \dots & 114 & \dots \end{bmatrix}$ $S = \begin{bmatrix} 'a', 'b', 'r', 'a', 'c', 'a', 'd', 'a', 'b', 'r', 'a', 'a' \\ i \rightarrow 1 & 2 & 3 & 5 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

int	char
96	× .
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i i
106	j
107	k
108	- I -
109	m
110	n
111	ο
112	р
113	q
114	r
	96 97 98 99 100 101 102 102 103 104 104 105 106 107 107 108 109 110 110 111 112 112 113

 $C = \begin{bmatrix} 0, 0, \dots, 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ \dots \end{bmatrix} \begin{bmatrix} 0 \\ 97 \end{bmatrix} \begin{bmatrix} 0 \\ 98 \end{bmatrix} \begin{bmatrix} 0 \\ 99 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 114 \end{bmatrix} \begin{bmatrix} 1 \\ 114 \end{bmatrix} \begin{bmatrix} 0 \\ 114 \end{bmatrix}$

int	char
96	× .
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i i
106	j
107	k
108	- I -
109	m
110	n
111	ο
112	р
113	q
114	r
	96 97 98 99 100 101 102 102 103 104 104 105 106 107 107 108 109 110 110 111 112 112 113

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

int	char
96	× .
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i i
106	j
107	k
108	- I -
109	m
110	n
111	ο
112	р
113	q
114	r
	96 97 98 99 100 101 102 102 103 104 104 105 106 107 107 108 109 110 110 111 112 112 113

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

 $C = \begin{bmatrix} 0, 0, \dots, 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ \dots \end{bmatrix} \begin{bmatrix} 1 \\ 97 \end{bmatrix} \begin{bmatrix} 1 \\ 98 \end{bmatrix} \begin{bmatrix} 0 \\ 99 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 114 \end{bmatrix}$

int	char
96	× .
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i i
106	j
107	k
108	- I -
109	m
110	n
111	ο
112	р
113	q
114	r
	96 97 98 99 100 101 102 102 103 104 104 105 106 107 107 108 109 110 110 111 112 112 113

 $C = \begin{bmatrix} 0, 0, \dots, 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix}$

int	char
96	× .
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i i
106	j
107	k
108	- I -
109	m
110	n
111	ο
112	р
113	q
114	r
	96 97 98 99 100 101 102 102 103 104 104 105 106 107 107 108 109 110 110 111 112 112 113

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

 $C = \begin{bmatrix} 0, 0, \dots, 3 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix}$

int	char
96	× .
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i i
106	j
107	k
108	- I -
109	m
110	n
111	ο
112	р
113	q
114	r
	96 97 98 99 100 101 102 102 103 104 104 105 106 107 107 108 109 110 110 111 112 112 113

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

 $C = \begin{bmatrix} 0, 0, \dots, 3 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ \dots \end{bmatrix} \begin{bmatrix} 97 \\ 98 \end{bmatrix} \begin{bmatrix} 99 \\ 100 \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \end{bmatrix} \begin{bmatrix} 114 \\ \dots$

int	char
96	× .
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i i
106	j
107	k
108	- I -
109	m
110	n
111	ο
112	р
113	q
114	r
	96 97 98 99 100 101 102 102 103 104 104 105 106 107 107 108 109 110 110 111 112 112 113

 $C = \begin{bmatrix} 0, 0, \dots, 3 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ \dots \end{bmatrix} \begin{bmatrix} 1 \\ 97 \end{bmatrix} \begin{bmatrix} 1 \\ 98 \end{bmatrix} \begin{bmatrix} 1 \\ 99 \end{bmatrix} \begin{bmatrix} 1 \\ 97 \end{bmatrix} \begin{bmatrix} 1 \\ 100 \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ 114 \end{bmatrix}$

int	char
96	× .
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i i
106	j
107	k
108	- I -
109	m
110	n
111	ο
112	р
113	q
114	r
	96 97 98 99 100 101 102 102 103 104 104 105 106 107 107 108 109 110 110 111 112 112 113

 $C = \begin{bmatrix} 0, 0, \dots, 3 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ \dots \end{bmatrix} \begin{bmatrix} 1 \\ 97 \end{bmatrix} \begin{bmatrix} 1 \\ 98 \end{bmatrix} \begin{bmatrix} 1 \\ 99 \end{bmatrix} \begin{bmatrix} 1 \\ 99 \end{bmatrix} \begin{bmatrix} 1 \\ 100 \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ \dots \end{bmatrix} \begin{bmatrix} 114 \\ 114 \end{bmatrix}$

int	char
96	× .
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i i
106	j
107	k
108	- I -
109	m
110	n
111	ο
112	р
113	q
114	r
	96 97 98 99 100 101 102 102 103 104 104 105 106 107 107 108 109 110 110 111 112 112 113

int	char
96	× .
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i i
106	j
107	k
108	- I -
109	m
110	n
111	ο
112	р
113	q
114	r
	96 97 98 99 100 101 102 102 103 104 104 105 106 107 107 108 109 110 110 111 112 112 113

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

int	char
96	× .
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i
106	j
107	k
108	- I -
109	m
110	n
111	ο
112	р
113	q
114	r
	96 97 98 99 100 101 102 102 103 104 105 106 107 106 107 108 109 110 111 112 112 113

int	char
96	× .
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i
106	j
107	k
108	- I -
109	m
110	n
111	ο
112	р
113	q
114	r
	96 97 98 99 100 101 102 102 103 104 105 106 107 106 107 108 109 110 111 112 112 113

ccurrences	int	char
	96	×
	97	а
	98	b
	99	С
	100	d
	101	е
	102	f
	103	g
	104	h
	105	i
	106	j
	107	k
	108	
	109	m
	110	n
	111	ο
., 1 ,]	112	р
114	113	q
•••••	114	r
o','r','a','a','b','r','a' 9 10 11 12 13 14 15 1	,'c','a' 16 17	,'b','a'] 18 19

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

ccurrences	int	char
	96	*
	97	а
	98	b
	99	С
	100	d
	101	е
	102	f
	103	g
	104	h
	105	
	106	1
	107	k
	108 109	I
	110	m
	111	o
	112	p
· · · 2 · · · ·]	113	р q
. 114	114	r
o','r','a','a','b','r','	a'.'c'.'a	a'.'b'.'a']
) 10 11 12 13 14 1	5 16 17	7 18 19
		TO T)

ccurrences	int	char
	96	~
	97	а
	98	b
	99	C
	100	d
	101	е
	102	f
	103	g
	104	ĥ
	105	i
	106	j
	107	k
	108	1 I I I I I I I I I I I I I I I I I I I
	109	m
	110	n
	111	ο
7	112	р
· , 2 , · .] · 114 · · ·	113	q
. 114	114	r
o','r','a','a','b','r','a'	,'c','a'	,'b','a']
) 10 11 12 13 14 15	16 17	18 19

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

ccurrences	int	char
	96	×
	97	а
	98	b
	99	C
	100	d
	101	е
	102	f
	103	g
	104	ĥ
	105	i
	106	j
	107	k
	108	1 I I I I I I I I I I I I I I I I I I I
	109	m
	110	n
	111	ο
7	112	р
· , 2 , · .] · 114 · · ·	113	q
. 114	114	r
o','r','a','a','b','r','a'	,'c','a'	,'b','a']
) 10 11 12 13 14 15	16 17	18 19

