
Elias-Fano Encoding

Giulio Ermanno Pibiri
giulio.pibiri@di.unipi.it

University of Pisa, and ISTI-CNR

Tokyo, 10/04/2018

A powerful tool for data structure design

1

mailto:giulio.pibiri@unipi.it?subject=

2

Problem

Consider a sequence S[0,n) of n positive and monotonically
increasing integers, i.e., S[i-1] ≤ S[i] for 1 ≤ i ≤ n-1, possibly repeated.

How to represent it as a bit vector in which each original
integer is self-delimited, using as few as possible bits?

2

Problem

Consider a sequence S[0,n) of n positive and monotonically
increasing integers, i.e., S[i-1] ≤ S[i] for 1 ≤ i ≤ n-1, possibly repeated.

How to represent it as a bit vector in which each original
integer is self-delimited, using as few as possible bits?

Huge research corpora describing different space/time trade-offs.

• Elias gamma/delta [Elias-1974]
• Variable Byte [Salomon-2007]
• Varint-G8IU [Stepanov et al.-2011]
• Simple-9/16 [Anh and Moffat 2005-2010]
• PForDelta (PFD) [Zukowski et al.-2006]
• OptPFD [Yan et al.-2009]
• Binary Interpolative Coding [Moffat and Stuiver-2000]

3

Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents
in which t appears.

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.

1

3

Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents
in which t appears.

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

1

3

Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents
in which t appears.

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

1

3

Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents
in which t appears.

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

2
1

3

4
5

T = {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

1

3

Inverted Indexes

For each term t in T we store in a list Lt the identifiers of the documents
in which t appears.

Given a textual collection D, each document can be seen as a
(multi-)set of terms. The set of terms occurring in D is the lexicon T.

The collection of all inverted lists {Lt1,…,LtT} is the inverted index.

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

2
1

3

4
5

T = {always, boy, good, house, hungry, is, red, the}
t1 t2 t3 t4 t5 t6 t7 t8

1

Lt1=[1, 3]
Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

q = {good, hungry}

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

q = {good, hungry}

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

q = {good, hungry}

4

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries,
such as: “return me all documents in which terms {t1,…,tk} occur”.

2

q = {boy, is, the}

house
is

red

red
is

always
good

the

the

is
boy

hungry
is

boy

redhouse
is

the

always
hungry

T = {always, boy, good, house, hungry, is, red, the}2
1

3

4
5

Lt1=[1, 3]

t1 t2 t3 t4 t5 t6 t7 t8

Lt2=[4, 5]
Lt3=[1]
Lt4=[2, 3]
Lt5=[3, 5]
Lt6=[1, 2, 3, 4, 5]
Lt7=[1, 2, 4]
Lt8=[2, 3, 5]

q = {good, hungry}

intersection

5

Genesis - 1970s

Peter Elias
[1923 - 2001]

Robert Fano
[1917 - 2016]

Robert Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address
of Static Files. Journal of the ACM (JACM) 21, 2, 246–260 (1974).

5

Genesis - 1970s

Peter Elias
[1923 - 2001]

Robert Fano
[1917 - 2016]

Robert Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address
of Static Files. Journal of the ACM (JACM) 21, 2, 246–260 (1974).

Sebastiano Vigna. Quasi-succinct indices.

In Proceedings of the 6-th ACM International Conference
on Web Search and Data Mining (WSDM), 83-92 (2013).

40 years later!

