On Weighted k-mer Dictionaries

Paper: https://doi.org/10.4230/LIPlcs.WABI.2022.9
Code: https://github.com/jermp/sshash

WABI 2022 (The 22-nd International Workshop on Algorithms in Bioinformatics)
Potsdam, Germany, 5-9 September 2022

The Weighted k-mer Dictionary Problem

- We are given a large string S over the alphabet $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ (e.g., a genome or a pangenome). Let $K=\{\langle g, w(g)\rangle \mid g \in S\}$, where g is a k-mer and $w(g)$ is the number of occurrences - the weight - of g.
Example: The human genome (GRCh38) has $>2.5 \mathrm{~B}$ distinct k-mers for $k=31$.
- Problem. We want to build a dictionary for K so that the following operations are efficient: - Lookup $(g)=i$, where $1 \leq i \leq n$ if $g \in S$ or $i=-1$ otherwise;
- Access $(i)=g$ if $1 \leq i \leq n$;
- Count $(g)=w(g)$ if $g \in S$.
(Other operations of interest are iteration, streaming queries, and navigational queries.)

A World of \boldsymbol{k}-mer Indexes

- Huge research effort produced many types of indexes based on k-mers, with different:
- representations (hashing, BWT-based, exact vs. approximate),
- features (e.g., static vs. dynamic),
- space/time trade-offs,
- operations, etc.
- Recent surveys on this topic:
- Data Structures based on k-mers for Querying Large Collections of Sequencing Data Sets Marchet et al., Genome Research, 2020.
- Data Structures to Represent a Set of k-long DNA Sequences Chikhi et al., ACM Computing Surveys, 2021.

Sparse and Skew Hashing (SSHash)

Bioinformatics/ISMB 2022

- Our focus is on hash-based data structures, for their fast query evaluation.
- In a prior work, we presented SSHash - a fast and compact k-mer dictionary based on minimal perfect hashing.
- Algorithmic tool-box: spectrum-preserving string sets, minimizers, minimal perfect hashing, compressed encodings (e.g., Elias-Fano).
- Code in C++17 is available at: https://github.com/jermp/sshash.
- However, we did not consider the weights of the k-mers.

Weighted SSHash (w-SSHash)

- This work: enrich SSHash with the weights.
- Questions:
- Q1. What is the surplus in index space for the weights?
- Q2. How well can the weights be compressed?
- Q3. Do they have an impact on query time (Lookup vs. Count)?

SSHash is Order-Preserving

- Recap. For the n distinct k-mers of S, SSHash implements a function (Lookup) $h: \Sigma^{k} \rightarrow\{-1,1, \ldots, n\}$, where $1 \leq h(g) \leq n$ if $g \in S$ and $h(g)=-1$ if $g \notin S$.
- So the hash code $h(g)=i$ can be directly used to associate some satellite information to the k-mer g.
For example, its weight: $W[1 . . n]$ where $W[i=h(g)]=w(g)$.
- Order-Preserving Property. If g_{2} if the successor of g_{1}, then: $h\left(g_{2}\right)=h\left(g_{1}\right)+1$.
- This is a direct consequence of indexing a spectrum-preserving string set (SPSS): S is reduced to a set of $m \geq 1$ strings $\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}$.
- Any order on $\mathcal{\delta}$ uniquely determines an order $i=1, \ldots, n$ for the k-mers g_{i}, thus: $h\left(g_{i}\right)=i$.

5	5	2	\ldots	2	2		
A	C	C	\ldots	G	T	G	T

2:

1	1	2	\ldots	2	2		
C T T		\ldots	C A A T				

3:

3	3	3	\ldots	2	2		
C	G	A	\ldots	T	T T	C	

3	3	1	\ldots	1	1		
G	A	T	\ldots	C	C	G	A

Example \mathcal{S} with $m=4$.

The Weights

- Let $W[1 . . n]$ be the sequence of k-mer weights, where $W[i]=w\left(g_{i}\right)$ and $i=h\left(g_{i}\right)$.
- Empirical Property. Consecutive k-mers in $\mathcal{\delta}$ (the SPSS) are likely to have the same weight.
- Order-Preserving Property. If g_{2} if the successor of g_{1}, then: $h\left(g_{2}\right)=h\left(g_{1}\right)+1$.
- These two properties $\rightarrow W$ has runs of equal weights.