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

ccurrences	int	char
	96	× .
	97	а
	98	b
	99	С
	100	d
	101	е
	102	f
	103	g
	104	ĥ
	105	i i i
	106	j
	107	k
	108	1 I I I I I I I I I I I I I I I I I I I
	109	m
	110	n
	111	ο
	112	р
· , 2 , · ·] · 114 · · ·	113	q
. 114	114	r
o','r','a','a','b','r','a'	,'c','a'	,'b','a']
0 10 11 12 13 14 15	16 17	18 19

ccurrences	int	char
	96	× .
	97	а
	98	b
	99	С
	100	d
	101	е
	102	f
	103	g
	104	ĥ
	105	i i i
	106	j
	107	k
	108	1 I I I I I I I I I I I I I I I I I I I
	109	m
	110	n
	111	ο
	112	р
· , 2 , · ·] · 114 · · ·	113	q
. 114	114	r
o','r','a','a','b','r','a'	,'c','a'	,'b','a']
0 10 11 12 13 14 15	16 17	18 19

ccurrences	int	char
	96	×
	97	а
	98	b
	99	C
	100	d
	101	e
	102	f
	103	g
	104	h
	105	i
	106	i
	107	k
	108	1 I I I I I I I I I I I I I I I I I I I
	109	m
	110	n
	111	ο
२	112	р
· , 2 , · .] · 114 · · ·	113	q
. 114	114	r
o','r','a','a','b','r','a'	,'c','a'	.'b'.'a']
) 10 11 12 13 14 15		

ccurrences	int	char
	96	×
	97	а
	98	b
	99	C
	100	d
	101	e
	102	f
	103	g
	104	h
	105	i
	106	i
	107	k
	108	1 I I I I I I I I I I I I I I I I I I I
	109	m
	110	n
	111	ο
२	112	р
· , 2 , · .] · 114 · · ·	113	q
. 114	114	r
o','r','a','a','b','r','a'	,'c','a'	.'b'.'a']
) 10 11 12 13 14 15		

ccurrences	int	char
	96	~
	97	а
	98	b
	99	С
	100	d
	101	е
	102	f
	103	g
	104	h
	105	i
	106	j
	107	k
	108	1
	109	m
	110	n
	111	ο
2 1	112	р
· · · 2 · · ·] · · 114 · · ·	113	q
. 114	114	r
b','r','a','a','b','r','a' 10 11 12 13 14 15 1 1 1 12 1 14 15	,'c','a' 16 17	,'b','a'] 18 19

ccurrences	int	char
	96	× .
	97	а
	98	b
	99	С
	100	d
	101	е
	102	f
	103	g
	104	h
	105	i
	106	j
	107	k
	108	1
	109	m
	110	n
	111	ο
2 1	112	р
··· , 3 , ···]	113	q
. 114	114	r
b','r','a','a','b','r','a' 9 10 11 12 13 14 15 1 1 1 12 1 14 15	,'c','a' 16 17	,'b','a'] 18 19

ccurrences	int	char
GGGIIGGG		<u> </u>
	96 97	
	98	a b
	99	C
	100	d
	101	e
	102	f
	103	g
	104	ĥ
	105	i i
	106	j
	107	k
	108	1 - C
	109	m
	110	n
	111	ο
2]	112	р
· , 3 , · ·] · 114 · · ·	113	q
•••••	114	r
b', 'r', 'a', 'b', 'r', 'a' 9 10 11 12 13 14 15 10 11 12 13 14 15 1 1 1 1 1 1 1 1 1 10 1		

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

ccurrences	int	char
GGGIIGGG		<u> </u>
	96 97	
	98	a b
	99	C
	100	d
	101	e
	102	f
	103	g
	104	ĥ
	105	i
	106	j
	107	k
	108	1 - C
	109	m
	110	n
	111	ο
२	112	р
· , 3 , · ·] · 114 · · ·	113	q
•••••	114	r
b', 'r', 'a', 'b', 'r', 'a' 9 10 11 12 13 14 15 10 11 12 13 14 15 1 1 1 1 1 1 1 1 1 10 1		

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

ccurrences	int	char
	96	×
	97	а
	98	b
	99	č
	100	d
	101	e
	102	f
	103	g
	104	h
	105	
	106	
	107	k
	108	Î
	109	m
	110	n
	111	0
	112	р
, <u>3</u> ,]	113	q
. 114	114	r
b','r','a','a','b','r','a' 9 10 11 12 13 14 15 10 11 12 13 14 15 1 1 1 1 1 1 1		

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

ccurrences	int	char
	96	×
	97	а
	98	b
	99	č
	100	d
	101	e
	102	f
	103	g
	104	h
	105	
	106	
	107	k
	108	Î
	109	m
	110	n
	111	0
	112	р
, <u>3</u> ,]	113	q
. 114	114	r
b','r','a','a','b','r','a' 9 10 11 12 13 14 15 10 11 12 13 14 15 1 1 1 1 1 1 1		

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

CCURRENCESintchar96`97a98b	
96 97 a	
99 c	
100 d	
101 e	
102 f	
103 g	
104 h	
105 i	
106 j	
107 k	
108	
109 m	
110 n	
111 o	
., 3,] 112 p 113 q	
4 4 A	
. 114 114 r	
b','r','a','c','a','b','a 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 1 1 1 1 1 1 14 15 16 17 18 19 1 1 1 1 1 1 1 1 1 19	

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

CCURRENCESintchar96`97a98b	
96 97 a	
99 c	
100 d	
101 e	
102 f	
103 g	
104 h	
105 i	
106 j	
107 k	
108	
109 m	
110 n	
111 o	
., 3,] 112 p 113 q	
4 4 A	
. 114 114 r	
b','r','a','c','a','b','a 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 1 1 1 1 1 1 14 15 16 17 18 19 1 1 1 1 1 1 1 1 1 19	

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

ccurrences	int	char
	96	× .
	97	а
	98	b
	99	č
	100	d
	101	e
	102	f
	103	
	104	g
	105	
	106	-
	107	, k
	108	Î.
	109	m
	110	n
	111	0
	112	
. , 3 ,]	113	p
. 114	114	q
	TTT	
b','r','a','a','b','r','a' 9 10 11 12 13 14 15 10 11 12 13 14 15 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 10 1		

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

ccurrences	int	char
	96	× .
	97	а
	98	b
	99	č
	100	d
	101	e
	102	f
	103	
	104	g
	105	
	106	-
	107	, k
	108	Î.
	109	m
	110	n
	111	0
	112	
. , 3 ,]	113	p
. 114	114	q
	TTT	
b','r','a','a','b','r','a' 9 10 11 12 13 14 15 10 11 12 13 14 15 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 10 1		

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

ccurrences	int	char
	96	×
	97	а
	98	b
	99	
	100	d
	101	e
	102	f
	102	
	104	g
	105	
	106	
	100	J k
	108	
	109	
	110	m
	111	n
	112	0
. , 3 ,]	113	p
. 114	114	q
	114	r
b','r','a','a','b','r','a' 10 11 12 13 14 15 1 1 1 12 1 14 15	16 17	18 19

all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3. j = int(S[i])
4. C[j] += 1
5. for i = 1..|C|:
6. print(char(i),C[i])

 $C = \begin{bmatrix} 0, 0, \dots, 9 \\ 0 \end{bmatrix} , \begin{bmatrix} 4 \\ 97 \end{bmatrix} , \begin{bmatrix} 2 \\ 99 \end{bmatrix} , \begin{bmatrix} 1 \\ 99 \end{bmatrix} , \begin{bmatrix} 1 \\ 99 \end{bmatrix} , \begin{bmatrix} 1 \\ 97 \end{bmatrix} , \begin{bmatrix} 1 \\ 98 \end{bmatrix} , \begin{bmatrix} 1 \\ 99 \end{bmatrix} , \begin{bmatrix} 1 \\ 98 \end{bmatrix} , \begin{bmatrix} 1 \\ 99 \end{bmatrix} , \begin{bmatrix} 1 \\ 98 \end{bmatrix} , \begin{bmatrix} 1 \\ 99 \end{bmatrix} , \begin{bmatrix} 1 \\ 98 \end{bmatrix} , \begin{bmatrix} 1 \\ 98 \end{bmatrix} , \begin{bmatrix} 1 \\ 99 \end{bmatrix} , \begin{bmatrix} 1 \\ 98 \end{bmatrix} , \begin{bmatrix} 1$

ccurrences	int	char
	96	×
	97	а
	98	b
	99	
	100	d
	101	e
	102	f
	102	
	104	g
	105	
	106	
	100	J k
	108	
	109	
	110	m
	111	n
	112	0
. , 3 ,]	113	p
. 114	114	q
	114	r
b','r','a','a','b','r','a' 10 11 12 13 14 15 1 1 1 12 1 14 15	16 17	18 19

We have two different algorithms for the same problem

```
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
   if S[i] is equal to x:
з.
    count += 1
4.
5.
  return count
all_occ_count_v1(S):
1. for each character x in ['a','b','c','d','e','f',...,'z']:
     occ = occ_count(S,x)
2.
     print(x,occ)
3.
```

v1

- Algorithm v2 uses a data structure (an array), whereas algorithm v1 does not.
- **Q.** Which one should we use?
- To answer this question we need to **analyse** an algorithm.