6

Elias-Fano Encoding

3
4
7
13
14
15
21
43

1

2

3

4

5

6

7

8

6

Elias-Fano Encoding

3
4
7
13
14
15
21
43u =

1

2

3

4

5

6

7

8

6

Elias-Fano Encoding

3
4
7
13
14
15
21
43u =

1

2

3

4

5

6

7

8

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

6

Elias-Fano Encoding

3
4
7
13
14
15
21
43u =

1

2

3

4

5

6

7

8

low
log(u/n)r =

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

6

Elias-Fano Encoding

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

1

2

3

4

5

6

7

8

low
log(u/n)r =

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

6

Elias-Fano Encoding

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

1

2

3

4

5

6

7

8

high
log u - r

low
log(u/n)r =

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

3

6

Elias-Fano Encoding

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

1

2

3

4

5

6

7

8

high
log u - r

low
log(u/n)r =

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

3

3

6

Elias-Fano Encoding

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

1

2

3

4

5

6

7

8

high
log u - r

low
log(u/n)r =

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1

3

3

6

Elias-Fano Encoding

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

1

2

3

4

5

6

7

8

high
log u - r

low
log(u/n)r =

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1

1

3

3

6

Elias-Fano Encoding

3
4
7
13
14
15
21
43

L = 011100111101110111101011

u =

1

2

3

4

5

6

7

8

high
log u - r

low
log(u/n)r =

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1

1

3

3

6

Elias-Fano Encoding

3
4
7
13
14
15
21
43

0

0

0 1 1
1 0 0

missing
buckets

L = 011100111101110111101011

u =

1

2

3

4

5

6

7

8

high
log u - r

low
log(u/n)r =

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1

1

3

3

6

Elias-Fano Encoding

3
4
7
13
14
15
21
43

0

0

0 1 1
1 0 0

missing
buckets

L = 011100111101110111101011

u =
1 1 0
1 1 1

0

0

1

2

3

4

5

6

7

8

high
log u - r

low
log(u/n)r =

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1

1

3

3

6

Elias-Fano Encoding

3 3 1 0 0 1 0 0

3
4
7
13
14
15
21
43

0

0

0 1 1
1 0 0

missing
buckets

L = 011100111101110111101011

u =
1 1 0
1 1 1

0

0

1

2

3

4

5

6

7

8

high
log u - r

low
log(u/n)r =

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

1

1

3

3

6

Elias-Fano Encoding

3 3 1 0 0 1 0 0

3
4
7
13
14
15
21
43

0

0

0 1 1
1 0 0

missing
buckets

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

u =
1 1 0
1 1 1

0

0

1

2

3

4

5

6

7

8

high
log u - r

low
log(u/n)r =

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 1 0 1 1

7

Properties - Space

EF(S[0,n)) = ?

1

7

Properties - Space

EF(S[0,n)) = ?

1

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

log(u/n)

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlogn

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

log(u/n)

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlogn

n ones
H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

log(u/n)

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlogn

We store a 0 whenever
we change bucket.

n ones
H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

log(u/n)

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlogn

We store a 0 whenever
we change bucket.

n ones
2 log n zeros

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

log(u/n)

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlogn bits+ 2n

We store a 0 whenever
we change bucket.

n ones
2 log n zeros

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

log(u/n)

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlogn bits+ 2n

n ones
2 log n zeros

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

log(u/n)

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlogn bits+ 2n

n ones
H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

log(u/n)

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlogn bits+ 2n

H = 1110 1110 10 0 0 10 0 0
L = 011100111101110111101011

log(u/n)

7

Properties - Space

EF(S[0,n)) = ?

1

u
nlogn bits+ 2n

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlogn bits+ 2n

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlogn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

log X bits.

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlogn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

log X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlogn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

log X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlogn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

log X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlogn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

log X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3 6

000100100000000000

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlogn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

log X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3 6

000100100000000000
10

000100100010000000

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlogn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

log X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3 6

000100100000000000
10

000100100010000000
11

000100100011000000

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlogn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

log X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3 6

000100100000000000
10

000100100010000000
11

000100100011000000
17

000100100011000001

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlogn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

log X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3 6

000100100000000000
10

000100100010000000
11

000100100011000000
17

000100100011000001

With possible repetitions!
(weak monotonicity)

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlogn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

log X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3

= ((u+n
n

6
000100100000000000

10
000100100010000000

11
000100100011000000

17
000100100011000001

With possible repetitions!
(weak monotonicity)

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlogn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

log X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3

= ((u+n
n

6
000100100000000000

10
000100100010000000

11
000100100011000000

17
000100100011000001 log ≈ u+n

nlogn((u+n
n

With possible repetitions!
(weak monotonicity)

7

Properties - Space

EF(S[0,n)) = ?

1

Is it good or not?

u
nlogn bits+ 2n

Information Theoretic Lower Bound
The minimum number of bits
needed to describe a set X is

log X bits.

X is the set of all monotone sequence
of length n drawn from a universe u.

