Sparse and Skew Hashing of K-Mers*

*ISMB 2022, to appear.

Giulio Ermanno Pibiri

ISTI-CNR, giulio.ermanno.pibiri@isti.cnr.it

The K-Mer Dictionary Problem

- K-Mer. $\mathrm{A} k$-mer is a string of length k over the DNA alphabet $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$.
- We are given a large DNA string (e.g., a genome or a pan-genome) and let K be the set of all its n distinct k-mers.

Example: The human genome (GRCh38) has >2.5 B distinct k-mers for $k=31$.

- Problem. We want to build a dictionary for K so that the following operations are efficient:
$-i=\operatorname{Lookup}(g)$, where $0 \leq i<n$ if the k-mer $g \in K$ or $i=-1$ otherwise;
- return the k-mer $g=\operatorname{Access}(i)$ if $0 \leq i<n$.
(Other operations of interest are iteration and streaming membership queries. See the paper for details.)

K-Mer Applications

- Software tools based on k-mers are predominant in Bioinformatics.
- Many applications:
- genome assembly
- variant calling
- pan-genome analysis
- meta-genomics
- sequence comparison/alignment
- ...

de Bruijn Graphs

- Fact. Equivalence between a set of k-mers and a de Bruijn graph (dBG).
- There are efficient software tools to run the following pre-processing flow.

- BCALM [Chikhi et al., 2016]
- Cuttlefish [Khan and Patro, 2021]
- A collection of DNA strings with no duplicate k-mers.
- Efficient heuristic method to reduce the number of bases, e.g, UST [Rahman and Medvedev, 2020].

Super-k-Mers

- Property. Consecutive k-mers are likely to have the same minimizer [Roberts et al., 2004] the smallest sub-string of length $m \leq k$ according to a given order R.

Example for $k=13$ and $m=4$:
ACGGTAGAACCGATTCAAATTCGATCGATTAATTAGAGCGATAAC... ACGGTAGAACCGA
CGGTAGAACCGAT GGTAGAACCGATT GTAGAACCGATTC TAGAACCGATTCA AGAACCGATTCAA GAACCGATTCAAA AACCGATTCAAAT

- Super-k-mer. [Li et al., 2013] Given a string, a super-k-mer is a maximal sequence of consecutive k-mers having the same minimizer.

Super-k-Mers

- Observation 1. Since consecutive k-mers are likely to have the same minimizers, there are far fewer super- k-mers than k-mers - approx. $(k-m+2) / 2$ times less for random minimizers \rightarrow sparse indexing.
- Observation 2. A super- k-mer of length s is a space-efficient representation of the set of its constituent $s-k+1 k$-mers: $2 s /(s-k+1)$ vs. $2 k$ bits/ k-mer. If s is sufficiently large and/or we have long chains of super- k-mers, the cost becomes approx. 2 bits/k-mer.

This super- k-mer costs $2 \times 19=38$ bits for $7 k$-mers
($5.43 \mathrm{bits} / k$-mer vs. $2 \times 13=26 \mathrm{bits} / k$-mer).
Example for $k=13$ and $m=4$:
ACGGTAGAACCGATTCAAATTCGATCGATTAATT...
\uparrow
ACGGTAGAACCGATTCAAA $s=19$

AACCGATTCAAATTCGATCGATTA $s=24$

This chain is of length 31 and costs $2 \times 31=62$ bits for $19 k$-mers (3.26 bits/k-mer).

Sparse Hashing

- Q. How to index super- k-mers?
- Do not break the chains of super- k-mers to avoid wasting $2(k-1)$ bits per super- k-mer.
- Locate super- k-mers with an array of offsets into the strings, indexed by a minimal perfect hash function (MPHF) on the minimizers.
- Upon Lookup (g) : if r is the minimizer of g, locate and scan the "bucket" of r - the set of super- k-mers that have minimizer r.