When developing a solution to a problem two things:

- two things:
 - the **running time** of the algorithm; **Q.** After how many seconds will my algorithm terminate?

- two things:
 - the **running time** of the algorithm; **Q.** After how many seconds will my algorithm terminate?
 - the **space** taken by the data structure(s) it uses. **Q.** Can I run my algorithm on my computer with 4GB of RAM?

- two things:
 - the **running time** of the algorithm; **Q.** After how many seconds will my algorithm terminate?
 - the **space** taken by the data structure(s) it uses. **Q.** Can I run my algorithm on my computer with 4GB of RAM?
- The less, the better. We strive for efficient algorithms. \bullet
- Analysing an algorithm means understanding its running time and memory usage. We will talk more about this soon.

Part 1 – Summary

- Definition of Algorithm and Data Structure •
- Arrays and memory
- Warm up: two algorithms for counting the occurrences of characters in strings •

Part 2 — Motivations, analysis of algorithms, same applications

- The romantic/philosophical view: algorithms describe our life.
- Fundamental questions:
 - **Q.** What problems can I solve?
 - Q. And how, i.e., what resources do I need?
 - **Q.** Can I do better (use less resources)?

- The romantic/philosophical view: algorithms describe our life.
- Fundamental questions:
 - **Q.** What problems can I solve?
 - Q. And how, i.e., what resources do I need?
 - Q. Can I do better (use less resources)?
- Understanding if we can do something better has always been a primary question in the \bullet history of human evolution.
- There are many known algorithms. Yet, probably more need to be invented!
- **Democracy: can be invented by anyone, anywhere. You could be next!** \bullet

Huffman's data compression algorithm

Robert Fano (1917 - 2016)

David Huffman (1925 - 1999)

- D. Huffman was a graduate student at MIT in 1951.
- He solved an open problem left by his teacher R. Fano, during a class on Information Theory.

PROCEEDINGS OF THE I.R.E.

September

A Method for the Construction of Minimum-Redundancy Codes*

DAVID A. HUFFMAN⁺, ASSOCIATE, IRE

Summary-An optimum method of coding an ensemble of messages consisting of a finite number of members is developed. A minimum-redundancy code is one constructed in such a way that the average number of coding digits per message is minimized.

INTRODUCTION

NE IMPORTANT METHOD of transmitting messages is to transmit in their place sequences of symbols. If there are more messages which might be sent than there are kinds of symbols available, then some of the messages must use more than one symmight be sent than there are kinds of symbols available, of symbols. If there are more messages which messages is to transmit in their place sequences

will be defined here as an ensemble code which, for a message ensemble consisting of a finite number of members, N, and for a given number of coding digits, D, yields the lowest possible average message length. In order to avoid the use of the lengthy term "minimumredundancy," this term will be replaced here by "optimum." It will be understood then that, in this paper, "optimum code" means "minimum-redundancy code." The following basic restrictions will be imposed on an ensemble code:

ensemble code:

The following basic restrictions will be imposed on an "optimum code" means "minimum-redundancy code."

- The practical view: to solve problems that are otherwise "impossible" to solve in a \bullet reasonable amount of time.
- **Example.** Sub-string search. • **Q.** Does the following string contain "CGTGGTTAAACGAGC" and, if so, at what position?

GCAGTGAACCGACCGGCGTTCCGAGACCTTTTGACAGGCAGATGGTAAAAGAGTCGCAATACTGCGTAATCTCTTTTAACTCACAGCCGTAGGCAACCACCGCGTTAAAAATTCGGGCGCCGTCAACGTGCAGCGCCAGTCCACGTTCGC CGGCGGCGTCGATGGGCTGCGGCTGAATGCTGCCGAGCACCGCCGCCGCCGCCAGCTTCATAGAGATAATTATGCGCGCCCTGACCGACGATATACTCTTCGCCGCGTTCACAATGGCTAAGCAGCGCGACCAGATTGGCCTGGGTGCCGG GAAATTGGTGTCGTGCAGTTCGGTACCGTCGGTAAGGTAGCCGCCGGCTTTCATTTCCATCGCCACAAAGCCCAGCACGCTGTTATTAAAGACGACGATTTTTATCGGCAGCTTCATCTGTACCACCGAGAAAATCGCCCATCAGCAT TTTGGCATCGCTCGGATAAAAGGCGCGATAGGGGGAACTGGGTGCCGAGCAGGATCAGCGTATCGGCGTTCATCATGGTGTGGAAGCCAGAAGAGAGCCAATCAGGCCGGTCATTCCCACATCATAGGGGTTATCGTACTCAACGTGCTC

- The practical view: to solve problems that are otherwise "impossible" to solve in a \bullet reasonable amount of time.
- **Example.** Sub-string search. • **Q.** Does the following string contain "CGTGGTTAAACGAGC" and, if so, at what position?

GCAGTGAACCGACCGGCGTTCCGAGACCTTTTGACAGGCAGATGGTAAAAGAGTCGCAATACTGCGTAATCTCTTTTAACTCACAGCCGTAGGCAACCACCGCGTTAAAAATTCGGGCGCCGTCAACGTGCAGCGCCAGTCCACGTTCGC CGGCGGCGTCGATGGGCTGCGGCTGAATGCTGCCGAGCACCGCCGCCGCCGCCAGCTTCATAGAGATAATTATGCGCGCCCTGACCGACGATATACTCTTCGCCGCGTTCACAATGGCTAAGCAGCGCGACCAGATTGGCCTGGGTGCCGG GAAATTGGTGTCGTGCAGTTCGGTACCGTCGGTAAGGTAGCCGCCGGCTTTCATTTCCATCGCCACAAGCCCCAGCACGCTGTTATTAAAGACGACGACGATTTTTATCGGCAGCTTCATCGTACCACCGAGAGAAAATCGCCCAGCATCAGCAT TTTGGCATCGCTCGGATAAAAGGCGCGATAGGGGGAACTGGGTGCCGAGCAGGATCAGCGTATCGGCGTTCATCATGGTGTGGAAGCCAGAAGAGAGCCAATCAGGCCGGTCATTCCCACATCATAGGGGTTATCGTACTCAACGTGCTC

In this case, the answer is "yes: at position 1896".

Example. Shortest path between two points in a map.

• Example. Query suggestion.

- Q dream theater
- Q dream theater images and words
- Q dream theater discografia
- Q dream theater discography
- Q dream theater scenes from a memory
- Q dream theater awake
- Q dream theater another day
- Q dream theater logo
- Q dream theater through her eyes
- Q dream theater octavarium

AllThe Rust proBuy Againthe rust programming languageBuy Againthe rust programming language, 3rd editionthe rust programming language, 2nd editionthe rust programming language 2023outdoor curtain rods for patio rust proofshower curtain hooks rust proofshower curtain hooks rust proofshower rings for curtain rust proof

- The practical view: for **profit**.
- Build better systems/applications in terms of reduced latency to use the service. \bullet

 \rightarrow Make your users happy so that they will keep using your service (and you will keep earning)!

- The practical view: for **profit**.
- Build better systems/applications in terms of reduced latency to use the service. \bullet

 \rightarrow Make your users happy so that they will keep using your service (and you will keep earning)!

Save computer resources (power and storage machines).

The increase of data does not scale with technology

- These considerations are even more relevant today than in the past.
- Today we are facing a **data explosion** phenomenon.