?X

000000000000000000000100000000000000
3

= ((u+n
n

6
000100100000000000

10
000100100010000000

11
000100100011000000

17
000100100011000001 log ≈ u+n

nlogn((u+n
n

With possible repetitions!
(weak monotonicity)

(less than half a bit away [Elias-1974])

optimal

8

Properties - Operations 2

8

Properties - Operations

Access to each S[i] in O(1) worst-case

2

8

Properties - Operations

Access to each S[i] in O(1) worst-case

2

Predecessor(x) = max{S[i] | S[i] < x}
Successor(x) = min{S[i] | S[i] ≥ x}

u
nlog((O worst-casequeries in

8

Properties - Operations

Access to each S[i] in O(1) worst-case

2

Predecessor(x) = max{S[i] | S[i] < x}
Successor(x) = min{S[i] | S[i] ≥ x}

u
nlog((O worst-casequeries in

Rank0/1(i) = # of 0/1 in B[0,i)
Given a bitvector B of n bits:

Select0/1(i) = position of i-th 0/1

Rank/Select on bitmaps

9

Definition

B = 101011010101111010110101
Examples

Rank0/1(i) = # of 0/1 in B[0,i)
Given a bitvector B of n bits:

Select0/1(i) = position of i-th 0/1

Rank/Select on bitmaps

9

Definition

B = 101011010101111010110101
Examples

Rank0/1(i) = # of 0/1 in B[0,i)
Given a bitvector B of n bits:

Select0/1(i) = position of i-th 0/1

Rank/Select on bitmaps

9

Definition

Rank0(5) = 2

B = 101011010101111010110101
Examples

Rank0/1(i) = # of 0/1 in B[0,i)
Given a bitvector B of n bits:

Select0/1(i) = position of i-th 0/1

Rank/Select on bitmaps

9

Definition

Rank0(5) = 2
Rank1(7) = 4

B = 101011010101111010110101
Examples

Rank0/1(i) = # of 0/1 in B[0,i)
Given a bitvector B of n bits:

Select0/1(i) = position of i-th 0/1

Rank/Select on bitmaps

9

Definition

Rank0(5) = 2
Rank1(7) = 4

Select0(5) = 10

B = 101011010101111010110101
Examples

Rank0/1(i) = # of 0/1 in B[0,i)
Given a bitvector B of n bits:

Select0/1(i) = position of i-th 0/1

Rank/Select on bitmaps

9

Definition

Rank0(5) = 2
Rank1(7) = 4

Select0(5) = 10
Select1(7) = 11

10

Random Access

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

10

Random Access

Access(4) = S[4] = ?

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

10

Random Access

Access(4) = S[4] = ?

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

r = log(u/n)

10

Random Access

Access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

r = log(u/n)

10

Random Access

Access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

r = log(u/n)

10

Random Access

Access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

r = log(u/n)

Access(i) = Select1(i)

10

Random Access

Access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

r = log(u/n)

Rank0()Access(i) = Select1(i)

10

Random Access

Access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

r = log(u/n)

Rank0()Access(i) = Select1(i)

10

Random Access

Access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

Select1(i) - i
=

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

r = log(u/n)

Rank0()Access(i) = Select1(i)

10

Random Access

Access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

Select1(i) - i
=

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

r = log(u/n)

Rank0()Access(i) = Select1(i)Select1(i) - i

10

Random Access

Access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

Select1(i) - i
=

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

r = log(u/n)

Rank0()Access(i) = Select1(i)Select1(i) - i

101

<< r | L[(i-1)r,ir)

10

Random Access

Access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

Select1(i) - i
=

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

r = log(u/n)

Rank0()Access(i) = Select1(i)Select1(i) - i

101

<< r | L[(i-1)r,ir)

10

Random Access

Access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

Select1(i) - i
=

Access(7) = S[7] = ?

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

r = log(u/n)

Rank0()Access(i) = Select1(i)Select1(i) - i

101

<< r | L[(i-1)r,ir)

10

Random Access

Access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

Select1(i) - i
=

Access(7) = S[7] = ?

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

r = log(u/n)

Rank0()Access(i) = Select1(i)Select1(i) - i

101

<< r | L[(i-1)r,ir)

10

Random Access

Access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

Select1(i) - i
=

Access(7) = S[7] = ?010000

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

r = log(u/n)

Rank0()Access(i) = Select1(i)Select1(i) - i

101

<< r | L[(i-1)r,ir)

10

Random Access

Access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

Select1(i) - i
=

Access(7) = S[7] = ?010000101

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

r = log(u/n)

Rank0()Access(i) = Select1(i)Select1(i) - i

101

<< r | L[(i-1)r,ir)

10

Random Access

Access(4) = S[4] = ? Recall: we store a 0
whenever we change
bucket.

