Elias-Fano Encoding

A powerful tool for data structure design

Giulio Ermanno Pibiri
giulio.pibiri@di.unipi.it
University of Pisa, and ISTI-CNR

CRIIKN

Tokyo, 10/04/2018

Problem

Consider a sequence $\mathrm{S}[0, \mathrm{n}$) of n positive and monotonically increasing integers, i.e., $\mathrm{S}[\mathrm{i}-1] \leq \mathrm{S}[\mathrm{i}]$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$, possibly repeated.

How to represent it as a bit vector in which each original integer is self-delimited, using as few as possible bits?

Problem

Consider a sequence $\mathrm{S}[0, \mathrm{n}$) of n positive and monotonically increasing integers, i.e., $\mathrm{S}[\mathrm{i}-1] \leq \mathrm{S}[\mathrm{i}]$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$, possibly repeated.

How to represent it as a bit vector in which each original integer is self-delimited, using as few as possible bits?

Huge research corpora describing different space/time trade-offs.

- Elias gamma/delta [Elias-1974]
- Variable Byte [Salomon-2007]
- Varint-G8IU [Stepanov et al.-2011]
- Simple-9/16 [Anh and Moffat 2005-2010]
- PForDelta (PFD) [Zukowski et al.-2006]
- OptPFD [Yan et al.-2009]
- Binary Interpolative Coding [Moffat and Stuiver-2000]

Given a textual collection D, each document can be seen as a (multi-)set of terms. The set of terms occurring in D is the lexicon T .

For each term t in T we store in a list L_{t} the identifiers of the documents in which t appears.

The collection of all inverted lists $\left\{L_{t_{1}, \ldots,}, L_{t_{T}}\right\}$ is the inverted index.

Given a textual collection D, each document can be seen as a (multi-)set of terms. The set of terms occurring in D is the lexicon T .

For each term t in T we store in a list L_{t} the identifiers of the documents in which t appears.

The collection of all inverted lists $\left\{L_{\left.t_{1}, \ldots, L_{t_{\top}}\right\}}\right\}$ is the inverted index.

Given a textual collection D, each document can be seen as a (multi-)set of terms. The set of terms occurring in D is the lexicon T .

For each term t in T we store in a list L_{t} the identifiers of the documents in which t appears.

The collection of all inverted lists $\left\{L_{t_{1}, \ldots, L_{t}}\right\}$ is the inverted index.

Given a textual collection D, each document can be seen as a (multi-)set of terms. The set of terms occurring in D is the lexicon T .

For each term t in T we store in a list L_{t} the identifiers of the documents in which t appears.

The collection of all inverted lists $\left\{L_{t_{1}}, \ldots, L_{t_{T}}\right\}$ is the inverted index.

Given a textual collection D, each document can be seen as a (multi-)set of terms. The set of terms occurring in D is the lexicon T .

For each term t in T we store in a list L_{t} the identifiers of the documents in which t appears.

The collection of all inverted lists $\left\{L_{t_{1}, \ldots,} L_{t_{T}}\right\}$ is the inverted index.

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

Inverted Indexes

Inverted Indexes owe their popularity to the efficient resolution of queries, such as: "return me all documents in which terms $\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}\right\}$ occur".

intersection

Genesis - 1970s

Peter Elias
[1923-2001]

Robert Fano [1917-2016]

Robert Fano. On the number of bits required to implement an associative memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address of Static Files. Journal of the ACM (JACM) 21, 2, 246-260 (1974).

Genesis - 1970s

Peter Elias
[1923-2001]

Robert Fano
[1917-2016]

Robert Fano. On the number of bits required to implement an associative memory. Memorandum 61, Computer Structures Group, MIT (1971).

Peter Elias. Efficient Storage and Retrieval by Content and Address of Static Files. Journal of the ACM (JACM) 21, 2, 246-260 (1974).

Sebastiano Vigna. Quasi-succinct indices.
In Proceedings of the 6-th ACM International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Elias-Fano Encoding

3	1
4	2
7	3
13	4
14	5
15	6
21	7
43	8

Elias-Fano Encoding

Elias-Fano Encoding

Elias-Fano Encoding

000011	3
000100	4
000111	7
001101	13
001110	14
001111	15
010101	21
101011	$u=43$

Elias-Fano Encoding

low	
$r=10$	
000011	31
000100	42
000111	7 3
001101	13
001110	145
001111	156
010101	217
101011	$\mathrm{u}=43 \mathrm{~s}$
	$\mathrm{L}=01110011110111011110101$

Elias-Fano Encoding

high low
$\left.\begin{array}{lc}\log \omega \mid-r & r=\left[\log \left(u_{n}\right)\right. \\ 0 & 0\end{array}\right)$
$L=011100111101110111101011$

Elias-Fano Encoding

> high low
> $\lceil\log u]-r \quad r=\lceil\log (u / n)\rceil$
> 000011
> з 000100
> 000111

Elias-Fano Encoding

Elias-Fano Encoding

Elias-Fano Encoding

Elias-Fano Encoding

> high low
> $\lceil\log u]-r \quad r=\lceil\log (u / n)\rceil$
> 000011 3
> з 000100
> 000111
> 001101 13
> 00113001110
> 0100

Elias-Fano Encoding

Elias-Fano Encoding

Elias-Fano Encoding

high low
$\lceil\log \mathrm{u}]-\mathrm{r} \quad \mathrm{r}=\lceil\log (\mathrm{u} / \mathrm{n})\rceil$

0110
$L=011100111101110111101011$
0111
$33100100 \longrightarrow \mathrm{H}=1110111010001000$

$\operatorname{EF}(\mathrm{S}[0, \mathrm{n}))=$?

$\operatorname{EF}(\mathrm{S}[0, \mathrm{n}))=$?

$\lceil\log (u / n)\rceil$
$L=011100111101110111101011$
$H=1110111010001000$
$\lceil\log (u / n)\rceil$

$$
\mathrm{EF}(\mathrm{~S}[0, \mathrm{n}))=\mathrm{n}\left\lceil\log \frac{\mathrm{u}}{\mathrm{n}}\right\rceil
$$

$$
\begin{aligned}
& L=011100111101110111101011 \\
& H=11101110100001000
\end{aligned}
$$

$$
\begin{aligned}
& E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil \\
& \lceil\log (u / n)\rceil \\
& L=011100111101110111101011 \\
& H=1110111010001000 \\
& \text { n ones }
\end{aligned}
$$

$$
\begin{aligned}
& E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil \\
& \lceil\log (u / n)\rceil \\
& \mathrm{L}=011100111101110111101011 \\
& H=1110111010001000
\end{aligned}
$$

We store a 0 whenever we change bucket.

