On Weighted k-mer Dictionaries

Paper: https://doi.org/10.4230/LIPlcs.WABI.2022.9
Code: https://github.com/jermp/sshash

Giulio Ermanno Pibiri
Ca’ Foscari University of Venice and ISTI-CNR

=]z =]

WABI 2022 (The 22-nd International Workshop on Algorithms in Bioinformatics)
Potsdam, Germany, 5-9 September 2022

https://doi.org/10.4230/LIPIcs.WABI.2022.9
https://github.com/jermp/sshash

The Weighted k-mer Dictionary Problem

« We are given a large string S over the alphabet {A,C,G,T} (e.g., a genome or a pan-
genome). Let K = {{(g,w(g))|g € S}, where g is a k-mer and w(g) is the number of
occurrences — the weight — of g.

Example: The human genome (GRCh38) has >2.5B distinct k-mers for k = 31.

* Problem. We want to build a dictionary for K so that the following operations are efficient:
- Lookup(g) =i, where]l <i<nifg € Sori = — 1 otherwise;
- Access(i) = gif 1 <i < n;
- Count(g) = w(g)if g € S.

(Other operations of interest are iteration, streaming queries, and navigational queries.)

A World of k-mer Indexes

» Huge research effort produced many types of indexes based on k-mers, with different:

- representations (hashing, BWT-based, exact vs. approximate),
- features (e.g., static vs. dynamic),

- space/time trade-offs,

- operations, etc.

* Recent surveys on this topic:

- Data Structures based on k-mers for Querying Large Collections of Sequencing Data Sets
Marchet et al., Genome Research, 2020.

- Data Structures to Represent a Set of k-long DNA Sequences
Chikhi et al., ACM Computing Surveys, 2021.

Sparse and Skew Hashing (SSHash)
Bioinformatics/ISMB 2022

* QOur focus is on hash-based data structures, for their fast query evaluation.

* |n a prior work, we presented SSHash — a fast and compact k-mer dictionary based on
minimal perfect hashing.

* Algorithmic tool-box: spectrum-preserving string sets, minimizers, minimal perfect hashing,
compressed encodings (e.g., Elias-Fano).

 Code in C++17 is available at: https://github.com/jermp/sshash.

» However, we did not consider the weights of the k-mers.

https://github.com/jermp/sshash

Weighted SSHash (w-SSHash)

* This work: enrich SSHash with the weights.

e (Questions:

- Q1. What is the surplus in index space for the weights?

- Q2. How well can the weights be compressed?

- Q3. Do they have an impact on query time (Lookup vs. Count)?

SSHash is Order-Preserving

« Recap. For the n distinct k-mers of S, SSHash implements a function (Lookup)

h:XK— {—1,1,...,n},where]l <h(g) <nifg€Sandh(g)=—1ifg&s. 1 | |
A C C G T G
+ So the hash code /(g) = i can be directly used to associate some satellite
information to the k-mer g. ,. I = | =
For example, its weight: W[1..n] where W[i = h(g)] = w(g). CTT .. CAT
« Order-Preserving Property. If g, if the successor of g, then: N 3 33 .. 2 2
h(g,) = h(gy) + 1. / " EHEI S R
 This is a direct consequence of indexing a spectrum-preserving string set 3 3 1 .. 11
(SPSS): S is reduced to a set of m > 1 strings & = {S,...,S }. 4: A

 Any order on & uniquely determines an order i = 1,..., n for the k-mers g,

thus: h(g,) = i. Example & with m = 4.

The Weights

» Let W[1..n] be the sequence of k-mer weights, where W|i| = w(g;) and i = h(g;).

« Empirical Property. Consecutive k-mers in & (the SPSS) are likely to have the same
weight.

 Order-Preserving Property. If g, if the successor of g, then: i(g,) = h(g;) + 1.

* These two properties — W has runs of equal weights.
We exploit the order of the k-mers to preserve the natural order of the weights.

> 5555555555555
GGTAATGCAGCCAGGGATGCAACGACCGCAACAGAAAAAGCCCG

> 22222222

4 444
CAGCTCATTACAGAAAAAATACCGCTCACCGCCCTGCACCGTCAGGTCAATTTCCCTGAGCACCACCCGLGGTGACTGCTCTGATTTAACC

>4 4 4 4 444444444444444444444444 14
CAGCTATGCAGGAGACAAGAATCGCCAGCTTACCCGTTACAGCGATACCCGCTGGCATG \

> We have 6 runs in this example (k=31):
TCAGGTGTACGGTGTGCGTAAAGTCTGGCGTCAGTTG 5 (1 4X), 4 (1 8X), 2 (8X), 1 (31)(), 4 (33)(), 13 (7X).

Run-Length Encoding (RLE)

« Represent W with 7 runs as a sequence of run-length pairs
RLW = <W1, fl><W2, fz) .« . <WI” fl”>

» Take the prefix-sums of the sequence 0,£,¢,,...,¢,_; intoan array L[1..r] and encode it
with Elias-Fano.

 We spend, at most

r e (C‘ + [log,(n/r)| + 2 + 0(1)) bits for RLW (on top of SSHash).

