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• K-Mer. A -mer is a string of length  over the DNA alphabet {A,C,G,T}.


• We are given a large DNA string (e.g., a genome or a pan-genome) and let  be the set of all 
its  distinct -mers. 

• Problem. We want to build a dictionary for  so that the following operations are efficient: 
- , where  if the -mer  or  otherwise; 
- return the -mer  if . 
 
(Other operations of interest are iteration and streaming membership queries. 
See the paper for details.)
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The K-Mer Dictionary Problem

Example: The human genome (GRCh38) has >2.5B distinct -mers for .k k = 31



• Software tools based on -mers are predominant in Bioinformatics.


• Many applications: 
- genome assembly 
- variant calling 
- pan-genome analysis 
- meta-genomics 
- sequence comparison/alignment 
- …
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K-Mer Applications



de Bruijn Graphs

• Fact. Equivalence between a set of -mers and a de Bruijn graph (dBG).


• There are efficient software tools to run the following pre-processing flow.
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dBG compacted 
dBG

stitched unitigs 
(a.k.a., simplitigs)

compaction path covering

• A collection of DNA strings with no 
duplicate -mers.


• Efficient heuristic method to reduce 
the number of bases, e.g, UST 
[Rahman and Medvedev, 2020].

k

input DNA file 
(.fasta/q)

- BCALM [Chikhi et al., 2016] 
- Cuttlefish [Khan and Patro, 2021]

build



Super-k-Mers

• Property. Consecutive -mers are likely to have the same minimizer [Roberts et al., 2004] — 
the smallest sub-string of length  according to a given order . 
 
Example for  and : 
ACGGTAGAACCGATTCAAATTCGATCGATTAATTAGAGCGATAAC… 
ACGGTAGAACCGA  
 CGGTAGAACCGAT 
  GGTAGAACCGATT 
   GTAGAACCGATTC 
    TAGAACCGATTCA 
     AGAACCGATTCAA 
      GAACCGATTCAAA 
       AACCGATTCAAAT 
        …


• Super-k-mer. [Li et al., 2013] Given a string, a super- -mer is a maximal sequence of 
consecutive -mers having the same minimizer.

k
m ≤ k R

k = 13 m = 4

k
k

super- -merk



• Observation 1. Since consecutive -mers are likely to have the same minimizers, there are far fewer 
super- -mers than -mers — approx.  times less for random minimizers — 

 sparse indexing.


• Observation 2. A super- -mer of length  is a space-efficient representation of the set of its 
constituent  -mers:  vs.  bits/ -mer. If  is sufficiently large and/or we have 
long chains of super- -mers, the cost becomes approx.  bits/ -mer.
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Super-k-Mers

This super- -mer costs 2x19=38 bits for 7 -mers 
(5.43 bits/ -mer vs. 2x13=26 bits/ -mer).
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ACGGTAGAACCGATTCAAA

AACCGATTCAAATTCGATCGATTA

=19s

=24s

This chain is of length 31 and costs 2x31=62 bits for 19 -mers (3.26 bits/ -mer).k k

Example for  and : 
 
ACGGTAGAACCGATTCAAATTCGATCGATTAATT…

k = 13 m = 4



Sparse Hashing

• Q. How to index super- -mers?


• Do not break the chains of super- -mers to avoid wasting  bits per super- -mer.


• Locate super- -mers with an array of offsets into the strings, indexed by a minimal perfect hash 
function (MPHF) on the minimizers.


• Upon : if  is the minimizer of , locate and scan the “bucket” of  — the set of super- -mers 
that have minimizer .
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AGATGATGAACCTGAAAACATCCTGAAAATCGTCAAAGAATGGCGGCGTTCACAGGGGCTACCCTTGTTTAAAGACTCTAAATAAAGTA.ATTTTCAGGATG
TTTTCAGGTTCATCATCTCCCTTCTTTGCAGGATAGTAGATAAGATCGCTCATCAACGGATGTTGTGTAATTCTGGTAAGATGTTCTTCTAGATCATCCCAA
TATTTGTCAAGCACTTCCCCTTTTAATTGAGCGTTATCCCCGG.AGATGATGAACCTGAAAACATCCTGAAAATTGTCAAAGAATGGCGGCGTTCACAGGGG
CTA.ATTGTCAAAGAATGGCGGCGTTCACAGGGGTTACCCTTGTTTAAAGACTCTAAATAAAGTAGATAATAAAACTATATATGGAACATCATCGCATCTGG

ATCCTGAAr =



Skew Hashing

• Problem. Some buckets can be very large. 
 

• Property. Minimizers have a (very) skew distribution for sufficiently long length.

For example on the human genome (GRCh38), for  and : largest bucket size 
can be as large as .

k = 31 m = 20
3.6 × 104

On the full human genome (GRCh38), 
for  and : 
  2,505,445,761 -mers 
    421,845,806 minimizers 
    388,018,280 (91.98%) only appear once!

k = 31 m = 20
k



Skew Hashing

• We fix an integer : by virtue of the skew distribution, the fraction of buckets having more than 
 super- -mers is small.