n ones

$$
\begin{aligned}
& E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil \\
& \lceil\log (u / n)] \\
& \mathrm{L}=011100111101110111101011 \\
& H=1110111010001000 \\
& 2^{\lfloor\log n]} \text { zeros }
\end{aligned}
$$

$$
\begin{aligned}
& E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits } \\
& \lceil\log (u / n)] \\
& L=011100111101110111101011 \\
& H=1110111010001000 \\
& 2^{\lfloor\log n]} \text { zeros }
\end{aligned}
$$

$$
\begin{aligned}
& E F(S[O, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits } \\
& L=011100111101110111101011 \\
& H=\begin{array}{lllll}
\| \log (u / n)\rceil \\
11110 & 10 & 0 & 0100 & 0 \\
n \text { ones } \\
2^{\lfloor\log n\rfloor} \text { zeros }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \quad E F(S[O, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits } \\
& L=\begin{array}{l}
\lceil\log (u / n)\rceil \\
H
\end{array}=\begin{array}{lllll}
111101100111101110111101011 \\
1110 & 10 & 0 & 010 & 0
\end{array} \\
& n \text { ones }
\end{aligned}
$$

$E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n$ bits

$\lceil\log (u / n)]$
$L=011100111101110111101011$
$H=1110111010001000$

$$
\operatorname{EF}(S[0, \mathrm{n}))=n\left\lceil\log \frac{4}{n}\right]+2 n \text { bits }
$$

$$
E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

$$
E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits needed to describe a set \mathcal{X} is

$$
\lceil\log |x|\rceil \text { bits. }
$$

$$
E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits
needed to describe a set x is

$$
\lceil\log |x|\rceil \text { bits. }
$$

X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

$$
E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits
needed to describe a set \mathcal{X} is

$$
\lceil\log |x|\rceil \text { bits. }
$$

X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

000000000000000000

$$
E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits
needed to describe a set \mathcal{X} is

$$
\lceil\log |x|\rceil \text { bits. }
$$

X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

000100000000000000

$$
E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits
needed to describe a set \mathcal{X} is

$$
\lceil\log |x|\rceil \text { bits. }
$$

X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

000100100000000000

$$
E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits
needed to describe a set \mathcal{X} is

$$
\lceil\log |x|\rceil \text { bits. }
$$

X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

000100100010000000

$$
E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits
needed to describe a set \mathcal{X} is

$$
\lceil\log |x|\rceil \text { bits. }
$$

X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

000100100011000000

$$
E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits
needed to describe a set \mathcal{X} is

$$
\lceil\log |x|\rceil \text { bits. }
$$

X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

000100100011000001

361011
 17

Properties - Space

$$
E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits
needed to describe a set \mathcal{X} is

$$
\lceil\log |x|\rceil \text { bits. }
$$

X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x| ?
$$

000100100011000001

$\begin{array}{lll}3 & 6 & 1011\end{array}$
 17

With possible repetitions!
(weak monotonicity)

Properties - Space

$$
E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits
needed to describe a set \mathcal{X} is

$$
\lceil\log |x|\rceil \text { bits. }
$$

000100100011000001

361011

17
With possible repetitions!
(weak monotonicity)

Properties - Space

$$
E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Is it good or not?

Information Theoretic Lower Bound

The minimum number of bits
needed to describe a set \mathcal{X} is $\lceil\log |x|\rceil$ bits.

000100100011000001

\section*{| 3 | 6 |
| :--- | :--- |}

X is the set of all monotone sequence of length n drawn from a universe u.

$$
|x|=\binom{u+n}{n}
$$

$$
\left[\log \binom{u+n}{n}\right] \approx n \log \frac{u+n}{n}
$$

With possible repetitions!
(weak monotonicity)

Properties - Space

$$
E F(S[0, n))=n\left\lceil\log \frac{u}{n}\right\rceil+2 n \text { bits }
$$

Information Theoretic Lower Bound

The minimum number of bits
needed to describe a set X is $\lceil\log |x|\rceil$ bits.

000100100011000001

3	6	1011	17

With possible repetitions! (weak monotonicity)
X is the set of all monotone sequence of length n drawn from a universe u.

$$
\begin{aligned}
& |x|=\binom{u+n}{n} \\
& {\left[\log \binom{u+n}{n}\right] \approx n \log \frac{u+n}{n}}
\end{aligned}
$$

Access to each $\mathrm{S}[i]$ in $\mathrm{O}(1)$ worst-case

Access to each $\mathrm{S}[i]$ in $\mathrm{O}(1)$ worst-case

Predecessor $(x)=\max \{S[i] \mid S[i]<x\}$
Successor $(x)=\min \{S[i] \mid S[i] \geq x\}$
queries in $O\left(\log \frac{u}{n}\right)$ worst-case

Properties - Operations

Access to each $\mathrm{S}[i]$ in $\mathrm{O}(1)$ worst-case

Predecessor $(x)=\max \{S[i] \mid S[i]<x\}$
Successor $(x)=\min \{S[i] \mid S[i] \geq x\}$
queries in $O\left(\log \frac{u}{n}\right)$ worst-case

Rank/Select on bitmaps

Definition
Given a bitvector B of n bits:
Rank $_{0 / 1}(\mathrm{i})=\#$ of $0 / 1$ in $\mathrm{B}[0, \mathrm{i}$)
Select ${ }_{0 / 1}(\mathrm{i})=$ position of i -th 0/1

Rank/Select on bitmaps

Definition
Given a bitvector B of n bits:
Rank $_{0 / 1}(\mathrm{i})=$ \# of $0 / 1$ in $\mathrm{B}[0, \mathrm{i}$)
Selecto/1 $(\mathrm{i})=$ position of i -th $0 / 1$

Examples
 $B=101011010101111010110101$

Rank/Select on bitmaps

Definition
Given a bitvector B of n bits:
Rank $_{\varnothing / 1}(\mathrm{i})=$ \# of $0 / 1$ in $\mathrm{B}[0, \mathrm{i}$)
Selecto/1 $(\mathrm{i})=$ position of i -th $0 / 1$

Examples
 $B=101011010101111010110101$
 Ranko(5) $=2$

Rank/Select on bitmaps

Definition
Given a bitvector B of n bits:
Rank $_{0 / 1}(\mathrm{i})=$ \# of $0 / 1$ in $\mathrm{B}[0, \mathrm{i}$)
Selecto/1 $(\mathrm{i})=$ position of i -th $0 / 1$

> Examples
> $B=101011010101111010110101$
> $\operatorname{Rank}_{0}(5)=2$
> $\operatorname{Rank}_{1}(7)=4$

Rank/Select on bitmaps

Definition
Given a bitvector B of n bits:
Rank $_{\varnothing / 1}(\mathrm{i})=$ \# of $0 / 1$ in $\mathrm{B}[0, \mathrm{i}$)
Selecto/1 $(\mathrm{i})=$ position of i -th $0 / 1$

Examples
 $B=101011010101111010110101$
 Rank $_{0}(5)=2 \quad$ Selecto $_{0}(5)=10$
 $\operatorname{Rank}_{1}(7)=4$

Rank/Select on bitmaps

Definition
Given a bitvector B of n bits:
Rank $_{0 / 1}(\mathrm{i})=$ \# of $0 / 1$ in $\mathrm{B}[0, \mathrm{i}$)
Select ${ }_{0 / 1}(\mathrm{i})=$ position of i -th 0/1

Examples
 $B=101011010101111010110101$
 Ranko $_{0}(5)=2 \quad$ Selecto $_{0}(5)=10$
 $\operatorname{Rank}_{1}(7)=4 \quad$ Select $_{1}(7)=11$

$$
S=[3,4,7,13,14,15,21,43]
$$

$$
S=[3,4,7,13,14,15,21,43]
$$

Access $(4)=S[4]=$?