AGATGATGAACCTGAAAACATCCTGAAAATCGTCAAAGAATGGCGGCGTTCACAGGGGCTACCCTTGTTTAAAGACTCTAAATAAAGTA.ATTTTCAGGATG TTTTCAGGTTCATCATCTCCCTTCTTTGCAGGATAGTAGATAAGATCGCTCATCAACGGATGTTGTGTAATTCTGGTAAGATGTTCTTCTAGATCATCCCAA TATTTGTCAAGCACTTCCCCTTTTAATTGAGCGTTATCCCCGG.AGATGATGAACCTGAAAACATCCTGAAAATTGTCAAAGAATGGCGGCGTTCACAGGGG CTA.ATTGTCAAAGAATGGCGGCGTTCACAGGGGTTACCCTTGTTTAAAGACTCTAAATAAAGTAGATAATAAAACTATATATGGAACATCATCGCATCTGG

Skew Hashing

- Problem. Some buckets can be very large.

For example on the human genome (GRCh38), for $k=31$ and $m=20$: largest bucket size can be as large as 3.6×10^{4}.

- Property. Minimizers have a (very) skew distribution for sufficiently long length.

Bucket size distribution (\%) for $k=31$ and the first $n=10^{9} k$-mers of the human genome, by varying minimizer length m.

size $/ m$	11	12	13	14	15	16	17	18	19	20	21
1	13.7	19.8	29.7	42.4	61.5	79.5	89.8	94.4	96.3	97.1	97.5
2	7.5	10.6	14.4	17.7	19.4	13.6	7.3	3.9	2.4	1.7	1.4
3	5.2	7.3	8.8	10.4	8.4	3.7	1.4	0.8	0.5	0.4	0.4
4	4.0	5.5	6.0	7.0	4.1	1.3	0.5	0.3	0.2	0.2	0.2
5	3.2	4.4	4.5	5.0	2.2	0.6	0.3	0.2	0.1	0.1	0.1

On the full human genome (GRCh38),
for $k=31$ and $m=20$:
2,505,445,761k-mers
421,845, 806 minimizers
$388,018,280(91.98 \%)$ only appear once!

Skew Hashing

- We fix an integer ℓ : by virtue of the skew distribution, the fraction of buckets having more than 2^{ℓ} super- k-mers is small.
- So, we can afford a MPHF over the set of k-mers that belong to such super- k-mers. The output of the MPHF for a k-mer g is the identifier of the super- k-mer where g is present. (This identifier can be written in few bits; see the paper for details.)
- Upon Lookup, we will scan one super- k-mer only.

Bucket size distribution (\%) for $k=31$ and the first $n=10^{9} k$-mers of the human genome, by varying minimizer length m.

size $/ m$	11	12	13	14	15	16	17	18	19	20	21
1	13.7	19.8	29.7	42.4	61.5	79.5	89.8	94.4	96.3	97.1	97.5
2	7.5	10.6	14.4	17.7	19.4	13.6	7.3	3.9	2.4	1.7	1.4
3	5.2	7.3	8.8	10.4	8.4	3.7	1.4	0.8	0.5	0.4	0.4
4	4.0	5.5	6.0	7.0	4.1	1.3	0.5	0.3	0.2	0.2	0.2
5	3.2	4.4	4.5	5.0	2.2	0.6	0.3	0.2	0.1	0.1	0.1

$$
\begin{aligned}
& \text { For } \ell=2 \text {, just } \\
& 100.0-(97.1+1.7+0.4+0.2) \%=0.6 \% \text { of } \\
& \text { buckets with more than } 2^{\ell=2}=4 \text { super- } k \text {-mers. }
\end{aligned}
$$

Benchmarking SSHash

- Code in C++17, compiled with flags: -03 -march=native.
- All experiments are single-threaded.
- We use $\ell=6$ for all experiments.
- We use $m=17,17,20,20$ for respectively Cod, Kestrel, Human, and Bacterial. (A good rule of thumb is $m=\left\lceil\log _{4}(N)\right\rceil+1$ or $m=\left\lceil\log _{4}(N)\right\rceil+2$.)

Some basic statistics for the datasets used in the experiments, for $k=31$, such as number of: k-mers (n), paths (p), and bases (N).