• So, we can afford a MPHF over the set of -mers that belong to such super- -mers. The output 
of the MPHF for a -mer  is the identifier of the super- -mer where  is present. 
(This identifier can be written in few bits; see the paper for details.)


• Upon , we will scan one super- -mer only.

ℓ
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Lookup k

For , just 
100.0 − (97.1 + 1.7 + 0.4 + 0.2)% = 0.6% of 
buckets with more than  super- -mers.

ℓ = 2

2ℓ=2 = 4 k



Benchmarking SSHash

• Code in C++17, compiled with flags: -O3 -march=native. 

• All experiments are single-threaded. 

• We use  for all experiments.


• We use  for respectively Cod, Kestrel, Human, and Bacterial. 
(A good rule of thumb is  or .)

ℓ = 6

m = 17,17,20,20
m = ⌈log4(N)⌉ + 1 m = ⌈log4(N)⌉ + 2

NOTE: We used BCALM (v2) 
[Chikhi et al., 2016] to build the 
compacted dBG and then UST 
[Rahman and Medvedev, 2020] 
to compute the stitched unitigs. 



Competitors

• dBG-FM [Chikhi et al., 2014]: FM-index [Ferragina and Manzini, 2000]


• Pufferfish [Almodaresi et al., 2018]: MPHF


• Blight [Marchet et al., 2021]: MPHF+minimizers



Overall Comparison — Space and Lookup

• Compared to BWT-based indexes: one order of magnitude faster for “just” 2x more space.

• Compared to other hashing schemes: 2-5x smaller with comparable of faster query time.



Overall Comparison — Streaming Queries



Conclusions

• SSHash is an efficient solution to the K-Mer Dictionary problem: 
good trade-off between space and time.


• Compared to BWT-based indexes: one order of magnitude faster for “just” 2X more space. 
Compared to other hashing schemes: 2-5X smaller with comparable of faster query time.


• Tool-box: spectrum-preserving string sets (SPSSs), minimizers, minimal perfect hashing 
(MPHF, https://github.com/jermp/pthash), Elias-Fano.


• Ingredients: 
- Sparse indexing to obtain good space effectiveness; 
- Skew hashing to guarantee fast lookup for “heavy” buckets.


• Code in C++17 is available at: https://github.com/jermp/sshash.

https://github.com/jermp/pthash
https://github.com/jermp/sshash


Thank you for the attention!



Preliminary Observations

• The algorithmic literature about (compressed) string dictionaries is rich of solutions [Martínez-
Prieto et al., 2016] (e.g., Front-Coding, path-decomposed tries, double-array tries), but are 
relevant for “generic strings”: 
    - variable-length, 
    - larger alphabets (e.g., ASCII), 
    - (usually) no particular properties of the strings to aid compression.


• Since -mers are extracted consecutively from DNA, a -mer following another one shares  
bases (very low entropy).

k k k − 1

 
ACGGTAGAACCGATTCAAATTCGACGTAGC… 
ACGGTAGAACCGA 
  CGGTAGAACCGAT 
  GGTAGAACCGATT 
   GTAGAACCGATTC 
    TAGAACCGATTCA 
     …

Example for .k = 13



• Huge research effort produced many types of indexes based on -mers, 
with different: 
- representations (hashing, BWT-based, exact vs. approximate), 
- features (e.g., static vs. dynamic), 
- space/time trade-offs, 
- operations, ecc.


• Recent surveys on this topic:

k

A World of K-Mer Indexes

• Data Structures based on k-mers for Querying Large Collections of Sequencing Data Sets 
Marchet et al., Genome Research, 2020.


• Data Structures to Represent a Set of k-long DNA Sequences 
Chikhi et al., ACM Computing Surveys, 2021.



de Bruijn Graphs

Fact. Equivalence between a set of -mers and a de Bruijn graph (dBG).k

TCA CAT ATT TTG

TGG GGT GTA TAA

TGC GCG CGA GAA

AAC ACC CCG

(a) an example de Bruijn 
graph for k = 3

TCATTG

TGGTAA

TGCGAA

AACCG

(b) compacted de Bruijn graph

TCATTGGTAACCG

TGCGAA

(c) set of stitched (maximal) unitigs



Minimizers

• Minimizer. [Roberts et al., 2004] Given a -mer and an order relation , the 
minimizer of length  is the smallest -mer of the -mer according to .