Random Access

$$
S=[3,4,7,13,14,15,21,43]
$$

$\operatorname{Access}(4)=S[4]=?$

$$
\begin{aligned}
H & =1110111010001000 \\
L & =011100111101110111101011 \\
r & =\lceil\log (u / n)\rceil
\end{aligned}
$$

Random Access

$$
S=[3,4,7,13,14,15,21,43]
$$

$\operatorname{Access}(4)=S[4]=?$

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
H & =1110111010001000 \\
L & =011100111101110111101011 \\
r & =\lceil\log (u / n)\rceil
\end{aligned}
$$

Random Access

$$
S=[3,4,7,13,14,15,21,43]
$$

$\operatorname{Access}(4)=S[4]=?$

Recall: we store a 0 whenever we change bucket.
$\mathrm{H}=1110111010001000$
$L=011100111101110111101011$
$r=\lceil\log (u / n)\rceil$

Random Access

$$
S=[3,4,7,13,14,15,21,43]
$$

$\operatorname{Access}(4)=S[4]=?$

Recall: we store a 0 whenever we change bucket.
$\mathrm{H}=1110111010001000$
$L=011100111101110111101011$
$r=\lceil\log (u / n)\rceil$
$\operatorname{Access}(i)=\quad \operatorname{Select}_{1}(i)$

Random Access

$$
S=[3,4,7,13,14,15,21,43]
$$

$\operatorname{Access}(4)=S[4]=?$

Recall: we store a 0 whenever we change bucket.
$\mathrm{H}=1110111010001000$
$L=011100111101110111101011$
$r=\lceil\log (u / n)\rceil$

Access(i) $=\operatorname{Rank}_{0}\left(\operatorname{Select}_{1}(\mathrm{i})\right)$

Random Access

$$
S=[3,4,7,13,14,15,21,43]
$$

$\operatorname{Access}(4)=S[4]=001000$

Recall: we store a 0 whenever we change bucket.
$\mathrm{H}=1110111010001000$
$L=011100111101110111101011$
$r=\lceil\log (u / n)\rceil$

Access(i) $=\operatorname{Rank}_{0}\left(\operatorname{Select}_{1}(\mathrm{i})\right)$

Random Access

$$
S=[3,4,7,13,14,15,21,43]
$$

$\operatorname{Access}(4)=S[4]=001000$

Recall: we store a 0 whenever we change bucket.
$\mathrm{H}=1110111010001000$
$L=011100111101110111101011$
$r=\lceil\log (u / n)\rceil$
$\operatorname{Access}(\mathrm{i})=\operatorname{Rank}_{0}\left(\operatorname{Select}_{1}(\mathrm{i})\right)$
Select ${ }_{1}(\mathrm{i})-\mathrm{i}$

Random Access

$$
S=[3,4,7,13,14,15,21,43]
$$

$\operatorname{Access}(4)=S[4]=001000$

Recall: we store a 0 whenever we change bucket.
$\mathrm{H}=1110111010001000$
$L=011100111101110111101011$
$r=\lceil\log (u / n)\rceil$
$\operatorname{Access}(i)=\operatorname{Select}_{1}(i)-i$

Random Access

$$
S=[3,4,7,13,14,15,21,43]
$$

$\operatorname{Access}(4)=S[4]=001101$

Recall: we store a 0 whenever we change bucket.
$H=1110111010001000$
$L=011100111101110111101011$
$r=\lceil\log (u / n)\rceil$
$\operatorname{Access}(i)=\operatorname{Select}_{1}(i)-i \ll r \mid L[(i-1) r, i r)$

Random Access

$$
S=[3,4,7,13,14,15,21,43]
$$

$\operatorname{Access}(4)=S[4]=001101$

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
H & =1110111010001000 \\
L & =011100111101110111101011 \\
r & =\lceil\log (u / n)\rceil
\end{aligned}
$$

$\operatorname{Access}(i)=\operatorname{Select}_{1}(i)-i \ll r \mid L[(i-1) r, i r)$

Random Access

$$
S=[3,4,7,13,14,15,21,43]
$$

$\operatorname{Access}(4)=S[4]=001101$
Access(7) $=$ S[7] = ?

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
& \mathrm{H}=1110111010001000 \\
& \mathrm{~L}=0.011100111101110111101011 \\
& \mathrm{r}=\lceil\log (\mathrm{un}) \boldsymbol{}
\end{aligned}
$$

$\operatorname{Access}(i)=\operatorname{Select}_{1}(i)-i \ll r \mid L[(i-1) r, i r)$

Random Access

$$
S=[3,4,7,13,14,15,21,43]
$$

Access(4) $=\mathrm{S}[4]=001101$
Access(7) $=$ S[7] = ?

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
& \mathrm{H}=1110111010001000 \\
& \mathrm{~L}=0.011100111101110111101011 \\
& \mathrm{r}=\lceil\log (\mathrm{un}) \boldsymbol{}
\end{aligned}
$$

$\operatorname{Access}(i)=\operatorname{Select}_{1}(i)-i \ll r \mid L[(i-1) r, i r)$

Random Access

$$
S=[3,4,7,13,14,15,21,43]
$$

$\operatorname{Access}(4)=S[4]=001101$
Access(7) $=\mathrm{S}[7]=010000$

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
\mathrm{H} & =1110111010001000 \\
\mathrm{~L} & =011100111101110111101011 \\
\mathrm{r} & =\lceil\log (\mathrm{u} / \mathrm{n})\rceil
\end{aligned}
$$

$\operatorname{Access}(i)=\operatorname{Select}_{1}(i)-i \ll r \mid L[(i-1) r, i r)$

Random Access

$$
S=[3,4,7,13,14,15,21,43]
$$

$\operatorname{Access}(4)=S[4]=001101$
Access(7) $=$ S[7] = 010101

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
& \mathrm{H}=1110111010001000 \\
& \mathrm{~L}=0.011100111101110111101011 \\
& \mathrm{r}=\lceil\log (\mathrm{u} / \mathrm{n})\rceil
\end{aligned}
$$

$\operatorname{Access}(i)=\operatorname{Select}_{1}(i)-i \ll r \mid L[(i-1) r, i r)$

Random Access

$$
S=[3,4,7,13,14,15,21,43]
$$

$\operatorname{Access}(4)=S[4]=001101$
Access(7) $=$ S[7] = 010101

Recall: we store a 0 whenever we change bucket.

$$
\begin{aligned}
& \mathrm{H}=1110111010001000 \\
& \mathrm{~L}=0.011100111101110111101011 \\
& \mathrm{r}=\lceil\log (\mathrm{un}) \boldsymbol{}
\end{aligned}
$$

$\operatorname{Access}(i)=\operatorname{Select}_{1}(i)-i \ll r \mid L[(i-1) r, i r)$

Available Implementations

Library Author(s) Link Language

folly	Facebook, Inc.	$\frac{\text { https:// }}{\text { github.com/ }}$ facebook/folly	C++
sdsl	Simon Gog	$\frac{\text { https://l }}{\text { github.com/ }}$ simongog/sdsl-lite	C++
ds2i	Giuseppe Ottaviano Rossano Venturini Nicola Tonellotto	https:// github.com/ot/ds2i	C++

Sux Sebastiano Vigna sux.di.unimi.it Java/C++

Killer applications

1. Inverted Indexes

Killer applications

1. Inverted Indexes
2. Social Networks

Killer applications

1. Inverted Indexes

2. Social Networks

Unicorn: A System for Searching the Social Graph

Michael Curtiss, lain Becker, Tudor Bosman, Sergey Doroshenko,
Lucian Grijincu, Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, Sriram Sankar, Guanghao Shen, Gintaras Woss, Chao Yang, Ning Zhang

Facebook, Inc.

