
On Weighted K-Mer Dictionaries

Giulio Ermanno Pibiri
ISTI-CNR, giulio.ermanno.pibiri@isti.cnr.it

@giulio_pibiri

@jermp

Tutorials on Data Structures for Text Indexation and Compression (TUDASTIC)

Lille, France, 9-10 May 2022

mailto:giulio.ermanno.pibiri@isti.cnr.it


Agenda

1. Context, Motivations, and Problems

2. Sparse and Skew Hashing of K-Mers

3. Weight Compression

4. Conclusions and Future Directions



1. Context, Motivations, and Problems 



• Peta bytes of data available: 
- ENA (European Nucleotide Archive) 
- SRA (Sequence Read Archive) 
- RefSeq (Reference Sequence Database) 
- Ensembl


• For example: as of Feb. 2022, ENA has 2.7 billions of assembled 
sequences, for >12.6 trillion bases. 

• These collections are paving the way to answer fundamental questions 
regarding biology and evolution.

https://www.ebi.ac.uk/ena/browser/about/statistics

Massive DNA Collections

https://www.ebi.ac.uk/ena/browser/about/statistics


• Q. But how do we exploit such potential? 
We need efficient methods to index and search data at this scale.


• One popular strategy: “reduce” a DNA sequence to a set of short 
sub-strings of fixed length  — the so-called -mers.k k

 
ACGGTAGAACCGATTCAAATTCGACGTAGC… 
ACGGTAGAACCGA 
  CGGTAGAACCGAT 
  GGTAGAACCGATT 
   GTAGAACCGATTC 
    TAGAACCGATTCA 
     AGAACCGATTCAA 
      GAACCGATTCAAA 
       AACCGATTCAAAT 
        …

Example for .k = 13

K-Mers



• Software tools based on -mers are predominant in Bioinformatics.


• Many applications: 
- genome assembly 
- variant calling 
- pan-genome analysis 
- meta-genomics 
- sequence comparison/alignment 
- …

k

K-Mer Applications



• Huge research effort produced many types of indexes based on -mers, 
with different: 
- representations (hashing, BWT-based, exact vs. approximate), 
- features (e.g., static vs. dynamic), 
- space/time trade-offs, 
- operations, ecc.


• Recent surveys on this topic:

k

A World of K-Mer Indexes

• Data Structures based on k-mers for Querying Large Collections of Sequencing Data Sets 
Marchet et al., Genome Research, 2020.


• Data Structures to Represent a Set of k-long DNA Sequences 
Chikhi et al., ACM Computing Surveys, 2021.



• We are given a large string over the alphabet {A,C,G,T} (e.g., a genome or a pan-genome) 
and let  be the set of all its  distinct -mers. 

•  is a set of key-value pairs , where  is a -mer and  is the number of 
occurrences — the weight — of  in the input.


• Problem. We want to build a dictionary for  so that the following operations are efficient: 
- , where  if  or  otherwise; 
-  if ; 
-  if . 
 
(Other operations of interest are iteration and streaming membership queries.)

K n k

K ⟨g, w(g)⟩ g k w(g)
g

K
i = Lookup(g) 0 ≤ i < n g ∈ K i = − 1
g = Access(i) 0 ≤ i < n
w(g) = Count(g) g ∈ K

The Weighted K-Mer Dictionary Problem

Example: The human genome (GRCh38) has >2.5B distinct -mers for .k k = 31



Part 2.

Part 3.

• We are given a large string over the alphabet {A,C,G,T} (e.g., a genome or a pan-genome) 
and let  be the set of all its  distinct -mers. 

•  is a set of key-value pairs , where  is a -mer and  is the number of 
occurrences — the weight — of  in the input.


• Problem. We want to build a dictionary for  so that the following operations are efficient: 
- , where  if  or  otherwise; 
-  if ; 
-  if . 
 
(Other operations of interest are iteration and streaming membership queries.)

K n k

K ⟨g, w(g)⟩ g k w(g)
g

K
i = Lookup(g) 0 ≤ i < n g ∈ K i = − 1
g = Access(i) 0 ≤ i < n
w(g) = Count(g) g ∈ K

The Weighted K-Mer Dictionary Problem

Example: The human genome (GRCh38) has >2.5B distinct -mers for .k k = 31



2. Sparse and Skew Hashing of K-Mers 



Preliminary Observations

• The algorithmic literature about (compressed) string dictionaries is rich of solutions [Martínez-
Prieto et al., 2016] (e.g., Front-Coding, path-decomposed tries, double-array tries), but are 
relevant for “generic strings”: 
    - variable-length, 
    - larger alphabets (e.g., ASCII), 
    - (usually) no particular properties of the strings to aid compression.