001000

Select1(i) - i
=

Access(7) = S[7] = ?010000101

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

r = log(u/n)

Rank0()Access(i) = Select1(i)Select1(i) - i

101

<< r | L[(i-1)r,ir)

Complexity: O(1)

Available Implementations

11

Library Author(s) Link Language

folly Facebook, Inc.
https://

github.com/
facebook/folly

C++

sdsl Simon Gog
https://

github.com/
simongog/sdsl-lite

C++

ds2i
Giuseppe Ottaviano
Rossano Venturini
Nicola Tonellotto

https://
github.com/ot/ds2i C++

Sux Sebastiano Vigna http://
sux.di.unimi.it Java/C++

https://github.com/facebook/folly
https://github.com/simongog/sdsl-lite
https://github.com/ot/ds2i
http://sux.di.unimi.it/

Killer applications

1. Inverted Indexes

12

Killer applications

1. Inverted Indexes

2. Social Networks

12

Killer applications

1. Inverted Indexes

2. Social Networks

12

Killer applications

1. Inverted Indexes

2. Social Networks

12

Killer applications

1. Inverted Indexes

2. Social Networks

12

Killer applications

1. Inverted Indexes

3. Compressed Tries for N-Grams

2. Social Networks

12

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5.

13

Extracted from text using a sliding window approach.

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5.

13

Extracted from text using a sliding window approach.

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5.

13

Books
≈ 6% of the books ever published

Extracted from text using a sliding window approach.

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5.

13

N number of grams

1 24,359,473
2 667,284,771
3 7,397,041,901
4 1,644,807,896
5 1,415,355,596

More than 11
billion grams.

Books
≈ 6% of the books ever published

Extracted from text using a sliding window approach.

14

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

14

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

N-Gram values

14

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

N-Gram values

frequency count
(integer)

14

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

N-Gram values

frequency count
(integer)

probability weight
(floating point)

14

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

Efficient map

N-Gram values

frequency count
(integer)

probability weight
(floating point)

14

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

Efficient map

N-Gram values

frequency count
(integer)

probability weight
(floating point)

hash + time
 space-

14

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

Efficient map

N-Gram values

frequency count
(integer)

probability weight
(floating point)

hash + time
 space-

trie + space
 time-

14

N-grams - Challenge

Store massive N-grams datasets in compressed space such
that given a pattern, we can return its value efficiently.

Efficient map

N-Gram values

frequency count
(integer)

Active field of research
Many software libraries

• KenLM [Heafield, WMT 2011]
• BerkeleyLM [Pauls and Klein, ACL 2011]
• ExpGram [Watanabe at el., IJCNLP 2009]
• IRSTLM [Federico et al., ACL 2008]
• RandLM [Talbot and Osborne, ACL 2007]
• SRILM [Stolcke, INTERSPEECH 2002]

probability weight
(floating point)

hash + time
 space-

trie + space
 time-

15

Trie Indexing

15

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

15

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

15

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

15

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

15

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30

15

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30

0

0 1 4 7 10

5

7 10

3 5

5

15

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30
5530

5410 101077

8

11

0

0 1 4 7 10

5

7 10

3 5

5

15

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30
5530

5410 101077

8

11

0

0 1 4 7 10

5

7 10

3 5

5

15

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30
5530

5410 101077

8

11

0

0 1 4 7 10

5

7 10

3 5

5

We need an encoder for integer
sequences, supporting fast

random Access.

15

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30
5530

5410 101077

8

11

0

0 1 4 7 10

5

7 10

3 5

5

Take range-wise prefix sums
on gram-ID sequences.

We need an encoder for integer
sequences, supporting fast

random Access.

15

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30
5530

5410 101077

8

11

0

0 1 4 7 10

5

7 10

3 5

5

Take range-wise prefix sums
on gram-ID sequences.

1 1 2 4 4 4 6 6 7 9 9

0 1 3 6

0 1 3 4 5 5 7 8

We need an encoder for integer
sequences, supporting fast

random Access.

15

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30
5530

5410 101077

8

11

0

0 1 4 7 10

5

7 10

3 5

5

Take range-wise prefix sums
on gram-ID sequences.