Abstract

Unicorn is an online, in-memory social graph-aware indexing system designed to search trillions of edges between tens of billions of users and entities on thousands of commodity servers. Unicorn is based on standard concepts in informa-

rative of the evolution of Unicorn's architecture, as well as documentation for the major features and components of the system.

To the best of our knowledge, no other online graph retrieval system has ever been built with the scale of Unicorn

 гре алағgm

Killer applications

1. Inverted Indexes

2. Social Networks

Unicorn: A System for Searching the Social Graph

Michael Curtiss, lain Becker, Tudor Bosman, Sergey Doroshenko,
Lucian Grijincu, Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, Sriram Sankar, Guanghao Shen, Gintaras Woss, Chao Yang, Ning Zhang

Facebook, Inc.

Abstract

Unicorn is an online, in-memory social graph-aware indexing system designed to search trillions of edges between tens of billions of users and entities on thousands of commodity servers. Unicorn is based on standard concepts in informa-

rative of the evolution of Unicorn's architecture, as well as documentation for the major features and components of the system.

To the best of our knowledge, no other online graph retrieval system has ever been built with the scale of Unicorn

 гре алағgm

Killer applications

1. Inverted Indexes

2. Social Networks

Unicorn: A System for Searching the Social Graph

Michael Curtiss, lain Becker, Tudor Bosman, Sergey Doroshenko,
Lucian Grijincu, Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, Sriram Sankar, Guanghao Shen, Gintaras Woss, Chao Yang, Ning Zhang

Facebook, Inc.

Abstract

Unicorn is an online, in-memory social graph-aware indexing system designed to search trillions of edges between tens of billions of users and entities on thousands of commodity servers. Unicorn is based on standard concepts in informa-

Open Source

All Unicorn index server and aggregator code is written in C++. Unicorn relies extensively on modules in Facebook's "Folly" Open Source Library [5]. As part of the effort of releasing Graph Search, we have open-sourced a C++ implementation of the Elias-Fano index representation [31] as part of Folly.

 कf

Killer applications

1. Inverted Indexes
2. Social Networks
3. Compressed Tries for N-Grams

N -grams - Introduction

Strings of N words.
N typically ranges from 1 to 5 .
Extracted from text using a sliding window approach.

N-grams - Introduction

Strings of N words.
N typically ranges from 1 to 5 .
Extracted from text using a sliding window approach.

N -grams - Introduction

Strings of N words.
N typically ranges from 1 to 5 .
Extracted from text using a sliding window approach.

Google Books

$\approx 6 \%$ of the books ever published

N -grams - Introduction

Strings of N words.
N typically ranges from 1 to 5 .
Extracted from text using a sliding window approach.

Google Books

$\approx 6 \%$ of the books ever published

N	number of grams
1	$24,359,473$
2	$667,284,771$
3	$7,397,041,901$
4	$1,644,807,896$
5	$1,415,355,596$

More than 11 billion grams.

N -grams - Challenge

Store massive N -grams datasets in compressed space such that given a pattern, we can return its value efficiently.

N-grams - Challenge

Store massive N -grams datasets in compressed space such that given a pattern, we can return its value efficiently.
N-Gram values

N-grams - Challenge

Store massive N -grams datasets in compressed space such that given a pattern, we can return its value efficiently.
N-Gram values
frequency count
(integer)

N -grams - Challenge

Store massive N-grams datasets in compressed space such that given a pattern, we can return its value efficiently.

N-grams - Challenge

Store massive N -grams datasets in compressed space such that given a pattern, we can return its value efficiently.

Efficient map

N-grams - Challenge

Store massive N -grams datasets in compressed space such that given a pattern, we can return its value efficiently.
N-Gram values

```
frequency count (integer)
```

probability weight (floating point)

Efficient map

N -grams - Challenge

Store massive N -grams datasets in compressed space such that given a pattern, we can return its value efficiently.
N-Gram values
frequency count (integer)
probability weight (floating point)

N-grams - Challenge

Store massive N -grams datasets in compressed space such that given a pattern, we can return its value efficiently.
N-Gram values
frequency count (integer)
probability weight (floating point)

Efficient map

> + time
> - space

+ space
- time

Active field of research Many software libraries

- KenLM [Heafield, WMT 2011]
- BerkeleyLM [Pauls and Klein, ACL 2011]
- ExpGram [Watanabe at el., IJCNLP 2009]
- IRSTLM [Federico et al., ACL 2008]
- RandLM [Talbot and Osborne, ACL 2007]
- SRILM [Stolcke, INTERSPEECH 2002]

Trie Indexing

$$
\begin{array}{llll}
\mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} \\
\hline
\end{array}
$$

| A | A | A | B | B | D | D | D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \mathbf{A} | B | D | B | C | A | C | D |

| \mathbf{A} | \mathbf{A} | \mathbf{A} | \mathbf{A} | \mathbf{A} | \mathbf{B} | \mathbf{B} | \mathbf{D} | \mathbf{D} | \mathbf{D} | \mathbf{D} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \mathbf{A} | \mathbf{B} | \mathbf{B} | \mathbf{B} | \mathbf{D} | \mathbf{B} | \mathbf{B} | \mathbf{A} | \mathbf{A} | \mathbf{A} | \mathbf{D} |
| \mathbf{B} | \mathbf{A} | \mathbf{B} | \mathbf{D} | \mathbf{A} | \mathbf{A} | \mathbf{C} | \mathbf{A} | \mathbf{B} | \mathbf{D} | \mathbf{A} |

Trie Indexing

Trie Indexing

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|}
\hline \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l|}
\hline \text { A } & \mathbf{B} & \mathbf{D} & \mathbf{B} & \mathbf{C} & \mathbf{A} & \mathbf{C} & \mathbf{D} \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{B} & \mathbf{A} & \mathbf{B} & \mathbf{D} & \mathbf{A} & \mathbf{A} & \mathbf{C} & \mathbf{A} & \mathbf{B} & \mathbf{D} & \mathbf{A} \\
\hline
\end{array}
\end{aligned}
$$

Trie Indexing

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|}
\hline \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l|}
\hline \mathbf{A} & \mathbf{B} & \mathbf{D} & \mathbf{B} & \mathbf{C} & \mathbf{A} & \mathbf{C} & \mathbf{D} \\
\hline
\end{array}
\end{aligned}
$$

Trie Indexing

							0
	1	2	3				

1	0	1	3	0	0	2	0	1	3	0

Trie Indexing

Trie Indexing

Trie Indexing

Trie Indexing

We need an encoder for integer sequences, supporting fast random Access.

