
Sparse and Skew Hashing of K-Mers*

Giulio Ermanno Pibiri
ISTI-CNR, giulio.ermanno.pibiri@isti.cnr.it

@giulio_pibiri

@jermp

*ISMB 2022, to appear.

mailto:giulio.ermanno.pibiri@isti.cnr.it

• K-Mer. A -mer is a string of length over the DNA alphabet {A,C,G,T}.

• We are given a large DNA string (e.g., a genome or a pan-genome) and let be the set of all
its distinct -mers. 

• Problem. We want to build a dictionary for so that the following operations are efficient: 
- , where if the -mer or otherwise; 
- return the -mer if . 
 
(Other operations of interest are iteration and streaming membership queries. 
See the paper for details.)

k k

K
n k

K
i = Lookup(g) 0 ≤ i < n k g ∈ K i = − 1

k g = Access(i) 0 ≤ i < n

The K-Mer Dictionary Problem

Example: The human genome (GRCh38) has >2.5B distinct -mers for .k k = 31

• Software tools based on -mers are predominant in Bioinformatics.

• Many applications: 
- genome assembly 
- variant calling 
- pan-genome analysis 
- meta-genomics 
- sequence comparison/alignment 
- …

k

K-Mer Applications

de Bruijn Graphs

• Fact. Equivalence between a set of -mers and a de Bruijn graph (dBG).

• There are efficient software tools to run the following pre-processing flow.

k

dBG compacted
dBG

stitched unitigs
(a.k.a., simplitigs)

compaction path covering

• A collection of DNA strings with no
duplicate -mers.

• Efficient heuristic method to reduce
the number of bases, e.g, UST
[Rahman and Medvedev, 2020].

k

input DNA file
(.fasta/q)

- BCALM [Chikhi et al., 2016] 
- Cuttlefish [Khan and Patro, 2021]

build

Super-k-Mers

• Property. Consecutive -mers are likely to have the same minimizer [Roberts et al., 2004] — 
the smallest sub-string of length according to a given order . 
 
Example for and : 
ACGGTAGAACCGATTCAAATTCGATCGATTAATTAGAGCGATAAC… 
ACGGTAGAACCGA
 CGGTAGAACCGAT
 GGTAGAACCGATT
 GTAGAACCGATTC
 TAGAACCGATTCA
 AGAACCGATTCAA
 GAACCGATTCAAA
 AACCGATTCAAAT
 …

• Super-k-mer. [Li et al., 2013] Given a string, a super- -mer is a maximal sequence of
consecutive -mers having the same minimizer.

k
m ≤ k R

k = 13 m = 4

k
k

super- -merk

• Observation 1. Since consecutive -mers are likely to have the same minimizers, there are far fewer
super- -mers than -mers — approx. times less for random minimizers — 

 sparse indexing.

• Observation 2. A super- -mer of length is a space-efficient representation of the set of its
constituent -mers: vs. bits/ -mer. If is sufficiently large and/or we have
long chains of super- -mers, the cost becomes approx. bits/ -mer.

k
k k (k − m + 2)/2

→

k s
s − k + 1 k 2s/(s − k + 1) 2k k s

k 2 k

Super-k-Mers

This super- -mer costs 2x19=38 bits for 7 -mers
(5.43 bits/ -mer vs. 2x13=26 bits/ -mer).

k k
k k

ACGGTAGAACCGATTCAAA

AACCGATTCAAATTCGATCGATTA

=19s

=24s

This chain is of length 31 and costs 2x31=62 bits for 19 -mers (3.26 bits/ -mer).k k

Example for and : 
 
ACGGTAGAACCGATTCAAATTCGATCGATTAATT…

k = 13 m = 4

Sparse Hashing

• Q. How to index super- -mers?

• Do not break the chains of super- -mers to avoid wasting bits per super- -mer.

• Locate super- -mers with an array of offsets into the strings, indexed by a minimal perfect hash
function (MPHF) on the minimizers.

• Upon : if is the minimizer of , locate and scan the “bucket” of — the set of super- -mers
that have minimizer .

k

k 2(k − 1) k

k

Lookup(g) r g r k
r

AGATGATGAACCTGAAAACATCCTGAAAATCGTCAAAGAATGGCGGCGTTCACAGGGGCTACCCTTGTTTAAAGACTCTAAATAAAGTA.ATTTTCAGGATG
TTTTCAGGTTCATCATCTCCCTTCTTTGCAGGATAGTAGATAAGATCGCTCATCAACGGATGTTGTGTAATTCTGGTAAGATGTTCTTCTAGATCATCCCAA
TATTTGTCAAGCACTTCCCCTTTTAATTGAGCGTTATCCCCGG.AGATGATGAACCTGAAAACATCCTGAAAATTGTCAAAGAATGGCGGCGTTCACAGGGG
CTA.ATTGTCAAAGAATGGCGGCGTTCACAGGGGTTACCCTTGTTTAAAGACTCTAAATAAAGTAGATAATAAAACTATATATGGAACATCATCGCATCTGG

ATCCTGAAr =

Skew Hashing

• Problem. Some buckets can be very large. 
 