1 1 2 4 4 4 6 6 7 9 9

0 1 3 6

0 1 3 4 5 5 7 8
Elias-Fano Tries

One Successor query per level
Constant-time random Access

We need an encoder for integer
sequences, supporting fast

random Access.

15

B A A A A A

A
A

A
B

A
D

B
B

D
A

D
D

A B C D

A
A

A
B

A
D

B
B

B
C

D
A

D
C

D
D

B

A
B

D

A
B

C

B
B

B

D
A

D

D
A

Trie Indexing

B A B D A A C A B D A

A B C D

A B D B C A C D

A 0
B 1
C 2
D 3

ha
sh

vo
ca

bu
la

ry

0 1 3 1 2 0 2 3

1 0 1 3 0 0 2 0 1 3 0

1 2 30
5530

5410 101077

8

11

0

0 1 4 7 10

5

7 10

3 5

5

Take range-wise prefix sums
on gram-ID sequences.

1 1 2 4 4 4 6 6 7 9 9

0 1 3 6

0 1 3 4 5 5 7 8
Elias-Fano Tries

One Successor query per level
Constant-time random Access

We need an encoder for integer
sequences, supporting fast

random Access.

Remember:
Elias-Fano takes
log(u/n) + 2 bits

per integer

16

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

16

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

16

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

16

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

16

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

16

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

k = 1

16

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

• Millions of unigrams.

• Height 5: longer contexts.

• The number of siblings has a
funnel-shaped distribution.

k = 1

16

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

• Millions of unigrams.

• Height 5: longer contexts.

• The number of siblings has a
funnel-shaped distribution.

1

2

3

4

k = 1

16

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

u/n by varying context-length k• Millions of unigrams.

• Height 5: longer contexts.

• The number of siblings has a
funnel-shaped distribution.

1

2

3

4

k = 1

16

Context-based ID Remapping

High-level idea: map a word ID to the position it takes within its sibling IDs
(the IDs following a context of fixed length k).

Observation: the number of words following a given context is small.

u/n by varying context-length k• Millions of unigrams.

• Height 5: longer contexts.

• The number of siblings has a
funnel-shaped distribution.

1

2

3

4

17

Experimental Analysis - EF/PEF (R)Trie

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

17

Experimental Analysis - EF/PEF (R)Trie

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

17

Experimental Analysis - EF/PEF (R)Trie

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

17

Experimental Analysis - EF/PEF (R)Trie

Context-based ID Remapping
• reduces space by more than 36% on average you will notice this!

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

17

Experimental Analysis - EF/PEF (R)Trie

Context-based ID Remapping
• reduces space by more than 36% on average you will notice this!

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

17

Experimental Analysis - EF/PEF (R)Trie

Context-based ID Remapping
• reduces space by more than 36% on average you will notice this!

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz
193 GB of RAM, Linux 64 bits

C++ implementation
gcc 5.4.1 with the highest

optimization setting

will you notice this?• brings approximately 30% more time

18

Experimental Analysis - Overall comparison

18

Experimental Analysis - Overall comparison

18

Experimental Analysis - Overall comparison

2.3X 2.5X

18

Experimental Analysis - Overall comparison

2.3X 2.5X

18

Experimental Analysis - Overall comparison

2.3X 2.5X

2.5÷
5.2X

3.1÷
5.8X

5.5X
2X 2X 2X

2.5X 2.5X 3X
2.7X2.8X

3.5X2X

18

Experimental Analysis - Overall comparison

2.3X 2.5X

2.5÷
5.2X

3.1÷
5.8X

5.5X
2X 2X 2X

2.5X 2.5X 3X
2.7X2.8X

3.5X2X

18

Experimental Analysis - Overall comparison

2.3X 2.5X

• Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
• As fast as the state-of-the-art (KenLM) but more than twice smaller.

2.5÷
5.2X

3.1÷
5.8X

5.5X
2X 2X 2X

2.5X 2.5X 3X
2.7X2.8X

3.5X2X

Summary

19

Elias-Fano encodes monotone integer sequences
in space close to the information theoretic minimum,
while allowing powerful search operations, namely

Predecessor/Successor queries and random Access.

Successfully applied to crucial problems, such as
inverted indexes, social graphs and tries representation.

Several optimized software implementations are available.