"Software is getting slower more rapidly than hardware becomes faster."

Niklaus Wirth

The increase of data does not scale with technology

- These considerations are even more relevant today than in the past.
- Today we are facing a **data explosion** phenomenon.

"Software is getting slower more rapidly than hardware becomes faster."

→ Lesson learnt: a better algorithm is always better than a better computer!

Niklaus Wirth

• More data...

• More computers...

Applications are more data intensive than ever

- More electricity spent \rightarrow more money spent!
- The more efficient an algorithm is, the less electricity it requires to run.

We need good programmers to implement efficient algorithms.

> "Bad programmers worry about the code. Good programmers worry about data structures and their relationships."

Linus Torvalds (creator of Linux)

We need good programmers to implement efficient algorithms.

> "Bad programmers worry about the code. Good programmers worry about data structures and their relationships."

Google YAHOO! **bing**

Linus Torvalds (creator of Linux)

Why algorithms? – Recap

- To better understand what we can do with computers. lacksquare
- To **solve** real-world problems that could be otherwise impossible to solve. lacksquare
- To get a **well-paid job**.

Why algorithms? – Recap

- To better understand what we can do with computers. ullet
- To **solve** real-world problems that could be otherwise impossible to solve. \bullet
- To get a **well-paid job**.

 \rightarrow No reason not to study Computer Science and algorithms!

Analysis of algorithms

When developing a solution to a problem with an algorithm, we are concerned about two things:

the running time of the algorithm; ----

the **space** taken by the data structure(s) it uses.

- The less, the better.
- Trade-off between time and space of a solution.

- Scientific method:
 - 1. Observe.
 - 2. Formulate an hypothesis.
 - 3. Make a prediction.
 - 4. Validate: if prediction is valid, then stop; repeat otherwise.

Galileo Galilei

S	v1	v2
0.5M	118 ms	3 ms
1M	201 ms	6 ms
2M	372 ms	13 ms
4M	721 ms	26 ms

S	v1	v2
0.5M	118 ms	3 ms
1M	≈1.70 201 ms	≈2.00 6 ms
2M	≈1.85 372 ms	≈2.17 13 ms
4M	~1.94 721 ms	≈2.00 26 ms

S	v1	v2
0.5M	118 ms	3 ms
1M	≈1.70 201 ms	≈2.00 6 ms
2M	≈1.85 372 ms	≈2.17 13 ms
4M	~1.94 721 ms	≈2.00 26 ms

- First observation: as the input doubles in size, also the running time of both v1 and v2 doubles.
- First hypothesis: the running time has a **linear** dependency from the input size.

S	v1 v2
0.5M	~39 118 ms - 3 ms
1M	$\approx 1.70 $ ≈ 33 ≈ 2.00 201 ms $\leftarrow 6$ ms
2M	$\approx 1.85 $ $\approx 2.17 $ $\approx 2.$
4M	$\approx 1.94 - \approx 27$ $\approx 2.00 - \approx 27$ 721 ms ~ 26 ms

- First observation: as the input doubles in size, also the running time of both v1 and v2 doubles.
- First hypothesis: the running time has a **linear** dependency from the input size.

S	v1 v2
0.5M	~39 118 ms - 3 ms
1M	$\approx 1.70 $ ≈ 33 ≈ 2.00 201 ms $\leftarrow 6$ ms
2M	$\approx 1.85 $ $\approx 2.17 $ $\approx 2.$
4M	$\approx 1.94 - \approx 27$ $\approx 2.00 - \approx 27$ 721 ms ~ 26 ms

- First observation: as the input doubles in size, also the running time of both v1 and v2 doubles.
- First hypothesis: the running time has a **linear** dependency from the input size.
- Second observation: v1 tends to be \approx 27-30× slower than v2 for large inputs.

- The scientific method is great to validate our hypotheses. •
- observation of the running time.

But one should come up with an hypothesis first. We derived our hypothesis via **direct**

- The scientific method is great to validate our hypotheses.
- But one should come up with an hypothesis first. We derived our hypothesis via direct observation of the running time.
- However, looking at the running time alone does not explain what the algorithm is doing.
- We would like to have a model to predict the running time.

The running time — Deriving a model

- Intuitively: the running time of an algorithm executes.
- **Q.** What is an "operation" ?

Intuitively: the running time of an algorithm is the sum of the costs of all the operations it

The running time — Deriving a model

- executes.
- **Q.** What is an "operation" ? lacksquare
- assignments, addition/subtraction, multiplication/division, read a cell of an array, comparing two integers/characters, etc.

Example 1:	Example 2:
x = 1 y = 2 z = x + y 4 ops	S[3] = 5 z = S[3] * 4 5 ops

Intuitively: the running time of an algorithm is the sum of the costs of all the operations it

• By "operation" we mean some elementary operation that a computer can execute, like:

Simplification: such elementary operations take a (usually, very small) unit of time, say C.

Example 3: for i = 1.. |S|: x = i + 3 $\sim 2|S|$ ops

• Let's count the number of operations our two algorithms perform. Let n = |S|.

```
occ_count(S,x):
1. count = 0
2. for i = 1.. |S|:
3. if S[i] is equal to x:
4. count += 1
5. return count
all occ count v1(S):
1. for each character x in ['a', 'b', 'c', 'd', 'e', 'f', ..., 'z']:
2. occ = occ count(S,x)
3. print(x,occ)
all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1.. |S|:
3. j = int(S[i])
     C[j] += 1
4.
   for i = 1.. |C|:
5.
      print(char(i),C[i])
6.
```


• Let's count the number of operations our two algorithms perform. Let n = |S|.

```
occ_count(S,x):
1. count = 0
2. for i = 1.. |S|:
3. if S[i] is equal to x:
4. count += 1
5. return count
all occ count v1(S):
1. for each character x in ['a', b', c', d', e', f', \ldots, z']:
2. occ = occ count(S,x)
3. print(x,occ)
all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1..|S|:
3.
  j = int(S[i])
     C[j] += 1
4.
   for i = 1.. |C|:
5.
      print(char(i),C[i])
6.
```


at most **3 ops** x *n* times $\rightarrow \sim 5/2n$ ops on average assuming the if evaluates to true for 50% of the times

• Let's count the number of operations our two algorithms perform. Let n = |S|.

```
occ_count(S,x):
1. count = 0
2. for i = 1..|S|:
3. if S[i] is equal to x:
4. count += 1
5. return count
all occ count v1(S):
1. for each character x in ['a', b', c', d', e', f', \ldots, z']:
2. occ = occ count(S,x)
3. print(x,occ)
all_occ_count_v2(S):
1. C[1..256] = [0,0,...,0]
2. for i = 1.. |S|:
     j = int(S[i])
3.
     C[j] += 1
4.
   for i = 1.. |C|:
5.
     print(char(i),C[i])
6.
```


2 ops

at most **3 ops** x *n* times $\rightarrow \sim 5/2n$ ops on average assuming the if evaluates to true for 50% of the times

• Let's count the number of operations our two algorithms perform. Let n = |S|.

2 ops

at most **3 ops** x *n* times $\rightarrow \sim 5/2n$ ops on average assuming the if evaluates to true for 50% of the times

26 calls to the function occ count that takes ~ 5/2n ops on average $\rightarrow ~ 65n$ total ops

• Let's count the number of operations our two algorithms perform. Let n = |S|.

2 ops

at most **3 ops** x *n* times $\rightarrow \sim 5/2n$ ops on average assuming the if evaluates to true for 50% of the times

26 calls to the function occ count that takes ~ 5/2n ops on average $\rightarrow ~ 65n$ total ops

```
a total of \sim 3n + 256 \times 2 \text{ ops} \approx 3n
 when n is large (e.g., n = 1 million)
```

To sum up. lacksquare

	v1	v2
num. operations	~65 <i>n</i>	~3 <i>n</i>

- We can conclude that:

 - lacksquare

• Both v1 and v2 have running time that grows linearly in n (the length of the input string).