• Since -mers are extracted consecutively from DNA, a -mer following another one shares  
bases (very low entropy).

k k k − 1

 
ACGGTAGAACCGATTCAAATTCGACGTAGC… 
ACGGTAGAACCGA 
  CGGTAGAACCGAT 
  GGTAGAACCGATT 
   GTAGAACCGATTC 
    TAGAACCGATTCA 
     …

Example for .k = 13



de Bruijn Graphs
Fact. Equivalence between a set of -mers and a de Bruijn graph (dBG).k

TCA CAT ATT TTG

TGG GGT GTA TAA

TGC GCG CGA GAA

AAC ACC CCG

(a) an example de Bruijn 
graph for k = 3

TCATTG

TGGTAA

TGCGAA

AACCG

(b) compacted de Bruijn graph

TCATTGGTAACCG

TGCGAA

(c) set of stitched (maximal) unitigs



de Bruijn Graphs

• Fact. Equivalence between a set of -mers and a de Bruijn graph.


• There are efficient software tools to run the following pre-processing flow.

k

dBG compacted 
dBG

stitched unitigs 
(a.k.a., simplitigs)

compaction path covering

• A collection of DNA strings with no 
duplicate -mers.


• Efficient heuristic method to reduce 
the number of bases, e.g, UST 
[Rahman and Medvedev, 2020].

k

input DNA file 
(.fasta/q)

- BCALM [Chikhi et al., 2016] 
- Cuttlefish [Khan and Patro, 2021]

build



Minimizers

• Minimizer. [Roberts et al., 2004] Given a -mer and an order relation , the 
minimizer of length  is the smallest -mer of the -mer according to .


• Example. Given ACGGTAGAACCGA  and : 
 

k R
m ≤ k m k R

g = (k = 13) m = 4

If  is the lexicographic order.R

(ACGG) = 9842978325 
 (CGGT) = 817612312 
  (GGTA) = 8265731 
   (GTAG) = 478491248 
    (TAGA) = 17491411 
     (AGAA) = 17148914 
      (GAAC) = 91815379 
       (AACC) = 645793914 
        (ACCG) = 918417644 
         (CCGA) = 814188124

h
h

h
h

h
h

h
h

h
h

smallest hash code

If  is defined by a random hash function .R h

ACGG 
 CGGT 
  GGTA 
   GTAG 
    TAGA 
     AGAA 
      GAAC 
       AACC 
        ACCG 
         CCGA



Super-k-Mers

• Property. Consecutive -mers are likely to have the same minimizer. 
 
Example for  and : 
ACGGTAGAACCGATTCAAATTCGATCGATTAATTAGAGCGATAAC… 
ACGGTAGAACCGA  
 CGGTAGAACCGAT 
  GGTAGAACCGATT 
   GTAGAACCGATTC 
    TAGAACCGATTCA 
     AGAACCGATTCAA 
      GAACCGATTCAAA 
       AACCGATTCAAAT 
        …


• Super-k-mer. [Li et al., 2013] Given a string, a super- -mer is a maximal sequence of 
consecutive -mers having the same minimizer.

k

k = 13 m = 4

k
k

super- -merk



• Observation 1. Since consecutive -mers are likely to have the same minimizers, there are far 
fewer super- -mers than -mers — approx.  times less for random minimizers — 

 sparse indexing.


• Observation 2. A super- -mer of length  is a space-efficient representation of the set of its 
constituent  -mers:  vs.  bits/ -mer. If  is sufficiently large and/or we 
have long chains of super- -mers, the cost becomes approx.  bits/ -mer.

k
k k (k − m + 2)/2

→

k s
s − k + 1 k 2s/(s − k + 1) 2k k s

k 2 k

This super- -mer costs 2x19=38 bits for 7 -mers 
(5.43 bits/ -mer vs. 2x13=26 bits/ -mer).

k k
k k

Super-k-Mers

ACGGTAGAACCGATTCAAA

AACCGATTCAAATTCGATCGATTA

=19s

=24s

This chain is of length 31 and costs 2x31=62 bits for 19 -mers (3.26 bits/ -mer).k k

Example for  and : 
 
ACGGTAGAACCGATTCAAATTCGATCGATTAATT…

k = 13 m = 4



Sparse Hashing
• Q. How to index super- -mers?