Dataset	n	p	N	$\left\lceil\log _{2}(N)\right\rceil$
Cod	$502,465,200$	$2,406,681$	$574,665,630$	30
Kestrel	$1,150,399,205$	682,344	$1,170,869,525$	31
Human	$2,505,445,761$	$13,014,641$	$2,895,884,991$	32
Bacterial	$5,350,807,438$	$26,449,008$	$6,144,277,678$	33

NOTE: We used BCALM (v2)
[Chikhi et al., 2016] to build the compacted dBG and then UST [Rahman and Medvedev, 2020] to compute the stitched unitigs.

Competitors

- dBG-FM [Chikhi et al., 2014]: FM-index [Ferragina and Manzini, 2000]
- Pufferfish [Almodaresi et al., 2018]: MPHF
- Blight [Marchet et al., 2021]: MPHF+minimizers

Overall Comparison - Space and Lookup

Dictionary space in total GB and average bits/k-mer (bpk).

Dictionary	Cod		Kestrel		Human		Bacterial	
	GB	bpk	GB	bpk	GB	bpk	GB	bpk
dBG-FM, $s=128$	0.22	3.48	0.44	3.07	-	-	-	-
dBG-FM, $s=64$	0.27	4.38	0.55	3.86	-	-	-	-
dBG-FM, $s=32$	0.39	6.16	0.78	5.43	-	-	-	-
Pufferfish, sparse	1.75	27.80	3.69	25.66	8.87	28.32	18.91	28.28
	1.49	23.70	3.37	23.40	7.50	23.96	16.09	24.06
Pufferfish, dense	2.69	42.76	5.97	41.54	14.11	45.04	30.70	45.89
	2.43	38.66	5.65	39.28	12.74	40.68	27.88	41.68
Blight, $b=4$	0.91	14.53	2.16	15.00	5.04	16.11	11.40	17.04
Blight, $b=2$	1.04	16.57	2.45	17.04	5.67	18.13	12.74	19.05
Blight, $b=0$	1.17	18.61	2.74	19.06	6.32	20.17	14.12	21.11
SSHash, regular	0.44	6.98	0.93	6.48	2.59	8.28	5.50	8.22
SSHash, canonical	0.50	7.92	1.00	7.30	2.94	9.39	6.17	9.22

Dictionary Lookup time in average ns / k-mer.

Dictionary	Cod		Kestrel		Human		Bacterial	
	Lkp ${ }^{+}$	Lkp^{-}						
dBG-FM, $s=128$	22,980	16,501	23,934	16,764	-	-	-	-
dBG-FM, $s=64$	15,013	10,919	15,929	11,462	-	-		-
dBG-FM, $s=32$	11,386	7929	11,703	8073	-	-	-	-
Pufferfish, sparse	1110	700	5456	769	13,656	862	27,748	983
Pufferfish, dense	624	439	635	485	720	519	816	582
Blight, $b=4$	2520	2751	2743	3104	2820	3329	3105	3913
Blight, $b=2$	1800	1643	1916	1820	2008	1975	2095	2146
Blight, $b=0$	1571	1317	1692	1472	1780	1610	1859	1751
SSHash, regular	1045	1158	1042	1265	1338	1530	1389	1780
SSHash, canonical	834	690	882	781	990	854	1051	995

- Compared to BWT-based indexes: one order of magnitude faster for "just" $2 x$ more space.
- Compared to other hashing schemes: 2-5x smaller with comparable of faster query time.

Overall Comparison - Streaming Queries

Query time for streaming membership queries for various dictionaries. The query time is reported as total time in minutes (tot), and average $\mathrm{ns} / k-\mathrm{mer}$ (avg). We also indicate the query file (SRR number) and the percentage of hits. Both high-hit ($>70 \%$ hits) and low-hit ($<1 \%$ hits) workloads are considered.

