
On Weighted k-mer Dictionaries

WABI 2022 (The 22-nd International Workshop on Algorithms in Bioinformatics)

Potsdam, Germany, 5-9 September 2022

Paper: https://doi.org/10.4230/LIPIcs.WABI.2022.9 
Code: https://github.com/jermp/sshash

Giulio Ermanno Pibiri
Ca’ Foscari University of Venice and ISTI-CNR

@giulio_pibiri

@jermp

https://doi.org/10.4230/LIPIcs.WABI.2022.9
https://github.com/jermp/sshash

• We are given a large string over the alphabet {A,C,G,T} (e.g., a genome or a pan-
genome). Let , where is a -mer and is the number of
occurrences — the weight — of . 
 

• Problem. We want to build a dictionary for so that the following operations are efficient: 
- , where if or otherwise; 
- if ; 
- if . 
 
(Other operations of interest are iteration, streaming queries, and navigational queries.)

S
K = {⟨g, w(g)⟩ |g ∈ S} g k w(g)

g

K
Lookup(g) = i 1 ≤ i ≤ n g ∈ S i = − 1
Access(i) = g 1 ≤ i ≤ n
Count(g) = w(g) g ∈ S

The Weighted k-mer Dictionary Problem

Example: The human genome (GRCh38) has >2.5B distinct -mers for .k k = 31

A World of k-mer Indexes

• Huge research effort produced many types of indexes based on -mers, with different: 
 
- representations (hashing, BWT-based, exact vs. approximate), 
- features (e.g., static vs. dynamic), 
- space/time trade-offs, 
- operations, etc.

• Recent surveys on this topic:

k

- Data Structures based on k-mers for Querying Large Collections of Sequencing Data Sets 
Marchet et al., Genome Research, 2020.

- Data Structures to Represent a Set of k-long DNA Sequences 
Chikhi et al., ACM Computing Surveys, 2021.

Sparse and Skew Hashing (SSHash)
Bioinformatics/ISMB 2022

• Our focus is on hash-based data structures, for their fast query evaluation.

• In a prior work, we presented SSHash — a fast and compact -mer dictionary based on
minimal perfect hashing.

• Algorithmic tool-box: spectrum-preserving string sets, minimizers, minimal perfect hashing,
compressed encodings (e.g., Elias-Fano).

• Code in C++17 is available at: https://github.com/jermp/sshash.

• However, we did not consider the weights of the -mers.

k

k

https://github.com/jermp/sshash

Weighted SSHash (w-SSHash)

• This work: enrich SSHash with the weights.

• Questions:  
 
- Q1. What is the surplus in index space for the weights? 
 
- Q2. How well can the weights be compressed? 
 
- Q3. Do they have an impact on query time (Lookup vs. Count)?

SSHash is Order-Preserving

• Recap. For the distinct -mers of , SSHash implements a function ()
, where if and if .

• So the hash code can be directly used to associate some satellite
information to the -mer . 
For example, its weight: where .

• Order-Preserving Property. If if the successor of , then:
.

• This is a direct consequence of indexing a spectrum-preserving string set
(SPSS): is reduced to a set of strings .

• Any order on uniquely determines an order for the -mers ,
thus: .

n k S Lookup
h : Σk → {−1,1,…, n} 1 ≤ h(g) ≤ n g ∈ S h(g) = − 1 g ∉ S

h(g) = i
k g

W[1..n] W[i = h(g)] = w(g)

g2 g1
h(g2) = h(g1) + 1

S m ≥ 1 𝒮 = {S1, …, Sm}

𝒮 i = 1,…, n k gi
h(gi) = i Example with .𝒮 m = 4

The Weights

We have 6 runs in this example (k=31): 
5 (14x), 4 (18x), 2 (8x), 1 (31x), 4 (33x), 13 (7x).

• Let be the sequence of -mer weights, where and .

• Empirical Property. Consecutive -mers in (the SPSS) are likely to have the same
weight.

• Order-Preserving Property. If if the successor of , then: .

• These two properties has runs of equal weights. 
We exploit the order of the -mers to preserve the natural order of the weights.

W[1..n] k W[i] = w(gi) i = h(gi)

k 𝒮

g2 g1 h(g2) = h(g1) + 1

→ W
k

Run-Length Encoding (RLE)

• Represent with runs as a sequence of run-length pairs
.

• Take the prefix-sums of the sequence into an array and encode it
with Elias-Fano.

• We spend, at most 
 
 bits for (on top of SSHash). 
 
 

• To retrieve from : identify the run containing . All that we need is a predecessor
query over which can be done in with Elias-Fano.

W r
RLW = ⟨w1, ℓ1⟩⟨w2, ℓ2⟩ . . . ⟨wr, ℓr⟩

0,ℓ1, ℓ2, . . . , ℓr−1 L[1..r]

r ⋅ (c + ⌈log2(n/r)⌉ + 2 + o(1)) RLW

w(g) i = h(g) i
L O(log(n/r))

Elias-Fano on the lengths.Number of bits dedicated to each .wiNumber of runs.

Reducing the Number of Runs

• We spend space proportional to the number of runs in the weights .

