
The mod-minimizer: a simple and efficient
sampling algorithm for long k-mers

24-th WABI 
Egham, UK, 2 September 2024

Giulio Ermanno Pibiri
Ca’ Foscari University of Venice

@giulio_pibiri

@jermp

Joint work with 
Ragnar Groot Koerkamp  

ETH, Zurich

• We would like to sample the same minimizer from
consecutive windows so that the set of distinct
minimizers forms a succinct sketch for .

• This reduces the memory footprint and comput.
time of countless applications in Bioinformatics:
such as: 
 - sequence comparison, 
 - assembly, 
 - construction of compacted DBGs, 
 - sequence indexing, etc.

S

Example for and . 
 
ACGGTAGAACCGATTCAAATTCGAT… 
 
ACGGTAGAAC
 CGGTAGAACC
 GGTAGAACCG
 GTAGAACCGA
 TAGAACCGAT
 AGAACCGATT
 GAACCGATTC
 AACCGATTCA
 …

w = 4 k = 7

• Consider each window of consecutive -mers from a string : sample one -mer out of
and call it the “representative” of the window — or its minimizer.

w k S k w

Sketching with minimizers

Sketching with minimizers

• Q. How do we compare different sampling algorithms? 
 
A. We define the density of a sampling algorithm as the fraction between the number of
(distinct) minimizers and the total number of -mers of . 
 
The lower the density, the better!

k S

• Since the “window guarantee” must be respected, we immediately have a lower bound
of on the density of any sampling algorithm.1/w

Example: the “folklore” minimizer

• We usually define the total order using a random
hash function (random minimizer).

• In this case, the density is : almost a
factor of away from the lower bound for large .

2/(w + 1)
2 w

Example for and . 
 
ACGGTAGAACCGATTCAAATTCGAT… 
 
ACGGTAGAAC
 CGGTAGAACC
 GGTAGAACCG
 GTAGAACCGA
 TAGAACCGAT
 AGAACCGATT
 GAACCGATTC
 AACCGATTCA
 …

w = 4 k = 7

Introducing the mod-sampling algorithm

Introducing the mod-sampling algorithm

take smallest -mer, 
for some

t
t < ktake smallest -merk

Why does mod-sampling work well for large k?

• Assume is fixed, is small,
and .

w t
k → ∞

Why does mod-sampling work well for large k?

• One caveat: as windows get infinitely
large as , then we should also
increase to “avoid” duplicate -mers.

• Setting gives
probability of having two
identical -mers, where .

k → ∞
t t

t = Θ(log(ℓ)) = o(ℓ)
o(1/ℓ)

t ℓ = w + k − 1

• Assume is fixed, is small,
and .

w t
k → ∞

mod-sampling is optimal for large k

• We have a closed-form formula for the density of mod-sampling: 
 

where ℓ = w + k − 1

mod-sampling is optimal for large k

• We have a closed-form formula for the density of mod-sampling: 
 

(we have , hence also as)t = o(ℓ) ℓ − t → ∞ k → ∞where ℓ = w + k − 1

Density of mod-sampling by varying t

• Example for and . Measured over a string of 1 million i.i.d. random characters
with an alphabet size of 4.

k = 31 w = 8

Density of mod-sampling by varying t

• Example for and . Measured over a string of 1 million i.i.d. random characters
with an alphabet size of 4.

k = 31 w = 8

• Density is minimum for the choice mod-minimizer !t = k mod w →

Density by varying k

• Example for .

• Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

w = 24

Density by varying k

• Example for .

• Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

w = 24

And small k ?

• The miniception: sample the closed syncmer with the smallest hash value in the window.

Daniel Liu, UCLA

• Daniel: “ If it works well with closed syncmers, why not trying with open syncmers ? ”

And small k ?

• The miniception: sample the closed syncmer with the smallest hash value in the window.

Bryce Kille 
Rice University

Improved lower bound for small k

• Bryce and Ragnar independently proposed an improved lower bound, which shows that 
the mod-minimizer is tight when .k ≡ 1 (mod w)

Conclusions

• We introduced mod-sampling — a simple framework that gives new minimizer schemes
depending on the choice of a parameter .

• For , mod-sampling yields the mod-minimizer that is optimal for .

• Replacing random minimizers with mod-minimizers in SSHash decreases index space
consistently by 15%.

• C++ code: https://github.com/jermp/minimizers

• Rust code: https://github.com/RagnarGrootKoerkamp/minimizers

t

t = k mod w k → ∞

≈

https://github.com/jermp/minimizers
https://github.com/RagnarGrootKoerkamp/minimizers

Conclusions

• We introduced mod-sampling — a simple framework that gives new minimizer schemes
depending on the choice of a parameter .

• For , mod-sampling yields the mod-minimizer that is optimal for .

• Replacing random minimizers with mod-minimizers in SSHash decreases index space
consistently by 15%.

• C++ code: https://github.com/jermp/minimizers

• Rust code: https://github.com/RagnarGrootKoerkamp/minimizers

t

t = k mod w k → ∞

≈

Thank you for the attention!

https://github.com/jermp/minimizers
https://github.com/RagnarGrootKoerkamp/minimizers