Dictionary	Cod		Kestrel		Human		Bacterial		Cod			Kestrel		Human		Bacterial	
	SRR12858649		SRR11449743		SRR5833294		SRR5901135		Dictionary	SRR11449743		SRR12858649		SRR5901135		SRR5833294	
	81.37\% hits		74.60\% hits		91.65\% hits		87.79\% hits			0.65	\% hits		\% hits	0.002	\% hits	0.086%	\% hits
	tot	avg	tot	avg	tot	avg	tot	avg		tot	avg	tot	avg	tot	avg	tot	avg
Pufferfish, sparse	0.6	214	14.1	609	17.0	651	9.1	691	Pufferfish, sparse	14.6	627	0.9	312	11.3	855	25.5	975
Pufferfish, dense	0.2	92	8.5	368	10.5	402	5.3	404	Pufferfish, dense	8.7	374	0.2	92	5.8	435	13.6	518
Blight, $b=4$	2.1	766	32.5	1400	27.3	1041	11.4	864	Blight, $b=4$	72.2	3112	6.6	2407	35.7	2704	253.2	9675
Blight, $b=2$	1.2	453	16.6	714	17.5	670	8.6	648	Blight, $b=2$	45.9	1978	3.0	1115	19.1	1445	117.7	4498
Blight, $b=0$	0.8	282	10.8	464	11.5	440	5.8	434	Blight, $b=0$	18.1	780	1.8	655	14.4	1088	32.2	1232
SSHash, regular	0.5	166	6.2	267	8.2	311	3.0	223	SSHash, regular	10.7	463	0.9	314	6.2	463	14.3	544
SSHash, canonical	0.3	111	5.1	219	6.7	253	2.4	184	SSHash, canonical	5.1	220	0.4	155	2.5	183	6.4	244

(a) high-hit workload
(b) low-hit workload

Conclusions

- SSHash is an efficient solution to the K-Mer Dictionary problem: good trade-off between space and time.
- Compared to BWT-based indexes: one order of magnitude faster for "just" 2X more space. Compared to other hashing schemes: $2-5 \mathrm{X}$ smaller with comparable of faster query time.
- Tool-box: spectrum-preserving string sets (SPSSs), minimizers, minimal perfect hashing (MPHF, https://github.com/jermp/pthash), Elias-Fano.
- Ingredients:
- Sparse indexing to obtain good space effectiveness;
- Skew hashing to guarantee fast lookup for "heavy" buckets.
- Code in $\mathrm{C}++17$ is available at: https://github.com/jermp/sshash.

Thank you for the attention!

Preliminary Observations

- The algorithmic literature about (compressed) string dictionaries is rich of solutions [MartínezPrieto et al., 2016] (e.g., Front-Coding, path-decomposed tries, double-array tries), but are relevant for "generic strings":
- variable-length,
- larger alphabets (e.g., ASCII),
- (usually) no particular properties of the strings to aid compression.
- Since k-mers are extracted consecutively from DNA, a k-mer following another one shares $k-1$ bases (very low entropy).
ACGGTAGAACCGATTCAAATTCGACGTAGC...
ACGGTAGAACCGA
$\begin{array}{ll}\text { CGGTAGAACCGAT } & \longleftarrow \quad \text { Example for } k=13 \text {. } \\ \text { GGTAGAACCGATT }\end{array}$
GTAGAACCGATTC
TAGAACCGATTCA

A World of K-Mer Indexes

- Huge research effort produced many types of indexes based on k-mers, with different:
- representations (hashing, BWT-based, exact vs. approximate),
- features (e.g., static vs. dynamic),
- space/time trade-offs,
- operations, ecc.
- Recent surveys on this topic:
- Data Structures based on k-mers for Querying Large Collections of Sequencing Data Sets Marchet et al., Genome Research, 2020.
- Data Structures to Represent a Set of k-long DNA Sequences Chikhi et al., ACM Computing Surveys, 2021.

de Bruijn Graphs

Fact. Equivalence between a set of k-mers and a de Bruijn graph (dBG).

(c) set of stitched (maximal) unitigs

TCATTGGTAACCG
TGCGAA

Minimizers

- Minimizer. [Roberts et al., 2004] Given a k-mer and an order relation R, the minimizer of length $m \leq k$ is the smallest m-mer of the k-mer according to R.
- Example. Given $g=$ ACGGTAGAACCGA $(k=13)$ and $m=4$:

```
ACGG
    CGGT
        GGTA
            GTAG
            TAGA
                AGAA
                GAAC
                    AACC
                    ACCG
                    CCGA
```

```
h(ACGG) = 9842978325
```

