The mod-minimizer: a simple and efficient sampling algorithm for long *k***-mers**

24-th WABI Egham, UK, 2 September 2024

Giulio Ermanno Pibiri

Ca' Foscari University of Venice

Joint work with **Ragnar Groot Koerkamp** ETH, Zurich

Example for $w = 4$ and $k = 7$. ACGGTAGAACCGATTCAAATTCGAT…

ACGGTAGAAC **CGGTAGA**ACC GGT**AGAACCG** GT**AGAACCG**A TAG**AACCGAT** AG**AACCGAT**T G**AACCGAT**TC **AACCGAT**TCA …

- and call it the "representative" of the window or its *minimizer*.
- We would like to sample the **same minimizer** from consecutive windows so that the **set of distinct** minimizers forms a succinct sketch for S.
- This reduces the memory footprint and comput. time of countless applications in Bioinformatics: such as:
	- sequence comparison,
	- assembly,
	- construction of compacted DBGs,
	- sequence indexing, etc.

• Consider each window of w consecutive k -mers from a string S: sample one k -mer out of w

Sketching with minimizers

Sketching with minimizers

• **Q.** How do we compare different sampling algorithms?

(distinct) minimizers and the total number of k -mers of S .

A. We define the *density* of a sampling algorithm as the fraction between the number of

TAGAACCGAT AGAACCGATT GAACCGATTC AACCGATTCA

 \blacksquare
 If \blacksquare

• Since the "window guarantee" must be respected, we immediately have a **lower bound** of $1/w$ on the density of any sampling algorithm.

The lower the density, the better!

Example: the "folklore" minimizer

- 1: function MINIMIZER (W, w, k, \mathcal{O}_k) $2:$ $o_{min} = +\infty$ $p=0$ $3:$ for $i = 0$; $i < w$; $i = i + 1$ do $4:$ $o = \mathcal{O}_k(W[i..i+k))$ $5:$ if $o < o_{min}$ then $6:$ $7:$ $o_{min} = o$ 8: $p = i$ return p 9:
- We usually define the total order using a random hash function (*random* minimizer).
- In this case, the density is $2/(w + 1)$: almost a factor of 2 away from the lower bound for large w .

Example for $w = 4$ and $k = 7$.

ACGGTAGAACCGATTCAAATTCGAT…

ACGGTAGAAC **CGGTAGA**ACC GGT**AGAACCG** GT**AGAACCG**A TAG**AACCGAT** AG**AACCGAT**T G**AACCGAT**TC **AACCGAT**TCA …

Introducing the *mod-sampling* **algorithm**

Introducing the *mod-sampling* **algorithm**

Why does mod-sampling work well for large k?

Why does mod-sampling work well for large k?

- Assume w is fixed, t is small, and $k \to \infty$.
- One caveat: as windows get infinitely large as $k \to \infty$, then we should also increase t to "avoid" duplicate t-mers.
- Setting $t = \Theta(\log(\ell)) = o(\ell)$ gives probability $o(1/\ell)$ of having two *i* dentical *t*-mers, where $\ell = w + k - 1$.

mod-sampling is optimal for large *k*

• We have a closed-form formula for the density of mod-sampling:

$$
\frac{\left\lfloor\frac{\ell-t}{w}\right\rfloor+2}{\ell-t+2}+o(1/\ell)
$$

where $\ell = w + k - 1$

mod-sampling is optimal for large *k*

• We have a closed-form formula for the density of mod-sampling:

$$
\frac{\left\lfloor \frac{\ell-t}{w} \right\rfloor + 2}{\ell - t + 2} + o(1/\ell) \xrightarrow[k \to \infty]{}
$$

where $\ell = w + k - 1$ (we have $t = o(\ell)$, hence also $\ell - t \to \infty$ as $k \to \infty$)

$$
\xrightarrow[k \to \infty]{\ell - t} \frac{w}{\ell - t} = 1/w
$$

Density of mod-sampling by varying *t*

• Example for $k = 31$ and $w = 8$. Measured over a string of 1 million i.i.d. random characters with an alphabet size of 4.

Density of mod-sampling by varying *t*

- Example for $k = 31$ and $w = 8$. Measured over a string of 1 million i.i.d. random characters with an alphabet size of 4.
- **Density is minimum for the choice** $t = k \mod w \rightarrow \text{mod-minimizer}$ **!**

Density by varying *k*

- Example for $w = 24$.
- Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

Density by varying *k*

- Example for $w = 24$.
- Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

And small *k* **?**

• The miniception: sample the **closed syncmer** with the smallest hash value in the window.

-
-

• Daniel: " If it works well with closed syncmers, why not trying with **open syncmers** ?" • The miniception: sample the **closed syncmer** with the smallest hash value in the window.

And small *k* **?**

• Bryce and Ragnar independently proposed an improved lower bound, which shows that the mod-minimizer is tight when $k \equiv 1 \pmod{w}$.

k

Improved lower bound for small *k*

Conclusions

• We introduced *mod-sampling —* a simple framework that gives new minimizer schemes

- depending on the choice of a parameter t.
- For $t = k \mod w$, mod-sampling yields the mod-minimizer that is optimal for $k \to \infty$.
- consistently by ≈15%.
- C++ code: <https://github.com/jermp/minimizers>
- Rust code:<https://github.com/RagnarGrootKoerkamp/minimizers>

• Replacing random minimizers with mod-minimizers in **SSHash** decreases index space

Conclusions

• We introduced *mod-sampling —* a simple framework that gives new minimizer schemes

- depending on the choice of a parameter t.
- For $t = k \mod w$, mod-sampling yields the mod-minimizer that is optimal for $k \to \infty$.
- consistently by ≈15%.
- C++ code: <https://github.com/jermp/minimizers>
- Rust code:<https://github.com/RagnarGrootKoerkamp/minimizers>

• Replacing random minimizers with mod-minimizers in **SSHash** decreases index space

Thank you for the attention!