References

20

Robert Mario Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address of Static Files.
Journal of the ACM (JACM) 21, 2, 246–260 (1974).

Guy Jacobson. Succinct Static Data Structures. Ph.D. Thesis, Carnegie Mellon
University (1989).

David Clark. Compact Pat Trees. Ph.D. Thesis, University of Waterloo (1996).

[Fano-1971]

[Elias-1974]

[Jacobson-1989]

[Clark-1996]

1

Vo Ngoc Anh and Alistair Moffat. Inverted Index Compression Using Word-
Aligned Binary Codes. Information Retrieval Journal 8, 1, 151–166 (2005).

Alistair Moffat and Lang Stuiver. Binary Interpolative Coding for Effective
Index Compression. Information Retrieval Journal 3, 1, 25–47 (2000).[Moffat and Stuiver-2000]

[Anh and Moffat-2005]

David Salomon. Variable-length Codes for Data Compression. Springer (2007).[Salomon-2007]

Sebastiano Vigna. Broadword implementation of rank/select queries. In Workshop in
Experimental Algorithms (WEA), 154-168 (2008).[Vigna-2008]

Alexander Stepanov, Anil Gangolli, Daniel Rose, Ryan Ernst, and Paramjit Oberoi.
SIMD-based decoding of posting lists. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management (CIKM). 317–326 (2011).

Vo Ngoc Anh and Alistair Moffat. Index compression using 64-bit words.
In Software: Practice and Experience 40, 2, 131–147 (2010).

Marcin Zukowski, Sandor Hèman, Niels Nes, and Peter Boncz. Super-Scalar RAM-
CPU Cache Compression. In Proceedings of the 22nd International Conference on
Data Engineering (ICDE). 59–70 (2006).

Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and query processing with
optimized document ordering. In Proceedings of the 18th International Conference on World
Wide Web (WWW). 401–410 (2009).

References 2

21

[Yan et al.-2009]

[Stepanov et al.-2011]

[Anh and Moffat-2010]

[Zukowski et al.-2010]

Michael Curtiss et al. Unicorn: A System for Searching the Social Graph. In
Proceedings of the Very Large Database Endowment (PVLDB), 1150-1161 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In
Proceedings of the 37-th ACM International Conference on Research and
Development in Information Retrieval (SIGIR), 273-282 (2014).

[Curtiss et al.-2013]

[Ottaviano and Venturini-2014]

Dong Zhou, David Andersen, Michael Kaminsky. Space-Efficient, High-Performance
Rank and Select Structures on Uncompressed Bit Sequences. In Proceedings of the
12-nd International Symposium on Experimental Algorithms (SEA), 151-163 (2013).

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM
International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).[Vigna-2013]

[Zhou et al.-2013]

Thanks for your attention,
time, patience!

Any questions?

22

H = 1110111010001000
L = 011100111101110111101011

23

successor example

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

23

successor example

successor(12) = ?

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

23

successor example

successor(12) = ?
001100

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

23

successor example

successor(12) = ?
001100h12 =

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

23

successor example

successor(12) = ?
001100h12 =

p1 = select0(hx)-hx
p2 = select0(hx+1)-hx-1

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

23

successor example

successor(12) = ?
001100h12 =

p1 = select0(hx)-hx
p2 = select0(hx+1)-hx-1

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

23

successor example

successor(12) = ?
001100h12 =

p1 = select0(hx)-hx
p2 = select0(hx+1)-hx-1

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

23

successor example

successor(12) = ?
001100h12 =

p1 = select0(hx)-hx
p2 = select0(hx+1)-hx-1

p1 p2

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

23

successor example

successor(12) = ?
001100h12 =

p1 = select0(hx)-hx
p2 = select0(hx+1)-hx-1

p1 p2

binary search
in [p1,p2)

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

23

successor example

successor(12) = ?
001100h12 =

13 p1 = select0(hx)-hx
p2 = select0(hx+1)-hx-1

p1 p2

binary search
in [p1,p2)

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

H = 1110111010001000
L = 011100111101110111101011

23

successor example

successor(12) = ?
001100h12 =

13 p1 = select0(hx)-hx
p2 = select0(hx+1)-hx-1

p1 p2

binary search
in [p1,p2)

S = [3, 4, 7, 13, 14, 15, 21, 43]
1 2 3 4 5 6 7 8

 Complexity: u
nlog((O