• Example. Given ACGGTAGAACCGA  and : 
 

k R
m ≤ k m k R

g = (k = 13) m = 4

If  is the lexicographic order.R

(ACGG) = 9842978325 
 (CGGT) = 817612312 
  (GGTA) = 8265731 
   (GTAG) = 478491248 
    (TAGA) = 17491411 
     (AGAA) = 17148914 
      (GAAC) = 91815379 
       (AACC) = 645793914 
        (ACCG) = 918417644 
         (CCGA) = 814188124

h
h

h
h

h
h

h
h

h
h

smallest hash code

If  is defined by a random hash function .R h

ACGG 
 CGGT 
  GGTA 
   GTAG 
    TAGA 
     AGAA 
      GAAC 
       AACC 
        ACCG 
         CCGA
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MPHF. Given a set  of  distinct keys, a function  that bijectively maps the keys of  
into the range  is called a minimal perfect hash function (MPHF) for . 

S n f S
{0,…, n − 1} S

• Lower bound of 1.44 bits/key — in practice: 
2-4 bits/key and constant time evaluation.


• Many algorithms available:
    - FCH [Fox et al., 1992] 
    - CHD [Belazzougui et al., 2009] 
    - EMPHF [Belazzougui et al., 2014]  
    - GOV [Genuzio et al., 2016] 
    - BBHash [Limasset et al., 2017] 
    - RecSplit [Esposito et al., 2019] 
    - PTHash [P. and Trani, 2021]

https://github.com/jermp/pthash

Minimal Perfect Hashing

https://github.com/jermp/pthash


TCGTCAAA: 29  
CATCCCAA: 172  
ATCGTCAA: 20  
GACTCTAA: 50 329  
AACCTGAA: 0 246  
ATCCTGAA: 9 255  
GAACATCA: 364  
GCAGGATA: 105  
AGGGGCTA: 30  
CTTGTTTA: 319  
GAGCGTTA: 208  
TTTAAAGA: 323  
CTTCTAGA: 169  
GGCTACCC: 33  
CGTTATCC: 211  
AGCACTTC: 189  
AAGATCGC: 119  
AACTATAT: 353  
CCTTCTTT: 97  
TTCAGGTT: 89  
ACGGATGT: 143  
ACAGGGGT: 310  
TGTCAAAG: 266 307  
TAATTCTG: 157 

Sparse Hashing — Example

AGATGATGAACCTGAAAACATCCTGAAAATCGTCAAAGAATGGCGG
CGTTCACAGGGGCTACCCTTGTTTAAAGACTCTAAATAAAGTA.AT
TTTCAGGATGTTTTCAGGTTCATCATCTCCCTTCTTTGCAGGATAG
TAGATAAGATCGCTCATCAACGGATGTTGTGTAATTCTGGTAAGAT
GTTCTTCTAGATCATCCCAATATTTGTCAAGCACTTCCCCTTTTAA
TTGAGCGTTATCCCCGG.AGATGATGAACCTGAAAACATCCTGAAA
ATTGTCAAAGAATGGCGGCGTTCACAGGGGCTA.ATTGTCAAAGAA
TGGCGGCGTTCACAGGGGTTACCCTTGTTTAAAGACTCTAAATAAA
GTAGATAATAAAACTATATATGGAACATCATCGCATCTGG

a collection of 4 stitched unitigs: 
285 -mers for ,  basesk k = 31 N = 408

24 minimizers, for m = 8

offsets



Sparse Hashing — Example

Elias-Fano

MPHF 
(PTHash)

compact vector 
of -bit ints⌈log2 N⌉



Skew Hashing — Example

Example for .ℓ = 3



Elias-Fano Encoding

• Elias-Fano [Elias, 1974; Fano, 1971] is a succinct data structure representing a monotone 
integer list  in  bits, where  is such that .


• With just  extra bits: random Access in  and Predecessor queries in 
.


• Found to be crucial for many practical data structures/applications 
(e.g., inverted indexes, compressed tries, MPHF).


• See Section 3.4 of 
Techniques for Inverted Index Compression 
P. and Venturini, ACM Computing Surveys, 2021.


• https://github.com/jermp/data_compression_course

X[0..n) n⌈log2(U/n)⌉ + 2n U U ≥ X[n − 1]

+o(n) O(1)
O(log(U/n))

https://github.com/jermp/data_compression_course


Skew Hashing

• For , let  is the set of all -mers belonging to buckets of size , 
with  such that: 
 
                                                                                     . 
 

• We build a MPHF  for each set . For a -mer , we know that its bucket 
contains at most  super- -mers, so we write the identifier of the super- -mer 
containing  in a (compact) vector  of -bit ints.


• Upon , we will scan one super- -mer only.

i = ℓ, . . . , L Ki k s
s

fi Ki k g ∈ Ki
2i+1 k k

g Vi (i + 1)

Lookup k



Trade-offs by Varying Minimizer Length

NOTE 2: 
A good rule of thumb is 

 or 
.

m = ⌈log4(N)⌉ + 1
m = ⌈log4(N)⌉ + 2

NOTE 1: 
We used  and  
for all experiments. 

ℓ = 6 L = 12



Space Breakdowns



Construction Time and Space

NOTE: SSHash construction works 
entirely in internal memory. 
(This is going to change in future 
releases.)