But v2 executes way fewer operations, hence it is **much** faster (\approx 20-30X faster).

To sum up.

	v1	v2
num. operations	~65 <i>n</i>	~3 <i>n</i>

- We can conclude that:
 - ullet
 - lacksquare
- Linear running time is not the only possibility!

Both v1 and v2 have running time that grows linearly in n (the length of the input string).

But v2 executes way fewer operations, hence it is **much** faster (\approx 20-30X faster).

Intuitively: all the bytes that are maintained/manipulated by the algorithm during its • execution.

Intuitively: all the bytes that are maintained/manipulated by the algorithm during its \bullet execution.

4-byte integer

4 bytes x 256 = **1024** bytes = 1 KiB

Part 2 – Summary

- Three good reasons to study algorithms: lacksquare
 - understand; solve; earn.
- Analysis of algorithms:
 - scientific method is good to confirm/reject hypotheses;
 - we need a model to predict the running time and space consumed by an algorithm.
- Model: count the number of operations performed by an algorithm.
- Alg. v2 is 30X faster than algorithm v1 but also consumes 1KiB of extra memory.

Part 3 — Some example problems: integer search and sub-string search

determine whether x is in A and, if so, return its **position** in A.

• Problem. We are given a sorted integer array A, say of length n, and an integer x. We want to

- determine whether x is in A and, if so, return its **position** in A.
- Example.

A = [3, 5, 7, 13, 14, 15, 34, 45, 66, 78, 123, 443, 601]1 2 3 4 5 6 7 8 9 10 11 12 13

x=34 ✓ (return 7)

• Problem. We are given a sorted integer array A, say of length n, and an integer x. We want to

- determine whether x is in A and, if so, return its **position** in A.
- Example.

A = [3, 5, 7, 13, 14, 15, 34, 45, 66, 78, 123, 443, 601]1 2 3 4 5 6 7 8 9 10 11 12 13

- x=34 ✓ (return 7)
- $x=95 \times (return -1)$

• Problem. We are given a sorted integer array A, say of length n, and an integer x. We want to

- determine whether x is in A and, if so, return its **position** in A.
- Example.

A = [3, 5, 7, 13, 14, 15, 34, 45, 66, 78, 123, 443, 601]1 2 3 4 5 6 7 8 9 10 11 12 13

x=34 \checkmark (return 7)

 $x=95 \times (return -1)$

• Problem. We are given a sorted integer array A, say of length n, and an integer x. We want to

We will see **two algorithms** to solve this problem, with **radically different** running times.

- Idea 1. For each integer A[i], i = 1...n, is equal to x, then return -1.
- Pseudo code.

```
linear_search(A,x):
  for i = 1..n:
    if A[i] is equal to x:
      return i
    return -1
```

• Idea 1. For each integer A[i], i = 1...n, check if it is equal to x. If so, return i. If no integer

- Idea 1. For each integer A[i], i = 1...n,
 is equal to x, then return -1.
- Pseudo code.

```
linear_search(A,x):
  for i = 1..n:
    if A[i] is equal to x:
      return i
    return 1
```

• Example.

$$A = \begin{bmatrix} 3, 5, 7, 13, 14, 1 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

x = 34

• Idea 1. For each integer A[i], i = 1...n, check if it is equal to x. If so, return i. If no integer

5,34,45,66,78,123,443,601678910111213

- Idea 1. For each integer A[i], i = 1...n,
 is equal to x, then return -1.
- Pseudo code.

```
linear_search(A,x):
  for i = 1..n:
    if A[i] is equal to x:
      return i
    return 1
```

• Example.

x = 34

• Idea 1. For each integer A[i], i = 1...n, check if it is equal to x. If so, return i. If no integer

- Idea 1. For each integer A[i], i = 1...n, is equal to x, then return -1.
- Pseudo code.

```
linear_search(A,x):
  for i = 1..n:
    if A[i] is equal to x:
      return i
    return 1
```

• Example.

$$\begin{array}{c} \mathbf{X} \times \mathbf{X} \\ \downarrow \downarrow \\ \mathbf{A} = [3,5,7,13,14,19] \\ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \end{array}$$

x = 34

• Idea 1. For each integer A[i], i = 1...n, check if it is equal to x. If so, return i. If no integer

- Idea 1. For each integer A[i], i = 1...n, is equal to x, then return -1.
- Pseudo code.

```
linear_search(A,x):
  for i = 1..n:
    if A[i] is equal to x:
      return i
    return 1
```

• Example.

$$\begin{array}{c} \mathbf{X} \times \mathbf{X} \\ \mathbf{\downarrow} \quad \mathbf{\downarrow} \quad \mathbf{\downarrow} \\ \mathbf{A} = [3, 5, 7, 13, 14, 19] \\ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \end{array}$$

x = 34

• Idea 1. For each integer A[i], i = 1...n, check if it is equal to x. If so, return i. If no integer

- Idea 1. For each integer A[i], i = 1...n,
 is equal to x, then return -1.
- Pseudo code.

```
linear_search(A,x):
  for i = 1..n:
    if A[i] is equal to x:
      return i
    return 1
```

• Example.

$$\begin{array}{c} \mathbf{X} \times \mathbf{X} \times \mathbf{X} \\ \mathbf{\downarrow} \mathbf{\downarrow} \mathbf{\downarrow} \mathbf{\downarrow} \mathbf{\downarrow} \\ \mathbf{4} \\ \mathbf{4} \\ \mathbf{5} \\ \mathbf{5} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{4} \\ \mathbf{5} \\ \mathbf{6} \end{array}$$

x = 34

• Idea 1. For each integer A[i], i = 1...n, check if it is equal to x. If so, return i. If no integer

- Idea 1. For each integer A[i], i = 1...n, is equal to x, then return -1.
- Pseudo code.

```
linear_search(A,x):
  for i = 1..n:
    if A[i] is equal to x:
      return i
    return 1
```

• Example.

x = 34

• Idea 1. For each integer A[i], i = 1...n, check if it is equal to x. If so, return i. If no integer

- Idea 1. For each integer A[i], i = 1...n,
 is equal to x, then return -1.
- Pseudo code.

```
linear_search(A,x):
  for i = 1..n:
    if A[i] is equal to x:
      return i
    return 1
```

• Example.

x = 34

• Idea 1. For each integer A[i], i = 1...n, check if it is equal to x. If so, return i. If no integer

- Idea 1. For each integer A[i], i = 1...n,
 is equal to x, then return -1.
- Pseudo code.

```
linear_search(A,x):
  for i = 1..n:
    if A[i] is equal to x:
      return i
    return 1
```

• Example.

x = 34

• Idea 1. For each integer A[i], i = 1...n, check if it is equal to x. If so, return i. If no integer

- Idea 1. For each integer A[i], i = 1...n,
 is equal to x, then return -1
- Pseudo code.

```
linear_search(A,x):
  for i = 1..n:
    if A[i] is equal to x:
      return i
    return -1
```

• Idea 1. For each integer A[i], i = 1...n, check if it is equal to x. If so, return i. If no integer

• **Q.** How many operations?

- is equal to x, then return -1
- Pseudo code. lacksquare

```
linear_search(A,x):
  for i = 1...n:
    if A[i] is equal to x:
      return i
  return -1
```

• Idea 1. For each integer A[i], i = 1...n, check if it is equal to x. If so, return i. If no integer

• **Q.** How many operations?

- **Best case**: x is found in first position (i=1), so just 2 ops.

- is equal to x, then return -1
- Pseudo code. lacksquare

```
linear_search(A,x):
 for i = 1..n:
    if A[i] is equal to x:
      return i
  return -1
```

• Idea 1. For each integer A[i], i = 1...n, check if it is equal to x. If so, return i. If no integer

• **Q.** How many operations?

- **Best case**: x is found in first position (i=1), so just 2 ops. - Worst case: x is not found at all, so 2n ops.