Trie Indexing

We need an encoder for integer sequences, supporting fast random Access.

Take range-wise prefix sums on gram-ID sequences.

Trie Indexing

We need an encoder for integer sequences, supporting fast random Access.

Take range-wise prefix sums on gram-ID sequences.

						1		3	6					
						3		5	5		8			
			1			4		5	5		7	8		
			1	4		5		7		7	10	10		
1	1	2		4	4		4	6	6	6	7	7	9	9

Trie Indexing

We need an encoder for integer sequences, supporting fast random Access.

Take range-wise prefix sums on gram-ID sequences.

Elias-Fano Tries

One Successor query per level

Constant-time random Access

Trie Indexing

We need an encoder for integer sequences, supporting fast random Access.

Take range-wise prefix sums on gram-ID sequences.

Elias-Fano Tries

One Successor query per level
Constant-time random Access

Remember: Elias-Fano takes $\log (u / n)+2$ bits
per integer

Context-based ID Remapping

Observation: the number of words following a given context is small.
High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

Context-based ID Remapping

Observation: the number of words following a given context is small.
High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

Context-based ID Remapping

Observation: the number of words following a given context is small.
High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

Context-based ID Remapping

Observation: the number of words following a given context is small.
High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

Context-based ID Remapping

Observation: the number of words following a given context is small. High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

Context-based ID Remapping

Observation: the number of words following a given context is small.
High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

Context-based ID Remapping

Observation: the number of words following a given context is small.
High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

- Millions of unigrams.
- Height 5: longer contexts.
- The number of siblings has a funnel-shaped distribution.

Context-based ID Remapping

Observation: the number of words following a given context is small. High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

- Millions of unigrams.
- Height 5: longer contexts.
- The number of siblings has a funnel-shaped distribution.

Context-based ID Remapping

Observation: the number of words following a given context is small. High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

- Millions of unigrams.
- Height 5: longer contexts.
- The number of siblings has a funnel-shaped distribution.

u / n by varying context-length k

	k	3 -grams	4-grams	5-grams
	0	2404	2782	2920
	1	213 ($\times 11.28$)	480 ($\times 5.79$)	646 ($\times 4.52$)
	2	2404	48 ($\times 57.95$)	101 ($\times 28.91$)
	0	7350	7197	7417
	1	753 (×9.76)	1461 (×4.93)	1963 ($\times 3.78$)
	2	7350	104 ($\times 69.20$)	249 ($\times 29.79$)
$\begin{aligned} & \text { N } \\ & \frac{0}{60} \\ & \text { oio } \end{aligned}$	0	4050	6631	6793
	1	1025 (×3.95)	2192 (×3.03)	2772 ($\times 2.45$)
	2	4050	221 ($\times 30.00$)	503 ($\times 13.50$)

Context-based ID Remapping

Observation: the number of words following a given context is small. High-level idea: map a word ID to the position it takes within its sibling IDs (the IDs following a context of fixed length k).

- Millions of unigrams.
- Height 5: longer contexts.
- The number of siblings has a funnel-shaped distribution.

u / n by varying context-length k

	k	3 -grams	4-grams	5-grams
$\begin{aligned} & \text { 늠 } \\ & \text { o } \\ & \text { 岦 } \end{aligned}$	0	2404	2782	2920
	1	213 ($\times 11.28$)	480 ($\times 5.79)$	646 ($\times 4.52$)
	2	2404	48 ($\times 57.95$)	101 ($\times 28.91$)
$\begin{aligned} & \text { N } \\ & \stackrel{\circ}{\infty} \\ & \stackrel{\circ}{\sim} \end{aligned}$	0	7350	7197	7417
	1	753 ($\times 9.76$)	1461 (×4.93)	1963 ($\times 3.78$)
	2	7350	104 (×69.20)	249 ($\times 29.79$)
	0	4050	6631	6793
	1	1025 (×3.95)	2192 (×3.03)	$2772(\times 2.45)$
	2	4050	221 ($\times 3.00$)	503 ($\times 13.50$)

Experimental Analysis - EF/PEF (R)Trie

N	Europarl	YahooV2	GoogleV2
	n	n	n
1	304579	3475482	24357349
2	5192260	53844927	665752080
3	18908249	187639522	7384478110
4	33862651	287562409	1642783634
5	43160518	295701337	1413870914
Total	101428257	828223677	11131242087
gzip bpg	6.98	6.45	6.20

Test machine
Intel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits

C++ implementation gcc 5.4.1 with the highest optimization setting

Experimental Analysis - EF/PEF (R)Trie

N	Europarl	YahooV2	GoogleV2
	n	n	n
1	304579	3475482	24357349
2	5192260	53844927	665752080
3	18908249	187639522	7384478110
4	33862651	287562409	1642783634
5	43160518	295701337	1413870914
Total	101428257	828223677	11131242087
gzip bpg	6.98	6.45	6.20

Test machine Intel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits

C++ implementation gcc 5.4.1 with the highest
optimization setting

	Europarl		YahooV2		GoogleV2	
	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query
EF	1.97	1.28	2.17	1.60	2.13	2.09
PEF	1.87 (-4.99\%)	1.35 (+5.93\%)	$1.91{ }_{(-12.03 \%)}$	1.73 (+8.00\%)	$1.52(-28.60 \%)$	1.91 (-8.79\%)
으늘 EF	1.67 (-15.30\%)	$1.58{ }_{(+23.86 \%)}$	$1.89{ }_{(-12.92 \%)}$	$2.05{ }_{(+28.07 \%)}$	1.91 (-10.24\%)	$3.03{ }_{(+44.61 \%)}$
¢ ${ }^{4}$	1.53 (-22.36\%)	$1.61{ }_{(+25.89 \%)}$	$1.63{ }_{(-24.91 \%)}$	$2.16{ }_{(+35.22 \%)}$	1.31 (-38.71\%)	2.30 (+9.88\%)
荌 $\sum_{\sim}^{\sim} \sim E F$	1.46 (-25.62\%)	$1.60{ }_{(+25.17 \%)}$	1.68 (-22.32\%)	2.08 (+30.23\%)	-	-
8- ${ }_{2}$ PEF	1.28 (-34.87\%)	1.64 (+28.12\%)	$1.38{ }_{(-36.15 \%)}$	2.15 (+34.81\%)	-	-

Experimental Analysis - EF/PEF (R)Trie

N	Europarl	YahooV2	GoogleV2
	n	n	n
1	304579	3475482	24357349
2	5192260	53844927	665752080
3	18908249	187639522	7384478110
4	33862651	287562409	1642783634
5	43160518	295701337	1413870914
Total	101428257	828223677	11131242087
gzip bpg	6.98	6.45	6.20