• Do not break the chains of super- -mers to avoid wasting  bits per super- -mer.


• Locate super- -mers with an array of offsets into the strings, indexed by a minimal perfect hash 
function (MPHF) on the minimizers. (An offset is an integer in , where  is the number of bases in 
the strings.)


• Upon : if  is the minimizer of , locate and scan the “bucket” of  — the set of super- -mers 
that have minimizer .

k

k 2(k − 1) k

k
[0,N) N

Lookup(g) r g r k
r

AGATGATGAACCTGAAAACATCCTGAAAATCGTCAAAGAATGGCGGCGTTCACAGGGGCTACCCTTGTTTAAAGACTCTAAATAAAGTA.ATTTTCAGGATG
TTTTCAGGTTCATCATCTCCCTTCTTTGCAGGATAGTAGATAAGATCGCTCATCAACGGATGTTGTGTAATTCTGGTAAGATGTTCTTCTAGATCATCCCAA
TATTTGTCAAGCACTTCCCCTTTTAATTGAGCGTTATCCCCGG.AGATGATGAACCTGAAAACATCCTGAAAATTGTCAAAGAATGGCGGCGTTCACAGGGG
CTA.ATTGTCAAAGAATGGCGGCGTTCACAGGGGTTACCCTTGTTTAAAGACTCTAAATAAAGTAGATAATAAAACTATATATGGAACATCATCGCATCTGG

ATCCTGAAr =



sigir

tkde

tois
spe

wsdm
csur

icde

S 0
1
2
3
4
5
6

f

MPHF. Given a set  of  distinct keys, a function  that bijectively maps the keys of  
into the range  is called a minimal perfect hash function (MPHF) for . 

S n f S
{0,…, n − 1} S

• Lower bound of 1.44 bits/key — in practice: 
2-4 bits/key and constant time evaluation.


• Many algorithms available:
    - FCH [Fox et al., 1992] 
    - CHD [Belazzougui et al., 2009] 
    - EMPHF [Belazzougui et al., 2014]  
    - GOV [Genuzio et al., 2016] 
    - BBHash [Limasset et al., 2017] 
    - RecSplit [Esposito et al., 2019] 
    - PTHash [P. and Trani, 2021]

https://github.com/jermp/pthash

Minimal Perfect Hashing

https://github.com/jermp/pthash


TCGTCAAA: 29  
CATCCCAA: 172  
ATCGTCAA: 20  
GACTCTAA: 50 329  
AACCTGAA: 0 246  
ATCCTGAA: 9 255  
GAACATCA: 364  
GCAGGATA: 105  
AGGGGCTA: 30  
CTTGTTTA: 319  
GAGCGTTA: 208  
TTTAAAGA: 323  
CTTCTAGA: 169  
GGCTACCC: 33  
CGTTATCC: 211  
AGCACTTC: 189  
AAGATCGC: 119  
AACTATAT: 353  
CCTTCTTT: 97  
TTCAGGTT: 89  
ACGGATGT: 143  
ACAGGGGT: 310  
TGTCAAAG: 266 307  
TAATTCTG: 157 

Sparse Hashing — Example

AGATGATGAACCTGAAAACATCCTGAAAATCGTCAAAGAATGGCGG
CGTTCACAGGGGCTACCCTTGTTTAAAGACTCTAAATAAAGTA.AT
TTTCAGGATGTTTTCAGGTTCATCATCTCCCTTCTTTGCAGGATAG
TAGATAAGATCGCTCATCAACGGATGTTGTGTAATTCTGGTAAGAT
GTTCTTCTAGATCATCCCAATATTTGTCAAGCACTTCCCCTTTTAA
TTGAGCGTTATCCCCGG.AGATGATGAACCTGAAAACATCCTGAAA
ATTGTCAAAGAATGGCGGCGTTCACAGGGGCTA.ATTGTCAAAGAA
TGGCGGCGTTCACAGGGGTTACCCTTGTTTAAAGACTCTAAATAAA
GTAGATAATAAAACTATATATGGAACATCATCGCATCTGG

a collection of 4 stitched unitigs: 
285 -mers for ,  basesk k = 31 N = 408

24 minimizers, for m = 8

offsets



Sparse Hashing — Example

Elias-Fano

MPHF 
(PTHash)

compact vector 
of -bit ints⌈log2 N⌉



Elias-Fano Encoding

• Elias-Fano [Elias, 1974; Fano, 1971] is a succinct data structure representing a monotone 
integer list  in  bits, where  is such that .