We exploit the order of the k-mers to preserve the natural order of the weights.

```
>5 5 5 5 5 5 5 5 5 5 5 5 5 5
GGTAATGCAGCCAGGGATGCAACGACCGCAACAGAAAAAGCCCG
>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11114444
CAGCTCATTACAGAAAAAATACCGCTCACCGCCCTGCACCGTCAGGTCAATTTCCCTGAGCACCACCCGCGGTGACTGCTCTGATTTAACC
```

>44444444444444444444444444444
CAGCTATGCAGGAGACAAGAATCGCCAGCTTACCCGTTACAGCGATACCCGCTGGCATG

Run-Length Encoding (RLE)

- Represent W with r runs as a sequence of run-length pairs $R L W=\left\langle w_{1}, \ell_{1}\right\rangle\left\langle w_{2}, \ell_{2}\right\rangle \ldots\left\langle w_{r}, \ell_{r}\right\rangle$.
- Take the prefix-sums of the sequence $0, \ell_{1}, \ell_{2}, \ldots, \ell_{r-1}$ into an array $L[1 . . r]$ and encode it with Elias-Fano.
- We spend, at most

- To retrieve $w(g)$ from $i=h(g)$: identify the run containing i. All that we need is a predecessor query over L which can be done in $O(\log (n / r))$ with Elias-Fano.

Reducing the Number of Runs

- We spend space proportional to the number of runs in the weights W.
- So we study the problem of reducing the number of runs to optimise the space.
Q. What are our degrees of freedom to better compress W ?
- The order of the strings S_{1}, \ldots, S_{m} in the $\operatorname{SPSS} \mathcal{\delta}$, and
- The orientation of the strings.
- Note. Altering \mathcal{S} by changing the order and orientation of the strings does not affect the correctness nor the order-preserving property of SSHash.

Reducing the Number of Runs

- Goal. Compute a signed permutation $\pi[1 . . m]$ where $\pi[i]=j$ indicates that:
- if $j<0$: reverse $\left(S_{i}\right)$ has to appear in position $-j$;
- else: S_{i} has to appear in position j.
- Note. The result π only depends on the end-point weights of a string and not on the other weights, nor on the nucleotide sequences.
$1:$

5	5	2	\ldots	2	2		
A	C	C	\ldots	G	T	G	T

$2:$

1	1	2	\cdots	2	2		
C	T	T	\cdots	C	A	T	T

3:

```
3 \(\begin{array}{llllllll}3 & 3 & 3 & \cdots & 2 & 2 & & \\ C & G & A & \cdots & T & T & T & C\end{array}\)
```

4:

3	3	1	\ldots	1	1		
G	A	T	\ldots	C	C	G	A

1:

$3:$

3	3	3	\cdots	2	2		
	C	G	A	\cdots	T	T	T

4:

2 :

```
\[
\begin{array}{llllllll}
1 & 1 & 2 & \cdots & 2 & 2 & & \\
& \mathrm{C} & \mathrm{~T} & \mathrm{~T} & \ldots & \mathrm{C} & \mathrm{~A} & \mathrm{~T}
\end{array} \mathrm{~T}
\]
```


Reversed

$$
\pi=\left[\begin{array}{ccc}
+1,+4, & -2, & +3 \\
1 & 2 & 3
\end{array}\right]
$$

End-Point Weight Graphs and Path Covers

- Since the result π only depends on the end-point weights, it is convenient to consider the end-point weight graph $e w G(\mathcal{S})$ for \mathcal{S}.
- A (disjoint-node) path cover C for $e w G(\mathcal{S})$ determines a signed permutation π.

(a)

$$
\begin{aligned}
& C=\{(+4 \rightarrow+2),(+3),(+1)\} \\
& \pi=[+1,+4,+2,+3]
\end{aligned}
$$

(b)

$$
\begin{aligned}
& C=\{(+1 \rightarrow-3 \rightarrow+4 \rightarrow+2)\} \\
& \pi=[+1,+4,-2,+3]
\end{aligned}
$$

(c)

$$
\begin{aligned}
& C=\{(+2 \rightarrow-3 \rightarrow+4),(+1)\} \\
& \pi=[+4,+1,-2,+3]
\end{aligned}
$$

Lower Bound to the Number of Runs

Part 1

- Q. Given the strings S_{1}, \ldots, S_{m}, with S_{i} having r_{i} runs in the weights, what is the minimum number of runs we can achieve with our strategy?
A. We can compute a lower bound on the number of runs.
- Let $R=\sum_{i=1}^{m} r_{i}$. There are at least $R-m$ runs, regardless of the order of the sequences.
- In general, the number of runs will be $R-m+|C|$.
- Every path in C must begin and end with weights that cannot be "glued" with any other path's weights in C, so a new run beings with the first node of every path.
- Therefore, minimizing the number of runs in \mathcal{S} is equivalent to finding a minimum-cardinality path cover C for $e w G(\mathcal{S})$.