h(ACGG) = 9842978325
h(CGGT) = 817612312
h(CGGT) = 817612312
h(GGTA) = 8265731 \longleftarrow smallest hash code
h(GGTA) = 8265731 \longleftarrow smallest hash code
h(GTAG) = 478491248
h(GTAG) = 478491248
h(TAGA) = 17491411
h(TAGA) = 17491411
h(AGAA) = 17148914
h(AGAA) = 17148914
h(GAAC) = 91815379
h(GAAC) = 91815379
h(AACC) = 645793914
h(AACC) = 645793914
h(ACCG) = 918417644
h(ACCG) = 918417644
h(CCGA) = 814188124
h(CCGA) = 814188124
If R is the lexicographic order.
If R is defined by a random hash function h.

```

\section*{Minimal Perfect Hashing}

MPHF. Given a set \(S\) of \(n\) distinct keys, a function \(f\) that bijectively maps the keys of \(S\) into the range \(\{0, \ldots, n-1\}\) is called a minimal perfect hash function (MPHF) for \(S\).
- Lower bound of 1.44 bits/key - in practice: 2-4 bits/key and constant time evaluation.
- Many algorithms available:
- FCH [Fox et al., 1992]
- CHD [Belazzougui et al., 2009]
- EMPHF [Belazzougui et al., 2014]
- GOV [Genuzio et al., 2016]
- BBHash [Limasset et al., 2017]
- RecSplit [Esposito et al., 2019]
- PTHash [P. and Trani, 2021]


\section*{Sparse Hashing - Example}


\section*{Sparse Hashing - Example}


\section*{Skew Hashing - Example}

Example for \(\ell=3\).


\section*{Elias-Fano Encoding}
- Elias-Fano [Elias, 1974; Fano, 1971] is a succinct data structure representing a monotone integer list \(X[0 . . n)\) in \(n\left\lceil\log _{2}(U / n)\right\rceil+2 n\) bits, where \(U\) is such that \(U \geq X[n-1]\).
- With just \(+o(n)\) extra bits: random Access in \(O(1)\) and Predecessor queries in \(O(\log (U / n))\).
- Found to be crucial for many practical data structures/applications (e.g., inverted indexes, compressed tries, MPHF).
- See Section 3.4 of

Techniques for Inverted Index Compression
P. and Venturini, ACM Computing Surveys, 2021.
- https://github.com/jermp/data compression course

\section*{Skew Hashing}
- For \(i=\ell, \ldots, L\), let \(K_{i}\) is the set of all \(k\)-mers belonging to buckets of size \(s\), with \(s\) such that:
\[
\begin{cases}2^{i}<s \leq 2^{i+1} & \ell \leq i<L \\ 2^{L}<s \leq \max & i=L\end{cases}
\]
- We build a MPHF \(f_{i}\) for each set \(K_{i}\). For a \(k\)-mer \(g \in K_{i}\), we know that its bucket contains at most \(2^{i+1}\) super- \(k\)-mers, so we write the identifier of the super- \(k\)-mer containing \(g\) in a (compact) vector \(V_{i}\) of \((i+1)\)-bit ints.
- Upon Lookup, we will scan one super- \(k\)-mer only.

\section*{Trade-offs by Varying Minimizer Length}

Space in bits/k-mer (bpk) and Lookup time (indicated by \(\mathrm{Lkp}^{+}\)for positive queries; by \(\mathrm{Lkp}^{-}\)for negative) in average \(\mathrm{ns} / k\)-mer for regular and canonical SSHash dictionaries by varying minimizer length \(m\). For each dataset, we indicate promising configurations in bold font.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Dataset} & \(m\) & \(m\) & \(m\) & \(m\) \\
