
Campus TALES, 12 July 2024

Giulio Ermanno Pibiri
Department of Environmental Sciences, Informatics and Statistics

@giulio_pibiri

@jermp

Compressed data structures 
for big data indexing

Myself

• Giulio Ermanno Pibiri

• PhD in Computer Science from the University of Pisa
in 2019

• As of June 2022, RTD-B at Ca’ Foscari, DAIS

• Personal Web page: https://jermp.github.io

• GitHub: https://github.com/jermp

https://jermp.github.io
https://github.com/jermp

Compressed data structures

• Research: design compressed data structures to index large quantities of data.

Compressed data structures

• Research: design compressed data structures to index large quantities of data.

D

500 GB

• Given a query Q, how to answer Q on D as efficiently as possible?

• You cannot just scan D: too slow. 
(And if you have millions of such queries per day to answer?)

Compressed data structures

• Research: design compressed data structures to index large quantities of data.

D

500 GB

• Given a query Q, how to answer Q on D as efficiently as possible?

• You cannot just scan D: too slow. 
(And if you have millions of such queries per day to answer?)

• Solution: pre-process D into a data structure. 
 
Two-fold objective: 
1. reduce the storage space for D; 
2. make queries fast.

Compressed data structures

A compressed data structure uses less storage space than the original data, thus permitting:

• for a fixed memory budget, to handle larger datasets;

Compressed data structures

A compressed data structure uses less storage space than the original data, thus permitting:

• for a fixed memory budget, to handle larger datasets;

RAM is orders 
of magnitude faster
than the disk!

64 GB
512 GB

• for the same dataset, to maintain its compressed representation in faster memory levels.

An example

D

150,000 S. Enterica genomes

5 MB for genome 750 GB 
1.5 MB per genome if compressed with gzip 225 GB

→
→

An example

D

150,000 S. Enterica genomes

5 MB for genome 750 GB 
1.5 MB per genome if compressed with gzip 225 GB

→
→

Q = “ In what genomes, does  
 
GTTGGGCGGCCCCTTCGGTTGGGCCAAAGATCTTCAGACCCGCCGC

appear ? ”

An example

D

150,000 S. Enterica genomes

5 MB for genome 750 GB 
1.5 MB per genome if compressed with gzip 225 GB

→
→

Q = “ In what genomes, does  
 
GTTGGGCGGCCCCTTCGGTTGGGCCAAAGATCTTCAGACCCGCCGC

appear ? ”

the Fulgor index (2023): 71 GB
https://github.com/jermp/fulgor

https://github.com/jermp/fulgor

An example

D

150,000 S. Enterica genomes

5 MB for genome 750 GB 
1.5 MB per genome if compressed with gzip 225 GB

→
→

Q = “ In what genomes, does  
 
GTTGGGCGGCCCCTTCGGTTGGGCCAAAGATCTTCAGACCCGCCGC

appear ? ”

d-Fulgor: 18 GB
m-Fulgor: 7.3 GB
md-Fulgor: 5.3 GB

new results (2024):the Fulgor index (2023): 71 GB
https://github.com/jermp/fulgor

https://github.com/jermp/fulgor

Save money!

Amazon EC2 instances pricing: 

• https://instances.vantage.sh/aws/ec2/x2gd.medium

 16 GiB of RAM — 73 $ per month 

• https://instances.vantage.sh/aws/ec2/x2gd.xlarge 
64 GiB of RAM — 292 $ per month

• https://instances.vantage.sh/aws/ec2/x2gd.2xlarge 
128 GiB of RAM — 584 $ per month

• https://instances.vantage.sh/aws/ec2/x2gd.4xlarge 
256 GiB of RAM — 1168 $ per month

Numbers taken on 10/07/2024.

Original data: 225 GB

d-Fulgor: 18 GB

m-Fulgor: 7.3 GB
md-Fulgor: 5.3 GB

Themisto (2023): 127 GB

https://instances.vantage.sh/aws/ec2/x2gd.medium
https://instances.vantage.sh/aws/ec2/x2gd.xlarge
https://instances.vantage.sh/aws/ec2/x2gd.2xlarge
https://instances.vantage.sh/aws/ec2/x2gd.4xlarge

You have a large collection of Web pages, like several millions.

 
Problem: Given k words, how to find all Web pages where these words occur?

Inverted indexes

RDF Triples indexing

You have a large collection of RDF triples (S,P,O), like 350 millions. 
 
Problem: Given a wildcard query like (? ? O) or (? P ?), how to return all matching triples?

Language models

You have a large collection of q-grams, like 11 billions (the “Google-books” collection).

 
Problem: How, given a q-gram, return its context probability as fast as possible?

Query auto-completion

Problem: Given a collection S of scored strings and a partially
completed user query Q, how to find the top-k strings that
“match” Q in S?

Conclusions

• Efficiency is the key to:

- build better applications/services in terms of reduced latency to access information 
(enhanced user experience);

- save computer resources (power and storage machines).

Conclusions

• Efficiency is the key to:

- build better applications/services in terms of reduced latency to access information 
(enhanced user experience);

- save computer resources (power and storage machines).

• If you have to make some large-scale analysis and your computer gets stuck
(i.e., slow execution or runs out of memory), get in touch!

Conclusions

• Efficiency is the key to:

- build better applications/services in terms of reduced latency to access information 
(enhanced user experience);

- save computer resources (power and storage machines).

• If you have to make some large-scale analysis and your computer gets stuck
(i.e., slow execution or runs out of memory), get in touch!

• Other people involved: prof. Nicola Prezza, https://nicolaprezza.github.io.

https://nicolaprezza.github.io

Conclusions

• Efficiency is the key to:

- build better applications/services in terms of reduced latency to access information 
(enhanced user experience);

- save computer resources (power and storage machines).

Thank you for the attention!

• If you have to make some large-scale analysis and your computer gets stuck
(i.e., slow execution or runs out of memory), get in touch!

• Other people involved: prof. Nicola Prezza, https://nicolaprezza.github.io.

https://nicolaprezza.github.io