Lower Bound to the Number of Runs

Part 2

- We have $|C| \geq\left\lceil n_{e} / 2\right\rceil$, where n_{e} is the number of end-point weights that must necessarily appear as end-points of the paths in C.
- We derive an expression for n_{e} that can be computed by just looking at the number of occurrences of the end-point weights.
(See the paper for proofs and details.)

Examples of Path Covers

Odd:

$$
\begin{array}{lll}
f(1)=11 & \text { Even: } & \text { Equal: } \\
f(2)=3 & f(4)=2 & f(13)=6 \\
f(3)=5 & f(7)=4 & \rightarrow
\end{array} \quad \text { Our lower bound computes }|C| \geq \frac{\mid \text { Odd }|+2| \text { Equal } \mid}{2} \begin{aligned}
& \\
& f(8)=1
\end{aligned}
$$

Greedy Computation of a Path Cover

$\operatorname{cover}(e w G(\mathcal{S}))$:
incidence $=\varnothing$
unvisited $=\varnothing$
for each node $u \in \operatorname{ew} G(\mathcal{S})$:
unvisited.insert(u)
incidence[u.left].insert(u)
incidence $[u . r i g h t] . \operatorname{insert}(u)$
while unvisited $\neq \varnothing$:
$u=$ unvisited.take()
$p=\varnothing$
while true :
extend p with u
unvisited.erase (u)
incidence[u.left].erase (u)
incidence $[u . r i g h t] . \operatorname{erase}(u)$
if incidence $[p . b a c k . r i g h t] \neq \varnothing$:
$u=$ incidence $[p . b a c k . r i g h t]$. take()
else if incidence $[p$. front.left $] \neq \varnothing$:
$u=$ incidence[p.front.left].take()
else : break
for each $u \in p$:
print (u.sign, u.id)

- If we use hash tables to implement incidence and unvisited, then insert/erase/take are all supported in $O(1)$ on average.
- So the overall complexity (in both time and space) is linear in the number of nodes in $e w G(\mathcal{S})$.

Experimental Setup and Datasets

- Processor: Intel(R) Core(TM) i9-9940X CPU @ 3.30GHz
- Compiler and OS: gcc version 11.2.0, Ubuntu 11.2.0-7ubuntu2
- Code in C++17, compiled with flags: -03 -march=native

Some basic statistics for the datasets used in the experiments, for $k=31$, such as: number of distinct k-mers (n), number of distinct weights $(|\mathcal{D}|$), largest weight (max), expected weight value (E), and empirical entropy of the weights $\left(H_{0}(W)\right)$.

Dataset	n	$\|\mathcal{D}\|$	$\left\lceil\log _{2}\|\mathcal{D}\|\right\rceil$	\max	$\left\lceil\log _{2} \max \right\rceil$	E	$H_{0}(W)$
E-Coli	$5,235,781$	22	5	27	5	1.05	0.206
S-Enterica-100	$13,074,614$	587	10	3,483	12	37.47	4.420
Human-Chr-13	$90,911,778$	806	10	6,354	13	1.08	0.160
C-Elegans	$94,006,897$	398	9	3,478	12	1.07	0.223

Weight Compression

Space for the weights in bits/k-mer, before and after the run-reduction optimization. In parentheses, we report the compression ratio compared to the empirical entropy.

Dataset	$H_{0}(W)$	before	after		
E-Coli	0.206	0.017	$(12.11 \times)$	0.014	$(15.10 \times)$
S-Enterica-100	4.420	0.592	$(7.47 \times)$	0.401	$(11.02 \times)$
Human-Chr-13	0.160	0.136	$(1.18 \times)$	0.107	$(1.50 \times)$
C-Elegans	0.223	0.069	$(3.23 \times)$	0.055	$(4.05 \times)$

Number of strings (m), number of runs (r) in comparison to the lower bound $\left(r_{l o}\right)$, and the run-time of the path cover algorithm (Alg. 4).