Test machine Intel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits

C++ implementation gcc 5.4.1 with the highest
optimization setting

	Europarl		YahooV2		GoogleV2	
	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query
EF	1.97	1.28	2.17	1.60	2.13	2.09
PEF	1.87 (-4.99\%)	1.35 (+5.93\%)	$1.91{ }_{(-12.03 \%)}$	1.73 (+8.00\%)	$1.52{ }_{(-28.60 \%)}$	1.91 (-8.79\%)
ƠO	$1.67{ }_{(-15.30 \%)}$	$1.58{ }_{(+23.86 \%)}$	$1.89{ }_{(-12.92 \%)}$	$2.05{ }_{(+28.07 \%)}$	1.91 (-10.24\%)	3.03 (+44.61\%)
边 ${ }^{\circ}$	1.53 (-22.36\%)	$1.61{ }_{(+25.89 \%)}$	1.63 (-24.91\%)	2.16 (+35.22\%)	$1.31{ }_{(-38.71 \%)}$	2.30 (+9.88\%)
	1.46 (-25.62\%)	$1.60{ }_{(+25.17 \%)}$	$1.68{ }_{(-22.32 \%)}$	2.08 (+30.23\%)	-	-
- \bigcirc PEF	1.28 (-34.87\%)	1.64 (+28.12\%)	1.38 (-36.15\%)	2.15 (+34.81\%)	-	-

Experimental Analysis - EF/PEF (R)Trie

N	Europarl	YahooV2	GoogleV2
	n	n	n
1	304579	3475482	24357349
2	5192260	53844927	665752080
3	18908249	187639522	7384478110
4	33862651	287562409	1642783634
5	43160518	295701337	1413870914
Total	101428257	828223677	11131242087
gzip bpg	6.98	6.45	6.20

Test machine Intel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits

C++ implementation gcc 5.4.1 with the highest
optimization setting

	Europarl			YahooV2		GoogleV2	
	bpg		$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query
EF	1.97		1.28	2.17	1.60	2.13	2.09
PEF	1.87	(-4.99\%)	1.35 (+5.93\%)	1.91 (-12.03\%)	1.73 (+8.00\%)	$1.52(-28.60 \%)$	1.91 (-8.79\%)
	1.67	(-15.30\%)	1.58 (+23.86\%)	$1.89{ }_{(-12.92 \%)}$	$2.05{ }_{(+28.07 \%)}$	1.91 (-10.24\%)	3.03 (+44.61\%)
¢ ${ }_{0}$	1.53	(-22.36\%)	$1.61{ }_{(+25.89 \%)}$	1.63 (-24.91\%)	$2.16{ }_{(+35.22 \%)}$	$1.31{ }_{(-38.71 \%)}$	2.30 (+9.88\%)
	1.46	(-25.62\%)	$1.60{ }_{(+25.17 \%)}$	1.68 (-22.32\%)	$2.08{ }_{(+30.23 \%)}$	-	-
O- PEF	1.28	(-34.87\%)	1.64 (+28.12\%)	1.38 (-36.15\%)	2.15 (+34.81\%)	-	-

Context-based ID Remapping

- reduces space by more than 36% on average \longrightarrow you will notice this!

Experimental Analysis - EF/PEF (R)Trie

N	Europarl	YahooV2	GoogleV2
	n	n	n
1	304579	3475482	24357349
2	5192260	53844927	665752080
3	18908249	187639522	7384478110
4	33862651	287562409	1642783634
5	43160518	295701337	1413870914
Total	101428257	828223677	11131242087
gzip bpg	6.98	6.45	6.20

Test machine Intel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits

C++ implementation gcc 5.4.1 with the highest
optimization setting

		Europarl			YahooV2		GoogleV2	
		bpg		$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query
	EF	1.97		1.28	2.17	1.60	2.13	2.09
	PEF	1.87	(-4.99\%)	1.35 (+5.93\%)	1.91 (-12.03\%)	1.73 (+8.00\%)	1.52 (-28.60\%)	1.91 (-8.79\%)
		1.67	(-15.30\%)	$1.58{ }_{(+23.86 \%)}$	1.89 (-12.92\%)	2.05 (+28.07\%)	1.91 (-10.24\%)	3.03 (+44.61\%)
		1.53	(-22.36\%)	1.61 (+25.89\%)	1.63 (-24.91\%)	$2.16{ }_{(+35.22 \%)}$	$1.31{ }_{(-38.71 \%)}$	2.30 (+9.88\%)
		1.46	(-25.62\%)	$1.60{ }_{(+25.17 \%)}$	1.68 (-22.32\%)	2.08 (+30.23\%)	-	-
		1.28	(-34.87\%)	$1.64{ }_{(+28.12 \%)}$	1.38 (-36.15\%)	2.15 (+34.81\%)	-	-

Context-based ID Remapping

- reduces space by more than 36% on average \longrightarrow you will notice this!

Experimental Analysis - EF/PEF (R)Trie

N	Europarl	YahooV2	GoogleV2
	n	n	n
1	304579	3475482	24357349
2	5192260	53844927	665752080
3	18908249	187639522	7384478110
4	33862651	287562409	1642783634
5	43160518	295701337	1413870914
Total	101428257	828223677	11131242087
gzip bpg	6.98	6.45	6.20

Test machine Intel Xeon E5-2630 v3, 2.4 GHz 193 GB of RAM, Linux 64 bits

C++ implementation gcc 5.4.1 with the highest
optimization setting

	Europarl		YahooV2		GoogleV2	
	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query
EF	1.97	1.28	2.17	1.60	2.13	2.09
PEF	1.87 (-4.99\%)	1.35 (+5.93\%)	$1.91{ }_{(-12.03 \%)}$	1.73 (+8.00\%)	$1.52(-28.60 \%)$	1.91 (-8.79\%)
运	$1.67{ }_{(-15.30 \%)}$	1.58 (+23.86\%)	$1.89{ }_{(-12.92 \%)}$	2.05	1.91 (-10.24\%)	$3.03{ }^{(+44.61 \%)}$
¢ ${ }^{4}$	1.53 (-22.36\%)	1.61 (+25.89\%)	1.63 (-24.91\%)	$2.16{ }_{(+35.22 \%)}$	$1.31{ }_{(-38.71 \%)}$	$2.30{ }_{(+9.88 \%}$
荌 $\sum_{\sim}^{\sim} \sim E F$	$1.46{ }_{(-25.62 \%)}$	$1.60{ }_{(+25.17 \%)}$	$1.68{ }_{(-22.32 \%)}$	2.08 (+30.23\%)	-	-
8- ${ }_{2}$ PEF	1.28 (-34.87\%)	1.64 (+28.12\%)	1.38 (-36.15\%)	2.15 (+34.81\%)	-	-

Context-based ID Remapping

- reduces space by more than 36% on average \longrightarrow you will notice this!
- brings approximately 30% more time
\longrightarrow will you notice this?