- is equal to x, then return -1
- Pseudo code. \bullet

```
linear_search(A,x):
 for i = 1..n:
    if A[i] is equal to x:
      return i
  return -1
```

• Idea 1. For each integer A[i], i = 1...n, check if it is equal to x. If so, return i. If no integer

• **Q.** How many operations?

- **Best case**: x is found in first position (i=1), so just 2 ops. - Worst case: x is not found at all, so 2n ops.

- Average case: $\sim 1/2 \cdot 2n = n$ ops.

- is equal to x, then return -1
- Pseudo code. \bullet

```
linear_search(A,x):
  for i = 1..n:
    if A[i] is equal to x:
      return i
  return -1
```

• Idea 1. For each integer A[i], i = 1...n, check if it is equal to x. If so, return i. If no integer

• **Q.** How many operations?

- **Best case**: x is found in first position (i=1), so just 2 ops.

- Worst case: x is not found at all, so 2n ops.

- Average case: $\sim 1/2 \cdot 2n = n$ ops.

• So the running time is linear in the length of the array.

A better search strategy

- Idea 2. Exploit that fact that the array A is sorted.
- lacksquareWhat can you say about the position of x?

x = 34

Intuition: Suppose you have x=34 and you look at a random position in A, say at position 11.

A = [3,5,7,13,14,15,34,45,66,78,123,443,601]1 2 3 4 5 6 7 8 9 10 11 12 13

A better search strategy

- Idea 2. Exploit that fact that the array A is sorted.
- What can you say about the position of x?

Intuition: Suppose you have x=34 and you look at a random position in A, say at position 11.

A better search strategy

- If you think, this is exactly the way we search for a word in a dictionary!
- If we are searching for the word "freshness" we do not start from the beginning of the dictionary...but probably look for words that start with f.
- In fact, words in a vocabulary are lacksquaresorted lexicographically...

- Our refined strategy. Look at the element in middle position, y=A[n/2]: if x = y, then we are done; if x < y, then continue searching in the **left half** (i.e., A[1..n/2-1]); otherwise continue the search in the **right half** (i.e., A[n/2+1..n]).
- Example. \bullet

- Our refined strategy. Look at the element in middle position, y=A[n/2]: if x = y, then we are done; if x < y, then continue searching in the **left half** (i.e., A[1..n/2-1]); otherwise continue the search in the **right half** (i.e., A[n/2+1..n]).
- Example. \bullet

- Our refined strategy. Look at the element in middle position, y=A[n/2]: if x = y, then we are done; if x < y, then continue searching in the **left half** (i.e., A[1..n/2-1]); otherwise continue the search in the **right half** (i.e., A[n/2+1..n]).
- Example. \bullet

- Our refined strategy. Look at the element in middle position, y=A[n/2]: if x = y, then we are done; if x < y, then continue searching in the **left half** (i.e., A[1..n/2-1]); otherwise continue the search in the **right half** (i.e., A[n/2+1..n]).
- Example. \bullet

- Our refined strategy. Look at the element in middle position, y=A[n/2]: if x = y, then we are done; if x < y, then continue searching in the **left half** (i.e., A[1..n/2-1]); otherwise continue the search in the **right half** (i.e., A[n/2+1..n]).
- Example. \bullet

• Our refined strategy. Look at the element in middle position, y=A[n/2]: if x = y, then we are done; if x < y, then continue searching in the **left half** (i.e., A[1..n/2-1]); otherwise continue the search in the **right half** (i.e., A[n/2+1..n]).

• Our refined strategy. Look at the element in middle position, y=A[n/2]: if x = y, then we are done; if x < y, then continue searching in the **left half** (i.e., A[1..n/2-1]); otherwise continue the search in the **right half** (i.e., A[n/2+1..n]).

• Our refined strategy. Look at the element in middle position, y=A[n/2]: if x = y, then we are done; if x < y, then continue searching in the **left half** (i.e., A[1..n/2-1]); otherwise continue the search in the **right half** (i.e., A[n/2+1..n]).

Binary search – Analysis

Q. How many operations (comparisons) do we need to search an array of length *n*? lacksquare

Linear search vs. binary search

	num. operations	<i>n</i> = 100,000	<i>n</i> = 1,000,000	<i>n</i> = 10,000,000
Linear search	~ n	305 ms	3,400 ms	36,000 ms
Binary search	$\sim \log_2(n)$	0 ms	1 ms	3 ms

Running time to search for 10,000 integers.

IP address lookup

Each packet has an IP destination address which is a big integer number.

- This number is searched, at each hop, in a sorted table of destinations IP addresses.
- Search is done via binary search.
- Hence binary search is ulletprobably the most run algorithm in the world!

Sub-string search

- $n \gg m$, and we are asked to find all the occurrences of P in T.
- T is also called the *text* and P is called the *pattern*.
- Example. \bullet

$$P = S I P$$
$$T = M I S S I S S I P P I L I$$

Problem. We are given two strings, T and P, respectively of length n and m, with usually

Sub-string search

- $n \gg m$, and we are asked to find all the occurrences of P in T.
- T is also called the *text* and P is called the *pattern*.
- Example. \bullet

$$P = S I P$$
$$T = M I S S I S S I P P I L I$$
$$7$$

• **Problem.** We are given two strings, T and P, respectively of length n and m, with usually

P P I S I P

17

The Linux utility grep

[giulio@xor:~\$ grep --help Usage: grep [OPTION]... PATTERNS [FILE]... Search for PATTERNS in each FILE. Example: grep -i 'hello world' menu.h main.c PATTERNS can contain multiple patterns separated by newlines.

giulio@xor:~\$ grep flower GoogleBooks.2-grams

search for all occurrences of "flower" in the file "GoogleBooks.2-grams"

• Idea 1. Compare every sub-string of T of length $m, T[i \dots i + m - 1],$ for $1 \le i \le n - m + 1$, with P and check if they are equal.

$$P = S I P$$

T = M I S S I S S I P P I L I P P I S I P

• Idea 1. Compare every sub-string of T of length $m, T[i \dots i + m - 1],$ for $1 \le i \le n - m + 1$, with P and check if they are equal.

• Idea 1. Compare every sub-string of T of length $m, T[i \dots i + m - 1],$ for $1 \le i \le n - m + 1$, with P and check if they are equal.

$$P = S I P$$

$$T = M I S S I S S I P P I L I$$

$$S I P$$

$$S I P$$

• Idea 1. Compare every sub-string of T of length $m, T[i \dots i + m - 1],$ for $1 \le i \le n - m + 1$, with P and check if they are equal.

$$P = S I P$$

$$T = M I S S I S S I P P I L I$$

$$S I P$$

$$S I P$$

$$S I P$$

$$S I P$$

• Idea 1. Compare every sub-string of T of length $m, T[i \dots i + m - 1],$ for $1 \le i \le n - m + 1$, with P and check if they are equal.

$$P = S I P$$

$$T = M I S S I S S I P P I L I$$

$$S I P$$

• Idea 1. Compare every sub-string of T of length $m, T[i \dots i + m - 1],$ for $1 \le i \le n - m + 1$, with P and check if they are equal.

$$P = S I P$$

$$T = M I S S I S S I P P I L I$$

$$S I P$$

• Idea 1. Compare every sub-string of T of length $m, T[i \dots i + m - 1],$ for $1 \le i \le n - m + 1$, with P and check if they are equal.

$$P = S I P$$

$$T = M I S S I S S I P P I L I$$

$$S I P$$

• Idea 1. Compare every sub-string of T of length $m, T[i \dots i + m - 1],$ for $1 \le i \le n - m + 1$, with P and check if they are equal.

$$P = S I P$$

$$T = M I S S I S S I P P I L I$$

$$S I P$$

• Idea 1. Compare every sub-string of T of length $m, T[i \dots i + m - 1],$ for $1 \le i \le n - m + 1$, with P and check if they are equal.

$$P = S I P$$

$$T = M I S S I S S I P P I L I$$

$$S I P$$

• Idea 1. Compare every sub-string of T of length m, T[i ... i + m - 1], for $1 \le i \le n - m + 1$, with P and check if they are equal.

$$P = S I P$$

$$T = M I S S I S S I P P I L I$$

$$S I P$$

PPISIP

Q. How many operations?

• Idea 1. Compare every sub-string of T of length m, T[i ... i + m - 1], for $1 \le i \le n - m + 1$, with P and check if they are equal.

$$P = S I P$$

$$T = M I S S I S S I P P I L I$$

$$S I P$$

- **Q.** How many operations?
- We compare two sub-strings of length *m* spending $\sim m$ operations.
- We have a total of n m + 1 total sub-string comparisons, which is $\approx n$ when $n \gg m$.
- Hence, a total of $\sim mn$ operations.