Dataset	m	$r_{l o}$	r		Alg. $4(\mathrm{~ms})$	Alg. 4 (ns/node)
E-Coli	2,102	3,723	3,723	$(+0.0000 \%)$	0.6	285
S-Enterica-100	150,604	277,649	277,658	$(+0.0032 \%)$	53.0	352
Human-Chr-13	266,113	462,175	462,197	$(+0.0048 \%)$	94.6	355
C-Elegans	140,452	247,661	247,669	$(+0.0032 \%)$	47.1	335

Competitors

- dBG-FM [Chikhi et al., 2014]: FM-index [Ferragina and Manzini, 2000]
- cw-dBG [Italiano et al., 2021]: weighted BOSS [Bowe et al., 2012]
- BCFS and AMB [Shibuya et al., 2021]: compressed static functions (CSFs) efficient maps from k-mers to weights (the k-mers are not represented)

Overall Comparison

Dictionary space in average bits $/ k$-mer and count time in average $\mu \mathrm{sec} / k$-mer. For reference, we report in gray color the space and time of SSHash without the weight information.

Dictionary	E-Coli		S-Enterica-100		Human-Chr-13		C-Elegans	
	space	query-time	space	query-time	space	query-time	space	query-time
dBG-FM, $s=128$	3.20	14.73	113.78	16.47	3.23	17.40	3.18	18.05
dBG-FM, $s=64$	4.02	7.91	142.25	11.13	4.07	11.33	4.01	10.89
dBG-FM, $s=32$	5.65	4.62	198.71	8.57	5.73	8.20	5.67	7.90
cw-dBG, $s=128$	2.79	109.13	5.59	120.72	2.80	100.88	2.77	127.86
$\mathrm{cw}-\mathrm{dBG}, s=64$	2.86	70.93	5.74	85.73	2.86	73.91	2.84	84.19
$\mathrm{cw}-\mathrm{dBG}, \mathrm{s}=32$	2.99	52.29	6.03	66.25	2.99	59.85	2.97	62.54
SSHash+BCSF	5.07	0.82	11.12	0.89	6.15	1.25	6.00	1.28
SSHash+AMB	4.90	1.34	9.27	1.65	6.08	1.95	5.88	1.97
w-SSHash	4.80	0.37	6.57	0.48	6.04	0.84	5.75	0.85
SSHash	4.79	0.34	6.15	0.41	5.93	0.76	5.69	0.77

Additional Results for w-SSHash

Number of k-mers, number of strings (m), number of runs (r) in comparison to the lower bound ($r_{l o}$), and the runtime of the path cover algorithm in total seconds (Alg. 4), index space in bits/k-mers (bpk) and total GB, and query time in $\mu \mathrm{sec} / k$-mer (qtm).

Dataset	n	m	$r_{l o}$	r		Alg. 4 (sec)	Alg. 4 (ns/node)
						1.2	500
Cod	$502,465,200$	$2,406,681$	$4,183,202$	$4,183,230$	$(+0.00067 \%)$	1.2	
Kestrel	$1,150,399,205$	682,344	$1,140,743$	$1,140,747$	$(+0.00035 \%)$	0.3	440
Human	$2,505,445,761$	$13,014,641$	$22,680,047$	$22,680,099$	$(+0.00023 \%)$	7.5	580
Bacterial	$5,350,807,438$	$26,448,286$	$56,662,230$	$56,662,304$	$(+0.00013 \%)$	17.2	650

Dataset	$H_{0}(W)$	bpk		GB	qtm
Cod	0.441	$6.98+0.19$	$(2.35 \times)$	0.45	1.3
Kestrel	0.089	$6.49+0.02$	$(3.80 \times)$	0.94	1.1
Human	0.453	$8.28+0.22$	$(2.06 \times)$	2.66	1.6
Bacterial	1.890	$8.22+0.24$	$(7.81 \times)$	5.66	1.9

Conclusions

- SSHash is an efficient solution to the weighted k-mer dictionary problem: good trade-off between space and time.
- Algorithmic tool-box:
- SPSS, minimizers, MPHF (not covered in this talk, see talk@ISMB-2022)
- Elias-Fano, RLE.
- Order of the k-mers induces runs in the weights: suitable for RLE.
- Permuting and accordingly orienting the strings in the SPSS reduces the number of runs in the weights essentially to the minimum according to the lower bound.
- Compared to BWT-based indexes: one order of magnitude faster for "just" 2X more space. Compared to other hashing schemes: $2-5 \mathrm{X}$ smaller with comparable of faster query time.
- Weights add very small extra space and do not impact query time.

Thank you for the attention!