• Property. Minimizers have a (very) skew distribution for sufficiently long length.

For example on the human genome (GRCh38), for and : largest bucket size
can be as large as .

k = 31 m = 20
3.6 × 104

On the full human genome (GRCh38), 
for and : 
 2,505,445,761 -mers 
 421,845,806 minimizers 
 388,018,280 (91.98%) only appear once!

k = 31 m = 20
k

Skew Hashing

• We fix an integer : by virtue of the skew distribution, the fraction of buckets having more than
 super- -mers is small.

• So, we can afford a MPHF over the set of -mers that belong to such super- -mers. The output
of the MPHF for a -mer is the identifier of the super- -mer where is present. 
(This identifier can be written in few bits; see the paper for details.)

• Upon , we will scan one super- -mer only.

ℓ
2ℓ k

k k
k g k g

Lookup k

For , just 
100.0 − (97.1 + 1.7 + 0.4 + 0.2)% = 0.6% of
buckets with more than super- -mers.

ℓ = 2

2ℓ=2 = 4 k

Benchmarking SSHash

• Code in C++17, compiled with flags: -O3 -march=native.

• All experiments are single-threaded.

• We use for all experiments.

• We use for respectively Cod, Kestrel, Human, and Bacterial. 
(A good rule of thumb is or .)

ℓ = 6

m = 17,17,20,20
m = ⌈log4(N)⌉ + 1 m = ⌈log4(N)⌉ + 2

NOTE: We used BCALM (v2)
[Chikhi et al., 2016] to build the
compacted dBG and then UST
[Rahman and Medvedev, 2020]
to compute the stitched unitigs.

Competitors

• dBG-FM [Chikhi et al., 2014]: FM-index [Ferragina and Manzini, 2000]

• Pufferfish [Almodaresi et al., 2018]: MPHF

• Blight [Marchet et al., 2021]: MPHF+minimizers

Overall Comparison — Space and Lookup

• Compared to BWT-based indexes: one order of magnitude faster for “just” 2x more space.

• Compared to other hashing schemes: 2-5x smaller with comparable of faster query time.

Overall Comparison — Streaming Queries

Conclusions

• SSHash is an efficient solution to the K-Mer Dictionary problem: 
good trade-off between space and time.

• Compared to BWT-based indexes: one order of magnitude faster for “just” 2X more space.
Compared to other hashing schemes: 2-5X smaller with comparable of faster query time.

• Tool-box: spectrum-preserving string sets (SPSSs), minimizers, minimal perfect hashing
(MPHF, https://github.com/jermp/pthash), Elias-Fano.

• Ingredients: 
- Sparse indexing to obtain good space effectiveness; 
- Skew hashing to guarantee fast lookup for “heavy” buckets.

• Code in C++17 is available at: https://github.com/jermp/sshash.

https://github.com/jermp/pthash
https://github.com/jermp/sshash

Thank you for the attention!

Preliminary Observations

• The algorithmic literature about (compressed) string dictionaries is rich of solutions [Martínez-
Prieto et al., 2016] (e.g., Front-Coding, path-decomposed tries, double-array tries), but are
relevant for “generic strings”: 
 - variable-length, 
 - larger alphabets (e.g., ASCII), 
 - (usually) no particular properties of the strings to aid compression.

• Since -mers are extracted consecutively from DNA, a -mer following another one shares
bases (very low entropy).

k k k − 1

 
ACGGTAGAACCGATTCAAATTCGACGTAGC… 
ACGGTAGAACCGA 
 CGGTAGAACCGAT
 GGTAGAACCGATT
 GTAGAACCGATTC
 TAGAACCGATTCA
 …

Example for .k = 13

• Huge research effort produced many types of indexes based on -mers,
with different: 
- representations (hashing, BWT-based, exact vs. approximate), 
- features (e.g., static vs. dynamic), 
- space/time trade-offs, 
- operations, ecc.

• Recent surveys on this topic:

k

A World of K-Mer Indexes

• Data Structures based on k-mers for Querying Large Collections of Sequencing Data Sets 
Marchet et al., Genome Research, 2020.

• Data Structures to Represent a Set of k-long DNA Sequences 
Chikhi et al., ACM Computing Surveys, 2021.

de Bruijn Graphs

Fact. Equivalence between a set of -mers and a de Bruijn graph (dBG).k

TCA CAT ATT TTG

TGG GGT GTA TAA

TGC GCG CGA GAA

AAC ACC CCG

(a) an example de Bruijn
graph for k = 3

TCATTG

TGGTAA

TGCGAA

AACCG

(b) compacted de Bruijn graph

TCATTGGTAACCG

TGCGAA

(c) set of stitched (maximal) unitigs

Minimizers

• Minimizer. [Roberts et al., 2004] Given a -mer and an order relation , the
minimizer of length is the smallest -mer of the -mer according to .