• So we study the problem of reducing the number of runs to optimise the space. 
 
Q. What are our degrees of freedom to better compress ? 
 
 - The order of the strings in the SPSS , and 
 
 - The orientation of the strings.

• Note. Altering by changing the order and orientation of the strings does not affect the
correctness nor the order-preserving property of SSHash.

W

W

S1, …, Sm 𝒮

𝒮

Reducing the Number of Runs
• Goal. Compute a signed permutation where indicates that: 

- if : has to appear in position ; 
- else: has to appear in position .

• Note. The result only depends on the end-point weights of a string and not on the other
weights, nor on the nucleotide sequences.

π[1..m] π[i] = j
j < 0 reverse(Si) −j

Si j

π

 1 2 3 4
π = [+1, + 4, − 2, + 3]

Reversed

End-Point Weight Graphs and Path Covers

• Since the result only depends on the end-point weights, it is convenient to
consider the end-point weight graph for .

• A (disjoint-node) path cover for determines a signed permutation .

π
ewG(𝒮) 𝒮

C ewG(𝒮) π

π = [+1, + 4, + 2, + 3] π = [+1, + 4, − 2, + 3] π = [+4, + 1, − 2, + 3]
C = {(+4 → + 2), (+3), (+1)} C = {(+1 → − 3 → + 4 → + 2)} C = {(+2 → − 3 → + 4), (+1)}

Lower Bound to the Number of Runs
Part 1

• Q. Given the strings , with having runs in the weights, what is the minimum
number of runs we can achieve with our strategy? 
A. We can compute a lower bound on the number of runs.

• Let . There are at least runs, regardless of the order of the sequences.

• In general, the number of runs will be .

• Every path in must begin and end with weights that cannot be “glued” with any other
path’s weights in , so a new run beings with the first node of every path.

• Therefore, minimizing the number of runs in is equivalent to finding a minimum-cardinality
path cover for .

S1, …, Sm Si ri

R = ∑
m

i=1
ri R − m

R − m + |C |

C
C

𝒮
C ewG(𝒮)

Lower Bound to the Number of Runs
Part 2

• We have , where is the number of end-point weights that must necessarily
appear as end-points of the paths in .

• We derive an expression for that can be computed by just looking at the number of
occurrences of the end-point weights. 
 
(See the paper for proofs and details.)

|C | ≥ ⌈ne/2⌉ ne
C

ne

Examples of Path Covers

 contains 3 paths (optimal).C contains 4 paths.C

Odd: 
 

 
 

f(1) = 11
f(2) = 3
f(3) = 5
f(8) = 1

Even: 
 f(4) = 2

f(7) = 4
Equal: 
f(13) = 6 Our lower bound computes |C | ≥

|Odd | + 2 |Equal |
2

→

 paths.=
4 + 2 ⋅ 1

2
= 3

Greedy Computation of a Path Cover

• If we use hash tables to implement incidence and
unvisited, then insert/erase/take are all supported in

 on average.

• So the overall complexity (in both time and space) is
linear in the number of nodes in .

O(1)

ewG(𝒮)

Experimental Setup and Datasets

• Processor: Intel(R) Core(TM) i9-9940X CPU @ 3.30GHz

• Compiler and OS: gcc version 11.2.0, Ubuntu 11.2.0-7ubuntu2

• Code in C++17, compiled with flags: -O3 -march=native

Weight Compression
Space for the weights in bits/ -mer, before and after the run-reduction optimization. 
In parentheses, we report the compression ratio compared to the empirical entropy.

k

Number of strings , number of runs in comparison to the lower bound , and the run-time of the
path cover algorithm (Alg. 4).

(m) (r) (rlo)

Competitors

• dBG-FM [Chikhi et al., 2014]: FM-index [Ferragina and Manzini, 2000]

• cw-dBG [Italiano et al., 2021]: weighted BOSS [Bowe et al., 2012]

• BCFS and AMB [Shibuya et al., 2021]: compressed static functions (CSFs) —
efficient maps from -mers to weights (the -mers are not represented)k k

Overall Comparison

Additional Results for w-SSHash

Number of -mers, number of strings , number of runs in comparison to the lower bound , and the run-
time of the path cover algorithm in total seconds (Alg. 4), index space in bits/ -mers (bpk) and total GB, and query
time in sec/ -mer (qtm).

k (m) (r) (rlo)
k

μ k

Conclusions

• SSHash is an efficient solution to the weighted k-mer dictionary problem: good trade-off
between space and time.

• Algorithmic tool-box: 
- SPSS, minimizers, MPHF (not covered in this talk, see talk@ISMB-2022) 
- Elias-Fano, RLE.

• Order of the -mers induces runs in the weights: suitable for RLE.

• Permuting and accordingly orienting the strings in the SPSS reduces the number of runs in
the weights essentially to the minimum according to the lower bound.

• Compared to BWT-based indexes: one order of magnitude faster for “just” 2X more space.
Compared to other hashing schemes: 2-5X smaller with comparable of faster query time.

• Weights add very small extra space and do not impact query time.

k

https://jermp.github.io/assets/pdf/slides/ISMB2022.pdf

Thank you for the attention!