/N ~—

Number of runs. Number of bits dedicated to each w.. Elias-Fano on the lengths.

* To retrieve w(g) from i = h(g): identify the run containing i. All that we need is a predecessor
query over L which can be done in O(log(n/r)) with Elias-Fano.

Reducing the Number of Runs

« \We spend space proportional to the number of runs in the weights W.

S0 we study the problem of reducing the number of runs to optimise the space.

Q. What are our degrees of freedom to better compress W ?

- The order of the strings S, ..., 3,, in the SPSS &, and

- The orientation of the strings.

« Note. Altering & by changing the order and orientation of the strings does not affect the
correctness nor the order-preserving property of SSHash.

Reducing the Number of Runs

« Goal. Compute a signed permutation 7| 1..m] where z[i] = j indicates that:
- if j < O: reverse($,) has to appear in position —;
- else: §; has to appear in position .

 Note. The result 7 only depends on the end-point weights of a string and not on the other
weights, nor on the nucleotide sequences.

1552 2 2 1552 o> 5 5 2 NS

: : +1:

ACC .. GTGT ACC .. GTGT ACC ~»~ GTGT Reversed

Tz . (2|2 3 33 ... 2 2 2°2 2 ... 3.3 /

2: 3: -3 :

C TT .. CATT CGA .. TTTSGC GAA .« CTGCG r=[+1,+4, -2 + 3]
1 2 3 4

3 3 3 2 2 3 3 1 1 1 3 3 1 1 1

3 4. +4

C G A T T T © G AT C CGA G AT C CGA

3 3 1 1 1 1 1 2 2 2 1 1 2 2 2

4 2: +2

G A T C C G A CTT CATT C T T CATT

End-Point Weight Graphs and Path Covers

* Since the result 7 only depends on the end-point weights, it is convenient to

consider the end-point weight graph ewG(&’) for &'.

A (disjoint-node) path cover C for ewG(&) determines a signed permutation .

25[2)) 2

(a)

C={+4->+2),(+3),(+1)}

D 5

r=[+1,+4,+2, + 3]

(b)

C={(+1 = -3 > +4 > +2)}
ﬂ=[+19+49_29+3]

C={(+2—->-3->+4),(+1)}
r=[+4,+1,—2, + 3]

Lower Bound to the Number of Runs

Q. Given the strings S, ..., S,,, with §; having r; runs in the weights, what is the minimum

number of runs we can achieve with our strategy?
A. We can compute a lower bound on the number of runs.

m
. LetR = Z 1 r;. There are at least R — m runs, regardless of the order of the sequences.
1=

* In general, the number of runs willbe R — m + | C|.

« Every path in C must begin and end with weights that cannot be “glued” with any other
path’s weights in C, so a new run beings with the first node of every path.

* Therefore, minimizing the number of runs in & is equivalent to finding a minimum-cardinality
path cover C for ewG(&).

Lower Bound to the Number of Runs
Part 2

« Wehave |C| > [n,/2|, where n, is the number of end-point weights that must necessarily
appear as end-points of the paths in C.

» We derive an expression for n, that can be computed by just looking at the number of
occurrences of the end-point weights.

(See the paper for proofs and details.)

Examples of Path Covers

2

>3

(b)

C contains 3 paths (optimal). C contains 4 paths.
Odd:
Ja)=11 " Even: . Odd| + 2| Equal
f2) =3 f4)=2]E(T;a)“'_ 6 — Our lower bound computes |C| > | | | Equal
f3y=5 f(h=4 B i1
f@8) =1 = = 3 paths.

2

Greedy Computation of a Path Cover

1 cover(ewG(S)):
2 incidence = &
3 | unvisited =& * If we use hash tables to implement incidence and
4 | for each node u € ewG(S): unvisited, then insert/erase/take are all supported in
5 unvisited.insert(u)
6 incidence|u.left].insert(u) O(1) on average.
7 | incidence|u.right].insert(u)
s | while unvisited £ @ * So the overall complexity (in both time and space) is
o u = unvisited.take() linear in the number of nodes in ewG(&).
10 p=9
11 while true :
12 extend p with ©
13 unvisited.erase(u)
14 incidence|u.left].erase(u) -
15 incidence|u.right].erase(u) @) > > D ©)
16 if incidence|p.back.right] # & : ot u b back
17 L u = incidence|p.back.right].take() P ©) > > Z. © P
18 else if incidence|p.front.left| # @ :
N\
19 L u = incidence(p.front.left].take() > / P Z.
20 else : break Jront back
21 for each u € p :
22 L print (u.sign,u.id)

Experimental Setup and Datasets

* Processor: Intel(R) Core(TM) i19-9940X CPU @ 3.30GHz
 Compiler and OS: gcc version 11.2.0, Ubuntu 11.2.0-7ubuntu?2
 Codein C++17, compiled with flags: =03 —march=native

Some basic statistics for the datasets used in the experiments, for k¥ = 31, such as:
number of distinct k-mers (n), number of distinct weights (|D|), largest weight (maz), expected
weight value (F), and empirical entropy of the weights (Ho(W)).