- Very easy to implement; analysis is straightforward. \bullet
- Usually sufficiently fast if *m* is small.

• Summary. Compare P to T[i ... i + m - 1], from left to right, for every $1 \le i \le n - m + 1$.

- Very easy to implement; analysis is straightforward. \bullet
- Usually sufficiently fast if *m* is small. lacksquare
- Could be **slow** if *m* is sufficiently long. \bullet
- **Q.** How to make it faster? \bullet

• Summary. Compare P to $T[i \dots i + m - 1]$, from left to right, for every $1 \le i \le n - m + 1$.

 \bullet comparing and jump ahead.

P = S I P

T = M I S S I S S I P P I L I P P I S I P

• comparing and jump ahead.

> P = S I PT = M I S S I S S I P P I L I P P I S I P SIP

• comparing and jump ahead.

> P = S I PT = M I S S I S S I P P I L I P P I S I P SIP S I P

• comparing and jump ahead.

> P = S I PT = M I S S I S S I P P I L I P P I S I P SIP S I P S I P

• comparing and jump ahead.

> P = S I PT = M I S S I S S I P P I L I P P I S I P S I P S I P SIP S I P

• comparing and jump ahead.

> P = S I PT = M I S S I S S I P P I L I P P I S I P S I P S I P SIP S I P S I P

comparing and jump ahead.

Intuition. Compare from right to left. If the last character does not match, then stop

'L' does not belong to the pattern: jump *m* characters ahead!

comparing and jump ahead.

Intuition. Compare from right to left. If the last character does not match, then stop

'L' does not belong to the pattern: jump *m* characters ahead!

P

comparing and jump ahead.

Intuition. Compare from right to left. If the last character does not match, then stop

'L' does not belong to the pattern: jump *m* characters ahead!

Ρ SIP

comparing and jump ahead.

Intuition. Compare from right to left. If the last character does not match, then stop

'L' does not belong to the pattern: jump *m* characters ahead!

Ρ SIP S I P

comparing and jump ahead.

Intuition. Compare from right to left. If the last character does not match, then stop

Ρ SIP S I P

- 'L' does not belong to the pattern: jump *m* characters ahead!
 - If the above case is frequent (as it usually is in practice), then we perform $\sim n/m$ operations!

Karp-Rabin algorithm

- to $h(T[i \dots i + m 1])$. If the two numbers are equal, then we have found a match.
- comparison ($\sim m$ operations).

• Idea. Calculate a function h(P) that returns an integer number and compare this number

• Two integers can be compared with 1 operation, which is much faster than doing a string

Karp-Rabin algorithm

- to $h(T[i \dots i + m 1])$. If the two numbers are equal, then we have found a match.
- comparison ($\sim m$ operations).
- Key. Calculate the function h efficiently for every sub-string $T[i \dots i + m 1]$, using a constant number of operations, and not *m* operations.
- **Note.** Function h is called a hash function.

• Idea. Calculate a function h(P) that returns an integer number and compare this number

• Two integers can be compared with 1 operation, which is much faster than doing a string

- How to compute h, i.e., obtain an integer number from a string?
- Remember the **ASCII** table (e.g., of size 127), mapping characters to integers.
- Each string can be treated as a "large" number in base b = 127. ullet

- How to compute h, i.e., obtain an integer number from a string?
- Remember the **ASCII** table (e.g., of size 127), mapping characters to integers.
- Each string can be treated as a "large" number in base b = 127. \bullet
 - P = S I PASCII 83 73 80

- How to compute h, i.e., obtain an integer number from a string?
- Remember the **ASCII** table (e.g., of size 127), mapping characters to integers.
- Each string can be treated as a "large" number in base b = 127. lacksquare

P =	S	Ι	Ρ	$\rightarrow h(P) = 83$
ASCII	83	73	80	/n(I) = 0.5

 $3 \times b^2 + 73 \times b + 80 = 1,348,058$ for b = 127.

- **Key.** Calculate the function h efficiently for every sub-string $T[i \dots i + m 1]$, using a constant number of operations, and not *m* operations.
- **Problem.** How to calculate

 $h(T[i+1..i+m]) = T[i+1] \cdot b^{m-1} + T[i+2] \cdot b^{m-2} + T[i+3] \cdot b^{m-3} + \dots + T[i+m]$ from

using a **constant number of operations**?

 $h(T[i ... i + m - 1]) = T[i] \cdot b^{m-1} + T[i + 1] \cdot b^{m-2} + T[i + 2] \cdot b^{m-3} + \dots + T[i + m - 1]$

Let's consider an example. •

> T = M I S S I S S I P P I L I P P I S I P $T[1..3] = M I S \rightarrow h(T[1..3]) = T[1] \cdot b^2 + T[2] \cdot b + T[3]$ $T[2..4] = I S S \rightarrow h(T[2..4]) = T[2] \cdot b^{2} + T[3] \cdot b + T[4]$

Let's consider an example. lacksquare

> T = M I S S I S S I P P I L I P P I S I P $T[1..3] = M I S \rightarrow h(T[1..3]) = T[1] \cdot b^2 + T[2] \cdot b + T[3]$ $T[2..4] = I S S \rightarrow h(T[2..4]) = T[2] \cdot b^2 + T[3] \cdot b + T[4]$

Let's consider an example. ullet

$$T = M I S S I S S I P P I L I P$$

$$T[1..3] = M I S \rightarrow h(T[1..3]) = T[1]$$

$$T[2..4] = I S S \rightarrow h(T[2..4]) = T[2]$$

Let's consider an example. \bullet

> T = M I S S I S S I P P I L I P P I S I P $T[1..3] = M I S \rightarrow h(T[1..3]) = T[1] \cdot b^2 + T[2] \cdot b + T[3]$ $T[2..4] = I S S \rightarrow h(T[2..4]) = T[2] \cdot b^2 + T[3] \cdot b + T[4]$

• Hence, it is easy to derive that $h(T[i+1..i+m]) = (h(T[i..i+m-1]) - T[i] \cdot b^{m-1}) \cdot b + T[i+m].$

Let's consider an example. lacksquare

> T = M I S S I S S I P P I L I P F $T[1..3] = M I S \rightarrow h(T[1..3]) = T[1]$ $T[2..4] = I S S \rightarrow h(T[2..4]) = T[2]$

• Hence, it is easy to derive that h(T[i+1..i+m]) = (h(T[i..i+m-1

• Just 4 operations (not m) !

P I S I P subtract

$$] \cdot b^{2} + T[2] \cdot b + T[3]$$

 $2] \cdot b^{2} + T[3] \cdot b + T[4]$ add

]) -
$$T[i] \cdot b^{m-1} \cdot b + T[i+m]$$

 b^{m-1} can be pre-computed

leads to a simple linear-time algorithm $\rightarrow \sim n$ operations.

$$P = S I P \rightarrow h(P) = 1348058$$

• The function h is computed using a constant number of operations for each sub-string: this

leads to a simple linear-time algorithm $\rightarrow \sim n$ operations.

P = S I P
$$\rightarrow h(P) = 1348058$$

T = M I S S I S S I P P I L
M I S h(MIS) = 1251287

• The function h is computed using a constant number of operations for each sub-string: this

leads to a simple linear-time algorithm $\rightarrow \sim n$ operations.