\hline & bpk Lkp \({ }^{+} \mathrm{Lkp}^{-}\) & bpk Lkp \({ }^{+} \mathrm{Lkp}^{-}\) & bpk \(\mathrm{Lkp}^{+} \mathrm{Lkp}^{-}\) & bpk \(\mathrm{Lkp}^{+} \mathrm{Lkp}^{-}\) \\
\hline Cod & 15 & 16 & 17 & 18 \\
\hline regular & 6.6012361267 & 6.8211001174 & 6.9810451158 & 7.2110151157 \\
\hline canonical & \(\begin{array}{llll}7.68 & 945 & 768\end{array}\) & \(\begin{array}{llll}7.92 & 834 & 690\end{array}\) & \(\begin{array}{lll}8.18 & 786 & 672\end{array}\) & \(8.47 \quad 755 \quad 658\) \\
\hline Kestrel & 16 & 17 & 18 & 19 \\
\hline regular canonical & \[
\begin{array}{rrr}
6.19 & 1137 & 1323 \\
\mathbf{7 . 3 0} & \mathbf{8 8 2} & \mathbf{7 8 1}
\end{array}
\] & \[
\begin{array}{rrr}
\mathbf{6 . 4 8} & \mathbf{1 0 4 2} & \mathbf{1 2 6 5} \\
7.68 & 790 & 722
\end{array}
\] & \[
\begin{array}{rrr}
6.79 & 1005 & 1245 \\
8.09 & 743 & 696
\end{array}
\] & \[
\begin{array}{rrr}
7.12 & 997 & 1240 \\
8.51 & 730 & 691
\end{array}
\] \\
\hline Human & 17 & 18 & 19 & 20 \\
\hline regular & 7.4415911668 & 7.6714591573 & 7.9514061547 & 8.2813381530 \\
\hline canonical & 8.761150936 & 9.041054881 & \(\begin{array}{lll}9.39 & 990 & 854\end{array}\) & \(\begin{array}{lll}9.80 & 958 & 838\end{array}\) \\
\hline Bacterial & 18 & 19 & 20 & 21 \\
\hline regular & 7.4215351867 & 7.8014251813 & 8.2213891780 & 8.7013681774 \\
\hline canonical & 8.7511291043 & 9.221051995 & \(9.751028 \quad 947\) & \(10.34 \quad 998 \quad 956\) \\
\hline
\end{tabular}

\section*{NOTE 1:}

We used \(l=6\) and \(L=12\) for all experiments.

\section*{NOTE 2:}

A good rule of thumb is
\(m=\left\lceil\log _{4}(N)\right\rceil+1\) or
\(m=\left\lceil\log _{4}(N)\right\rceil+2\).

\section*{Space Breakdowns}


Space breakdowns for the Human dataset, for both (a) regular and (b) canonical dictionaries. The numbers next to each bar indicate the bits/k-mer (bpk) spent by the respective components.

\section*{Construction Time and Space}

Dictionary construction times in minutes (using a single processing thread) and peak internal memory used during construction in GB. (Blight's performance was the same for all values of \(b\) in the experiment.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Dictionary} & \multicolumn{2}{|l|}{Cod} & \multicolumn{2}{|l|}{Kestrel} & \multicolumn{2}{|l|}{Human} & \multicolumn{2}{|l|}{Bacterial} \\
\hline & min & GB & min & & min & GB & min & GB \\
\hline dBG-FM, \(s=128\) & 28.5 & 0.5 & 100.0 & 0.7 & - & - & - & \\
\hline dBG-FM, \(s=64\) & 28.5 & 0.6 & 100.0 & & - & - & - & \\
\hline dBG-FM, \(s=32\) & 28.5 & 0.7 & 100.0 & 1.1 & - & - & - & - \\
\hline Pufferfish, sparse & 15.5 & 3.3 & 35.2 & 6.7 & 86.0 & 19.4 & 200.8 & 40.1 \\
\hline Pufferfish, dense & 13.0 & 2.8 & 29.2 & 5.9 & 70.7 & 14.0 & 173.2 & 30.4 \\
\hline Blight & 5.0 & 3.3 & 11.0 & 7.0 & 25.0 & 7.5 & 50.0 & 15.8 \\
\hline SSHash, regular & 1.5 & 2.6 & 3.8 & 5.7 & 12.5 & 15.4 & 29.6 & 33.4 \\
\hline SSHash, canonical & 2.0 & 2.8 & 4.4 & 5.8 & 16.2 & 17.3 & 36.0 & 36.6 \\
\hline
\end{tabular}

NOTE: SSHash construction works entirely in internal memory.
(This is going to change in future releases.)```