Experimental Analysis - Overall comparison

		Europarl				YahooV2				GoogleV2			
		bpg		$\mu \mathrm{s} \times$ query		bpg		$\mu \mathrm{s} \times$ query		bpg		$\mu \mathrm{s} \times$ query	
PEF-Trie PEF-RTrie		1.87		1.35		1.91		1.73		1.52		1.91	
		1.28		1.64		1.38		2.15		1.31		2.30	
BerkeleyLM	C.	1.70	(-8.89\%)	2.83	(+108.88\%)	1.69	(-11.41\%)	3.48	(+101.84\%)	1.45	(-4.87\%)	4.13	+116.57\%)
			(+32.90\%)		(+72.70\%)		(+22.04\%)		(+61.70\%)		(+10.83\%)		(+79.76\%)
BerkeleyLM	H. 3	6.70	(+258.81\%)	0.97	(-28.46\%)	7.82	(+310.38\%)	1.13	(-34.35\%)	9.24	(+507.79\%)	2.18	(+13.95\%)
			(+423.40\%)		(-40.85\%)		(+465.36\%)		(-47.41\%)		(+608.07\%)		(-5.42\%)
BerkeleyLM	H. 50	7.96	(+326.03\%)	0.97	(-28.49\%)	9.37	(+391.32\%)	0.96	(-44.27\%)	-		-	
			(+521.45\%)		(-40.88\%)		(+576.87\%)		(-55.35\%)				
Expgram		2.06	(+10.18\%)	2.80	(+106.61\%)	2.24	(+17.36\%)	9.23	(+435.33\%)	-		-	
			(+60.73\%)		(+70.82\%)		(+61.68\%)		(+328.87\%)				
KenLM T.		2.99	(+60.11\%)	1.28	(-5.47\%)	3.44	(+80.39\%)	1.94	(+12.32\%)	-		-	
			(+133.56\%)		(-21.84\%)		(+148.52\%)		(-10.01%)				
Marisa		3.61	(+93.09\%)	2.06	(+52.00\%)	3.81	(+99.60\%)	3.24	(+87.96\%)	-		-	
			(+181.66\%)		(+25.67\%)		(+174.98\%)		(+50.58\%)				
RandLM		1.81	(-3.06\%)	4.39	(+224.20\%)	2.02	(+6.18\%)	5.08	(+194.35\%)	2.60	(+70.73\%)	9.25	(+384.54\%)
			(+41.41\%)		(+168.04\%)		(+46.29\%)		(+135.82\%)		(+98.90\%)		(+302.19\%)

Experimental Analysis - Overall comparison

		Europarl		YahooV2		GoogleV2	
		bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query	bpg	$\mu \mathrm{s} \times$ query
PEF-Trie PEF-RTrie		1.87	1.35	1.91	1.73	1.52	1.91
		1.28	1.64	1.38	2.15	1.31	2.30
BerkeleyLM	C.	1.70 (-8.89\%)	2.83 (+108.88\%)	1.69 (-11.41\%)	3.48 (+101.84\%)	1.45 (-4.87\%)	$4.13{ }_{(+116.57 \%)}$
		(+32.90\%)	(+72.70\%)	(+22.04\%)	(+61.70\%)	(+10.83\%)	(+79.76\%)
BerkeleyLM	H. 3	$6.70{ }_{(+258.81 \%)}$	0.97 (-28.46\%)	$7.82{ }_{(+310.38 \%)}$	1.13 (-34.35\%)	$9.24{ }_{(+507.79 \%)}$	2.18 (+13.95\%)
		(+423.40\%)	(-40.85\%)	(+465.36\%)	(-47.41\%)	(+608.07\%)	(-5.42\%)
BerkeleyLM	H. 50	$7.96{ }_{(+326.03 \%)}$	0.97 (-28.49\%)	$9.37{ }_{(+391.32 \%)}$	0.96 (-44.27\%)	+	-
		(+521.45\%)	(-40.88\%)	(+576.87\%)	(-55.35\%)		
Expgram		2.06 (+10.18\%)	$2.80{ }_{(+106.61 \%)}$	2.24 (+17.36\%)	$9.23{ }_{(+435.33 \%)}$	-	-
		($+60.73 \%$)	($+70.82 \%$)	($+61.68 \%$)	${ }^{(+328.87 \%)}$		
KenLM T.		2.99 (+60.11\%)	1.28 (-5.47\%)	3.44 (+80.39\%)	$1.94(+12.32 \%)$	-	-
		($+133.56 \%$)	(-21.84\%)	($+148.52 \%$)	(-10.01\%)		
Marisa		3.61 (+93.09\%)	2.06 (+52.00\%)	3.81 (+99.60\%)	3.24 (+87.96\%)	-	-
		($+181.66 \%$)	(+25.67\%)	(+174.98\%)	(+50.58\%)		
RandLM		1.81 (-3.06\%)	$4.39_{(+224.20 \%)}$	2.02 (+6.18\%)	$5.08{ }_{(+194.35 \%)}$	2.60 (+70.73\%)	$9.25{ }_{(+384.54 \%)}$
		(+41.41\%)	(+168.04\%)	(+46.29\%)	(+135.82\%)	(+98.90\%)	($+302.19 \%$)

Experimental Analysis - Overall comparison

		Europarl				YahooV2				GoogleV2			
		bpg		$\mu \mathrm{s} \times$ query		bpg		$\mu \mathrm{s} \times$ query		bpg		$\mu \mathrm{s} \times$ query	
PEF-Trie PEF-RTrie		1.87		1.35		1.91		1.73		1.52		1.91	
		1.28		1.64		1.38		2.15		1.31		2.30	
BerkeleyLM	C.	1.70	(-8.89\%)	2.83	(+108.88\%)	1.69	(-11.41\%)	3.48	(+101.84\%)	1.45	(-4.87\%)	4.13	+116.57\%)
			(+32.90\%)		(+72.70\%)		(+22.04\%)		(+61.70\%)		(+10.83\%)		(+79.76\%)
BerkeleyLM	H. 3	6.70	(+258.81\%)	0.97	(-28.46\%)	7.82	(+310.38\%)	1.13	(-34.35\%)	9.24	(+507.79\%)	2.18	(+13.95\%)
			(+423.40\%)		(-40.85\%)		(+465.36\%)		(-47.41\%)		(+608.07\%)		(-5.42\%)
BerkeleyLM	H. 50	7.96	(+326.03\%)	0.97	(-28.49\%)	9.37	(+391.32\%)	0.96	(-44.27\%)	-		-	
			(+521.45\%)		(-40.88\%)		(+576.87\%)		(-55.35\%)				
Expgram		2.06	(+10.18\%)	2.80	(+106.61\%)	2.24	(+17.36\%)	9.23	(+435.33\%)	-		-	
			($+60.73 \%$)		($+70.82 \%$)		(+61.68\%)		($+328.87 \%$)				
KenLM T.		2.99	2.3X	1.28	(-5.47\%)	3.44	2.5X	1.94	(+12.32\%)	-		-	
			(+133.56\%)		(-21.84\%)		$(+148.52 \%)$		(-10.01%)				
Marisa		3.61	(+93.09\%)	2.06	(+52.00\%)	3.81	(+99.60\%)	3.24	(+87.96\%)	-		-	
			(+181.66\%)		(+25.67\%)		(+174.98\%)		(+50.58\%)				
RandLM		1.81	(-3.06\%)	4.39	(+224.20\%)	2.02	(+6.18\%)	5.08	(+194.35\%)	2.60	(+70.73\%)	9.25	(+384.54\%)
			(+41.41\%)		(+168.04\%)		(+46.29\%)		(+135.82\%)		(+98.90\%)		(+302.19\%)

Experimental Analysis - Overall comparison

- Elias-Fano Tries substantially outperform ALL previous solutions in both space and time.
- As fast as the state-of-the-art (KenLM) but more than twice smaller.