P = S I P →
$$h(P)$$
 = 1348058
T = M I S S I S S I P P I L I F
M I S $h(MIS)$ = 1251287
I S S $h(ISS)$ = 1188041

• The function h is computed using a constant number of operations for each sub-string: this

leads to a simple linear-time algorithm $\rightarrow \sim n$ operations.

$$P = S I P \rightarrow h(P) = 1348058$$

$$T = M I S S I S S I P P I L$$

$$M I S h(MIS) = 1251287$$

$$I S S h(ISS) = 1188041$$

$$S S I h(SSI) = 13493$$

$$S I S h(SIS) = 134$$

$$I S S h(SIS) = 134$$

$$I S S h(ISS) = 1$$

$$S I P h(SIP)$$

• The function h is computed using a constant number of operations for each sub-string: this

- 321
- 18061
- 1188041
- = 1349321
- = 1348058

leads to a simple linear-time algorithm $\rightarrow \sim n$ operations.

$$P = S I P \rightarrow h(P) = 1348058$$

$$T = M I S S I S S I P P I L$$

$$M I S h(MIS) = 1251287$$

$$I S S h(ISS) = 1188041$$

$$S S I h(SSI) = 13493$$

$$S I S h(SIS) = 134$$

$$I S S h(ISS) = 134$$

$$I S S h(ISS) = 1$$

$$S S I h(SSI) = 1$$

lacksquare $h \mod p$, where p is a *big prime* number.

• The function h is computed using a constant number of operations for each sub-string: this

IPPISIP

- 21 8061 1188041
- = 1349321
- = 1348058

Caveat. When *m* increases, the integers output by *h* increase as well. Thus we take the

Summary of sub-string search

	num. operations	space	Moby Dick (1.3 MB)	Sherlock Holmes (6.5 MB)
Brute force	~ mn	constant	3.5 ms	15.1 ms
Boyer-Moore	~ <i>n/m</i>	~ <i>k</i>	0.9 ms	4.5 ms
Karp-Rabin	~ 4 <i>n</i>	constant	1.3 ms	6.3 ms

time to search all occurrences of the k is the pattern P = "not only all that" alphabet size

This is not the end of the story...

- There are **many more** string search algorithms!
- structure built from the text.

So far, we have considered solutions to the sub-string search problem that do **not** use a data

This is not the end of the story...

- There are **many more** string search algorithms!
- So far, we have considered solutions to the sub-string search problem that do **not** use a data • structure built from the text.
- **Intuition**: if we pre-process the text T into a data structure, we can find the occurrences of lacksquarethe pattern *P* faster.
- Clear trade-off between space and time of the solution.
- These trade-offs are at the heart of all problems in Computer Science.

- **Idea.** Build a data structure from the text T to allow faster pattern search. lacksquare
- We will build a data structure known as the suffix array (SA) of T.

- Idea. Build a data structure from the text T to allow faster pattern search.
- We will build a data structure known as the suffix array (SA) of T.
- Example.
 1 2 3 4 5 6 7 8 9 10 11 12
 T = m i s s i s i p p i \$

- **Idea.** Build a data structure from the text T to allow faster pattern search.
- We will build a data structure known as the suffix array (SA) of T.

i p p i \$8) **p i \$ 9** i \$ 10 i **\$ 11 \$ 12**

- **Idea.** Build a data structure from the text T to allow faster pattern search.
- We will build a data structure known as the suffix array (SA) of T.

- **Idea.** Build a data structure from the text T to allow faster pattern search.
- We will build a data structure known as the suffix array (SA) of T.

- The SA of T looks like this.
- Examples.

SA[3] = 8

means that the 3-rd smallest suffix of T begins at position 8;

SA[6] = 1

means that the 6-th smallest suffix of T begins at position 1.

• Let's now see how, with SA and T, we can **search** for a pattern P.

1 2 3 4 5 6 7 8 9 10 11 12 $T = \mathbf{m} \mathbf{i} \mathbf{s} \mathbf{s} \mathbf{i} \mathbf{s} \mathbf{s} \mathbf{i} \mathbf{p} \mathbf{p} \mathbf{i}$ SA = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]4 5 6 7 8 9 10 2 3 12 iimppssssspssiipiissspsss\$ipsiiiiiss\$psiiiiiiss\$pspsss\$psissspss\$psisssssspsssssssss \$ \$ р p i \$ S р D \$ 1 \$

- With T and SA we can search for P by **binary search**:
 - 1. compare P with the string starting at T[SA[|n/2|]]
 - 2. if equal, then a match if found in T at SA[|n/2|]
 - 3. if **smaller**, recurse on SA[1..|n/2| 1]
 - 4. otherwise, recurse on SA[|n/2| + 1..n]
- Example. P = ssi

T = m i s s i s s i p p i1 2 **3** 4 5 **6** 7 8 9 10 11 12 SA = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3] 1 2 3 4 5 6 7 8 9 10 11 12

- With T and SA we can search for P by **binary search**:
 - 1. compare P with the string starting at T[SA[|n/2|]]
 - 2. if equal, then a match if found in T at SA[|n/2|]
 - 3. if **smaller**, recurse on SA[1..|n/2| 1]
 - 4. otherwise, recurse on SA[|n/2| + 1..n]
- Example. P = ssi

- With T and SA we can search for P by **binary search**:
 - 1. compare P with the string starting at T[SA[|n/2|]]
 - 2. if equal, then a match if found in T at SA[|n/2|]
 - 3. if **smaller**, recurse on SA[1..|n/2| 1]
 - 4. otherwise, recurse on SA[|n/2| + 1..n]
- Example. P = ssi

- With T and SA we can search for P by **binary search**:
 - 1. compare P with the string starting at T[SA[|n/2|]]
 - 2. if equal, then a match if found in T at SA[|n/2|]
 - 3. if **smaller**, recurse on SA[1..|n/2| 1]
 - 4. otherwise, recurse on SA[|n/2| + 1..n]
- Example. P = ssi

- With T and SA we can search for P by **binary search**:
 - 1. compare P with the string starting at T[SA[|n/2|]]
 - 2. if equal, then a match if found in T at SA[|n/2|]
 - 3. if **smaller**, recurse on SA[1..|n/2| 1]
 - 4. otherwise, recurse on SA[|n/2| + 1..n]
- Example. P = ssi

• **Q.** Space and time of this solution?

- **Q.** Space and time of this solution?

 - Hence P can be searched in ~ $m \log_2(n)$ operations.

- Recall that binary search takes $\sim \log_2(n)$ operations to search an array of length *n*.

Each string comparison, between P and $T[i \dots i + m - 1]$, takes at most m operations.

- **Q.** Space and time of this solution?

 - Hence P can be searched in ~ $m \log_2(n)$ operations.
 - Space?

- Recall that binary search takes $\sim \log_2(n)$ operations to search an array of length *n*.

Each string comparison, between P and $T[i \dots i + m - 1]$, takes at most m operations.

- **Q.** Space and time of this solution?
 - Recall that binary search takes $\sim \log_2(n)$ operations to search an array of length *n*.
 - Each string comparison, between P and $T[i \dots i + m 1]$, takes at most m operations.
 - -- Hence P can be searched in ~ $m \log_2(n)$ operations.
 - Space?
 - The SA is an integer array; each integer takes a value in the range [1..n] and therefore requires $\lceil \log_2(n) \rceil$ bits to be represented.
 - Hence, the SA takes a total of $n \lfloor \log_2(n) \rfloor$ bits. (More than the text itself!)

Summary of sub-string search — Update

	num. operations	space	Moby Dick (1.3 MB)	Sherlock Holmes (6.5 MB)
Brute force	~ <i>mn</i>	constant	3.5 ms	15.1 ms
Boyer-Moore	~ <i>n/m</i>	~ <i>k</i>	0.9 ms	4.5 ms
Karp-Rabin	~ 4 <i>n</i>	constant	1.3 ms	6.3 ms
Suffix Array	$\sim m \log_2(n)$	$n \log_2(n)$	0.001 ms	0.001 ms

k is thetime to search all occurrences of thealphabet sizepattern P = "not only all that"