Dataset n |D| [log,|D|]] mazx [log, maz] E Hy(W)
E-Coli 5,235,781 22 5 27 5 1.05 0.206
S-Enterica-100 13,074,614 587 10 3.483 12 37.47 4.420
Human-Chr-13 90,911,778 806 10 6,354 13 1.08 0.160

C-Elegans 94,006,897 398 9 3,478 12 1.07 0.223

Weight Compression

Space for the weights in bits/k-mer, before and after the run-reduction optimization.
In parentheses, we report the compression ratio compared to the empirical entropy.

Dataset Ho(W) before after

E-Coli 0.206 0.017 (12.11x) 0.014 (15.10%)
S-Enterica-100 4420 0.592 (7.47x) 0.401 (11.02x)
Human-Chr-13 0.160 0.136 (1.18x) 0.107 (1.50x)
C-Elegans 0.223 0.069 (3.23x) 0.055 (4.05%x)

Number of strings (771), number of runs (r) in comparison to the lower bound (r;,), and the run-time of the
path cover algorithm (Alg. 4).

Dataset m Tlo T Alg. 4 (ms) Alg. 4 (ns/node)
E-Coli 2,102 3,723 3,723 (4+0.0000%) 0.6 285
S-Enterica-100 150,604 277,649 277,658 (40.0032%) 53.0 352
Human-Chr-13 266,113 462,175 462,197 (40.0048%) 94.6 355
C-Elegans 140,452 247,661 247,669 (40.0032%) 47.1 335

Competitors

 dBG-FM [Chikhi et al., 2014]: FM-index [Ferragina and Manzini, 2000]
« cw-dBG [ltaliano et al., 2021]: weighted BOSS [Bowe et al., 2012]

« BCFS and AMB [Shibuya et al., 2021]: compressed static functions (CSFs) —
efficient maps from k-mers to weights (the k-mers are not represented)

Overall Comparison

Dictionary space in average bits/k-mer and count time in average usec/k-mer. For
reference, we report in gray color the space and time of SSHash without the weight information.

E-Coli S-Enterica-100 Human-Chr-13 C-Elegans

Dictionary

space query-time space query-time space query-time space query-time

113.78 16.47 3.23 17.40 3.18 18.05
142.25 11.13 4.07 11.33 4.01 10.89
198.71 8.57 2.73 8.20 0.67 7.90

dBG-FM, s = 128 3.20 14.73
dBG-FM, s = 64 4.02 7.91
dBG-FM, s =32 5.65 4.62

cw-dBG, s = 128 2.79 109.13 5.09 120.72 2.80 100.88 2.77 127.86
cw-dBG, s = 64 2.86 70.93 D.74 89.73 2.86 73.91 2.84 84.19
cw-dBG, s = 32 2.99 52.29 6.03 66.25 2.99 09.85 2.97 62.54
SSHash+BCSF 0.07 0.82 11.12 0.89 6.15 1.25 6.00 1.28
SSHash+AMB 4.90 1.34 9.27 1.65 6.08 1.95 0.88 1.97
w-SoHash 4.80 0.37 6.97 0.48 6.04 0.84 2.7 0.85

SSHash 4.79 0.34 6.15 0.41 5.93 0.76 5.69 0.77

Additional Results for w-SSHash

Number of k-mers, number of strings (72), number of runs (r) in comparison to the lower bound (7;,), and the run-

time of the path cover algorithm in total seconds (Alg. 4), index space in bits/k-mers (bpk) and total GB, and query
time in usec/k-mer (gtm).

Alg. 4 Alg. 4

Dataset 0
A " " & ' (sec) (ns/node)

Cod 502,465,200 2,406,681 4,183,202 4,183,230 (40.00067%) 1.2 500
Kestrel 1,150,399,205 682,344 1,140,743 1,140,747 (+0.00035%) 0.3 440
Human 2,505,445,761 13,014,641 22,680,047 22,680,099 (+40.00023%) 7.5 580
Bacterial 5,350,807,438 26,448,286 56,662,230 56,662,304 (40.00013%) 17.2 650

Dataset Ho(W) bpk GB qtm

Cod 0.441 6.9840.19 (2.35x) 0.45 1.3

Kestrel 0.089 6.49+0.02 (3.80x) 0.94 1.1

Human 0.453 8.28+0.22 (2.06x) 2.66 1.6

Bacterial 1.890 8.2240.24 (7.81x) 5.66 1.9

Conclusions

 SSHash is an efficient solution to the weighted k-mer dictionary problem: good trade-off
between space and time.

* Algorithmic tool-box:
- SPSS, minimizers, MPHF (not covered in this talk, see talk@ISMB-2022)
- Elias-Fano, RLE.

* Order of the k-mers induces runs in the weights: suitable for RLE.

 Permuting and accordingly orienting the strings in the SPSS reduces the number of runs in
the weights essentially to the minimum according to the lower bound.

« Compared to BWT-based indexes: one order of magnitude faster for “just” 2X more space.
Compared to other hashing schemes: 2-5X smaller with comparable of faster query time.

* Weights add very small extra space and do not impact query time.

https://jermp.github.io/assets/pdf/slides/ISMB2022.pdf

Thank you for the attention!