Summary

Elias-Fano encodes monotone integer sequences in space close to the information theoretic minimum, while allowing powerful search operations, namely Predecessor/Successor queries and random Access.

Successfully applied to crucial problems, such as inverted indexes, social graphs and tries representation.

Several optimized software implementations are available.

Robert Mario Fano. On the number of bits required to implement an associative
[Elias-1974]
[Jacobson-1989]
Guy Jacobson. Succinct Static Data Structures. Ph.D. Thesis, Carnegie Mellon University (1989).
[Clark-1996] David Clark. Compact Pat Trees. Ph.D. Thesis, University of Waterloo (1996).
[Moffat and Stuiver-2000]
[Anh and Moffat-2005]

Alistair Moffat and Lang Stuiver. Binary Interpolative Coding for Effective Index Compression. Information Retrieval Journal 3, 1, 25-47 (2000).

Vo Ngoc Anh and Alistair Moffat. Inverted Index Compression Using WordAligned Binary Codes. Information Retrieval Journal 8, 1, 151-166 (2005).
[Salomon-2007] David Salomon. Variable-length Codes for Data Compression. Springer (2007).
[Vigna-2008] Sebastiano Vigna. Broadword implementation of rank/select queries. In Workshop in Experimental Algorithms (WEA), 154-168 (2008).

References

Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and query processing with optimized document ordering. In Proceedings of the 18th International Conference on World Wide Web (WWW). 401-410 (2009).
[Anh and Moffat-2010]
[Zukowski et al.-2010]
[Stepanov et al.-2011]
[Zhou et al.-2013]
[Vigna-2013]
[Curtiss et al.-2013]

Vo Ngoc Anh and Alistair Moffat. Index compression using 64-bit words. In Software: Practice and Experience 40, 2, 131-147 (2010).

Marcin Zukowski, Sandor Hèman, Niels Nes, and Peter Boncz. Super-Scalar RAMCPU Cache Compression. In Proceedings of the 22nd International Conference on Data Engineering (ICDE). 59-70 (2006).

Alexander Stepanov, Anil Gangolli, Daniel Rose, Ryan Ernst, and Paramjit Oberoi. SIMD-based decoding of posting lists. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM). 317-326 (2011).

Dong Zhou, David Andersen, Michael Kaminsky. Space-Efficient, High-Performance Rank and Select Structures on Uncompressed Bit Sequences. In Proceedings of the 12-nd International Symposium on Experimental Algorithms (SEA), 151-163 (2013).

Sebastiano Vigna. Quasi-succinct indices. In Proceedings of the 6-th ACM International Conference on Web Search and Data Mining (WSDM), 83-92 (2013).

Michael Curtiss et al. Unicorn: A System for Searching the Social Graph. In Proceedings of the Very Large Database Endowment (PVLDB), 1150-1161 (2013).

Giuseppe Ottaviano, Rossano Venturini. Partitioned Elias-Fano Indexes. In
[Ottaviano and Venturini-2014] Proceedings of the 37-th ACM International Conference on Research and Development in Information Retrieval (SIGIR), 273-282 (2014).

Thanks for your attention, time, patience!

Any questions?

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

$H=1110111010001000$
$\mathrm{L}=011100111101110111101011$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

successor(12) $=$?
$H=1110111010001000$
$L=011100111101110111101011$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

$$
\operatorname{successor}(12)=?
$$

$$
001100
$$

$H=1110111010001000$
$L=011100111101110111101011$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

successor(12) =?
$h_{12}=001100$
$H=1110111010001000$
$L=011100111101110111101011$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

successor(12) =?

$$
\begin{aligned}
& p_{1}=\operatorname{selectg}_{0}\left(h_{x}\right)-h_{x} \\
& p_{2}=\operatorname{selectect}_{0}\left(h_{x}+1\right)-h_{x}-1
\end{aligned}
$$

$H=1110111010001000$
$L=011100111101110111101011$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

successor(12) =?

$$
\left.\begin{array}{l}
p_{1}=\text { selecto }\left(h_{x}\right)-h_{x} \\
p_{2}=\operatorname{select} \\
0
\end{array} h_{x}+1\right)-h_{x}-1 ~ \$
$$

$L=011100111101110111101011$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

successor(12) =?

$$
\left.\begin{array}{l}
p_{1}=\text { selecto }\left(h_{x}\right)-h_{x} \\
p_{2}=\operatorname{select} \\
0
\end{array} h_{x}+1\right)-h_{x}-1 ~ \$
$$

$H=\frac{1110111010001000}{1000}$
$L=011100111101110111101011$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

successor(12) =?
$h_{12}=001100$

$$
\begin{aligned}
& p_{1}=\operatorname{selectect}_{0}\left(h_{x}\right)-h_{x} \\
& p_{2}=\operatorname{select}_{0}\left(h_{x}+1\right)-h_{x}-1
\end{aligned}
$$

$H=\frac{1110111010001000}{11000}$
$L=011100111101110111101014$

successor example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \text { successor(12) =? } \\
& h_{12}=001100 \\
& p_{1}=\operatorname{selecto}_{0}\left(h_{x}\right)-h_{x} \\
& p_{2}=\operatorname{select}_{0}\left(h_{x}+1\right)-h_{x}-1 \\
& \text { H = } 1110111010001000 \\
& L=011100111101110111101011 \\
& \text { binary search } \\
& \text { in }\left[\mathrm{p}_{1}, \mathrm{p}_{2}\right. \text {) }
\end{aligned}
$$

successor example

$$
\begin{aligned}
& S=[3,4,7,13,14,15,21,43] \\
& \text { successor(12) }=13 \\
& h_{12}=001100 \\
& p_{1}=\operatorname{select}_{0}\left(h_{x}\right)-h_{x} \\
& p_{2}=\operatorname{select}_{0}\left(h_{x}+1\right)-h_{x}-1 \\
& \text { H = } 1110111010001000 \\
& L=011100111101110111101011 \\
& \text { binary search } \\
& \text { in }\left[\mathrm{p}_{1}, \mathrm{p}_{2}\right. \text {) }
\end{aligned}
$$

successor example

$$
S=[3,4,7,13,14,15,21,43]
$$

successor(12) $=13$ $h_{12}=001100$

$$
\begin{aligned}
& p_{1}=\text { selecto }\left(h_{x}\right)-h_{x} \\
& p_{2}=\operatorname{selecta}_{0}\left(h_{x}+1\right)-h_{x}-1
\end{aligned}
$$

H = 1110111010001000
$\mathrm{L}=011100111101110111101014$

binary search in $\left[\mathrm{p}_{1}, \mathrm{p}_{2}\right.$)

Complexity: $O\left(\log \frac{u}{n}\right)$