• Example. Given ACGGTAGAACCGA and : 

k R
m ≤ k m k R

g = (k = 13) m = 4

If is the lexicographic order.R

(ACGG) = 9842978325
 (CGGT) = 817612312
 (GGTA) = 8265731
 (GTAG) = 478491248
 (TAGA) = 17491411
 (AGAA) = 17148914
 (GAAC) = 91815379
 (AACC) = 645793914
 (ACCG) = 918417644
 (CCGA) = 814188124

h
h

h
h

h
h

h
h

h
h

smallest hash code

If is defined by a random hash function .R h

ACGG
 CGGT
 GGTA
 GTAG
 TAGA
 AGAA
 GAAC
 AACC
 ACCG
 CCGA

sigir

tkde

tois
spe

wsdm
csur

icde

S 0
1
2
3
4
5
6

f

MPHF. Given a set of distinct keys, a function that bijectively maps the keys of
into the range is called a minimal perfect hash function (MPHF) for .

S n f S
{0,…, n − 1} S

• Lower bound of 1.44 bits/key — in practice:
2-4 bits/key and constant time evaluation.

• Many algorithms available:
 - FCH [Fox et al., 1992] 
 - CHD [Belazzougui et al., 2009] 
 - EMPHF [Belazzougui et al., 2014]  
 - GOV [Genuzio et al., 2016] 
 - BBHash [Limasset et al., 2017] 
 - RecSplit [Esposito et al., 2019] 
 - PTHash [P. and Trani, 2021]

https://github.com/jermp/pthash

Minimal Perfect Hashing

https://github.com/jermp/pthash

TCGTCAAA: 29
CATCCCAA: 172
ATCGTCAA: 20
GACTCTAA: 50 329
AACCTGAA: 0 246
ATCCTGAA: 9 255
GAACATCA: 364
GCAGGATA: 105
AGGGGCTA: 30
CTTGTTTA: 319
GAGCGTTA: 208
TTTAAAGA: 323
CTTCTAGA: 169
GGCTACCC: 33
CGTTATCC: 211
AGCACTTC: 189
AAGATCGC: 119
AACTATAT: 353
CCTTCTTT: 97
TTCAGGTT: 89
ACGGATGT: 143
ACAGGGGT: 310
TGTCAAAG: 266 307
TAATTCTG: 157

Sparse Hashing — Example

AGATGATGAACCTGAAAACATCCTGAAAATCGTCAAAGAATGGCGG
CGTTCACAGGGGCTACCCTTGTTTAAAGACTCTAAATAAAGTA.AT
TTTCAGGATGTTTTCAGGTTCATCATCTCCCTTCTTTGCAGGATAG
TAGATAAGATCGCTCATCAACGGATGTTGTGTAATTCTGGTAAGAT
GTTCTTCTAGATCATCCCAATATTTGTCAAGCACTTCCCCTTTTAA
TTGAGCGTTATCCCCGG.AGATGATGAACCTGAAAACATCCTGAAA
ATTGTCAAAGAATGGCGGCGTTCACAGGGGCTA.ATTGTCAAAGAA
TGGCGGCGTTCACAGGGGTTACCCTTGTTTAAAGACTCTAAATAAA
GTAGATAATAAAACTATATATGGAACATCATCGCATCTGG

a collection of 4 stitched unitigs: 
285 -mers for , basesk k = 31 N = 408

24 minimizers, for m = 8

offsets

Sparse Hashing — Example

Elias-Fano

MPHF 
(PTHash)

compact vector 
of -bit ints⌈log2 N⌉

Skew Hashing — Example

Example for .ℓ = 3

Elias-Fano Encoding

• Elias-Fano [Elias, 1974; Fano, 1971] is a succinct data structure representing a monotone
integer list in bits, where is such that .

• With just extra bits: random Access in and Predecessor queries in
.

• Found to be crucial for many practical data structures/applications 
(e.g., inverted indexes, compressed tries, MPHF).

• See Section 3.4 of 
Techniques for Inverted Index Compression 
P. and Venturini, ACM Computing Surveys, 2021.

• https://github.com/jermp/data_compression_course

X[0..n) n⌈log2(U/n)⌉ + 2n U U ≥ X[n − 1]

+o(n) O(1)
O(log(U/n))

https://github.com/jermp/data_compression_course

Skew Hashing

• For , let is the set of all -mers belonging to buckets of size ,
with such that: 
 
 . 
 

• We build a MPHF for each set . For a -mer , we know that its bucket
contains at most super- -mers, so we write the identifier of the super- -mer
containing in a (compact) vector of -bit ints.

• Upon , we will scan one super- -mer only.

i = ℓ, . . . , L Ki k s
s

fi Ki k g ∈ Ki
2i+1 k k

g Vi (i + 1)

Lookup k

Trade-offs by Varying Minimizer Length

NOTE 2: 
A good rule of thumb is 

 or 
.

m = ⌈log4(N)⌉ + 1
m = ⌈log4(N)⌉ + 2

NOTE 1: 
We used and
for all experiments.

ℓ = 6 L = 12

Space Breakdowns

Construction Time and Space

NOTE: SSHash construction works
entirely in internal memory. 
(This is going to change in future
releases.)