• With just  extra bits: random Access in  and Predecessor queries in 
.


• Found to be crucial for many practical data structures/applications 
(e.g., inverted indexes, compressed tries, MPHF).


• See Section 3.4 of 
Techniques for Inverted Index Compression 
P. and Venturini, ACM Computing Surveys, 2021.


• https://github.com/jermp/data_compression_course

X[0..n) n⌈log2(U/n)⌉ + 2n U U ≥ X[n − 1]

+o(n) O(1)
O(log(U/n))

https://github.com/jermp/data_compression_course


Skew Hashing

• Problem. Some buckets can be very large. 
 

• Property. Minimizers have a (very) skew distribution for sufficiently long length.

For example on the human genome (GRCh38), for  and : largest bucket size 
can be as large as .

k = 31 m = 20
3.6 × 104

On the full human genome (GRCh38), 
for  and : 
  2,505,445,761 -mers 
    421,845,806 minimizers 
    388,018,280 (91.98%) only appear once!

k = 31 m = 20
k



Skew Hashing

• We fix an integer : by virtue of the skew distribution, the fraction of buckets having 
more than  super- -mers is small.


• So, we can afford a MPHF over the set of -mers that belong to such super- -mers.

ℓ
2ℓ k

k k

For , just 
100.0 − (97.1 + 1.7 + 0.4 + 0.2)% = 0.6% 
of buckets with more than  
super- -mers.

ℓ = 2

2ℓ=2 = 4
k



Skew Hashing

• For , let  is the set of all -mers belonging to buckets of size , 
with  such that: 
 
                                                                                     . 
 

• We build a MPHF  for each set . For a -mer , we know that its bucket 
contains at most  super- -mers, so we write the identifier of the super- -mer 
containing  in a (compact) vector  of -bit ints.


• Upon , we will scan one super- -mer only.

i = ℓ, . . . , L Ki k s
s

fi Ki k g ∈ Ki
2i+1 k k

g Vi (i + 1)

Lookup k



Skew Hashing — Example
Example for .ℓ = 3



Experimental Setup and Datasets

• Processor: Intel(R) Core(TM) i9-9940X CPU @ 3.30GHz

• Compiler and OS: gcc version 11.2.0, Ubuntu 11.2.0-7ubuntu2

• Code in C++17, compiled with flags: -O3 -march=native

NOTE: We used BCALM (v2) 
[Chikhi et al., 2016] to build the 
compacted dBG and then UST 
[Rahman and Medvedev, 2020] 
to compute the stitched unitigs. 



Trade-offs by Varying Minimizer Length

NOTE 2: 
A good rule of thumb is 

 or 
.

m = ⌈log4(N)⌉ + 1
m = ⌈log4(N)⌉ + 2

NOTE 1: 
We used  and  
for all experiments. 

ℓ = 6 L = 12



Space Breakdowns



Competitors

• dBG-FM [Chikhi et al., 2014]: FM-index [Ferragina and Manzini, 2000]


• Pufferfish [Almodaresi et al., 2018]: MPHF


• Blight [Marchet et al., 2021]: MPHF+minimizers



Overall Comparison — Space and Lookup



Overall Comparison — Streaming Queries



Construction Time and Space

NOTE: SSHash construction works 
entirely in internal memory. 
(This is going to change in future 
releases.)



3. Weight Compression 



SSHash is Order-Preserving

• Quick Recap. For a set  of  distinct -mers, SSHash implements a function ( )
, where  if  and if .


• Order-Preserving Property. If  if the successor of , then .


• This is a direct consequence of indexing a spectrum-preserving string set (SPSS): 
 is reduced to a set of  strings .


• Any order on  uniquely determines an order  for the -mers , thus: 
.

K n k Lookup
h : Σk → {−1,0,…, n − 1} 0 ≤ h(g) < n g ∈ K h(g) = − 1 g ∉ K

g2 g1 h(g2) = h(g1) + 1

K p 𝒮 = {S0, …, Sp−1}

𝒮 i = 0,…, n − 1 k {gi}i
h(gi) = i



The Weights

• Let  be the sequence of -mer weights, where  and .


• Property. The order-preserving property of  makes  have runs of equal weights, 
because consecutive -mers are likely to have the same weight.


• We exploit the order of the -mers to preserve the natural order of the weights.

W[0..n − 1] k W[i] = w(gi) i = h(gi)

h W
k

k

We have 6 runs in this example: 
5 (14x), 4 (18x), 2 (8x), 1 (31x), 4 (33x), 13 (7x).



Run-Length Encoding (RLE)

• Represent  with  runs as a sequence of run-length pairs 
.


• Take the prefix-sums of the lengths  into an array  and 
encode it with Elias-Fano.


• We spend, at most 
 
                       bits for . 
 
 

• To retrieve  from , all that we need is a predecessor query over  which is 
done in  with Elias-Fano.

W r
RLW = ⟨w0, ℓ0⟩⟨w1, ℓ1⟩ . . . ⟨wr−1, ℓr−1⟩

0,ℓ0, ℓ1, . . . , ℓr−2 P[0..r − 1]

r ⋅ (c + ⌈log2(n/r)⌉ + 2 + o(1)) RLW

w(g) i = h(g) P
O(log(n/r))

Elias-Fano on the lengths.Number of bits dedicated to each .wi



Reducing the Number of Runs
• Strategy. Change the order of the strings in  and possibly take the reverse-

complement of a string (and reverse the corresponding weights) to reduce the number of runs.


• Goal. Compute a signed permutation  where  indicates that: 
- if :  has to appear in position ; 
- else:  has to appear in position .

𝒮 = {S0, …, Sp−1}

π[0..p − 1] π[i] = j
j < 0 reverse(Si) −j

Si j

NOTE: The result  only depends 
on the end-point weights of a 
string and not on the other weights, 
nor on the nucleotide sequences.

π



           1     2     3     4 
π = [+1, + 4, − 2, + 3]



End-Point Weight Graphs and Path Covers
• Since the result  only depends on the end-point weights, it is convenient to consider the end-point weight 

graph  for .


• A (disjoint-node) path cover  for  determines a signed permutation .


• Minimizing the number of runs in  is equivalent to finding a minimum-cardinality path cover  for .

• We can compute a lower bound on the number of runs.

π
ewG(𝒮) 𝒮

C ewG(𝒮) π
𝒮 C ewG(𝒮)

π = [+1, + 4, + 2, + 3] π = [+1, + 4, − 2, + 3] π = [+4, + 1, − 2, + 3]



Computing a Path Cover

• If we use hashing to implement incidence and unvisited, then 
insert/erase/take are all supported in  expected time.


• So the overall complexity (in both time and space) is linear in 
the number of nodes in .

O(1)

ewG(𝒮)



Examples of Path Covers

 contains 3 paths (optimal).C  contains 4 paths.C



Experimental Setup and Datasets

• Processor: Intel(R) Core(TM) i9-9940X CPU @ 3.30GHz

• Compiler and OS: gcc version 11.2.0, Ubuntu 11.2.0-7ubuntu2

• Code in C++17, compiled with flags: -O3 -march=native



Weight Compression
Space for the weights in bits/ -mer, before and after the run-reduction optimization. 
In parentheses, we report the compression ratio compared to the empirical entropy.

k

p

Number of strings , number of runs  in comparison to the lower bound , and the 
run-time of the path cover algorithm (Alg. 3).

(p) (r) (rlo)



Competitors

• dBG-FM [Chikhi et al., 2014]: FM-index [Ferragina and Manzini, 2000]


• cw-dBG [Italiano et al., 2021]: weighted BOSS [Bowe et al., 2012]


• BCFS and AMB [Shibuya et al., 2021]: compressed static functions (CSFs) — 
efficient maps from -mers to weights (the -mers are not represented)k k



Overall Comparison



Additional Results for w-SSHash

Number of -mers, number of strings , number of runs  in comparison to the lower bound , and the run-time of 
the path cover algorithm in total seconds (Alg. 3), index space in bits/ -mers, and query time in sec/ -mer.

k (p) (r) (rlo)
k μ k

p



4. Conclusions and Future Directions 



Conclusions

• SSHash is an efficient solution to the Weighted K-Mer Dictionary problem: 
good trade-off between space and time.


• Tool-box: SPSS, minimizers, MPHF (https://github.com/jermp/pthash), Elias-Fano, RLE.


• Ingredients: 
- Sparse indexing to obtain good space effectiveness; 
- Skew hashing to guarantee fast lookup for “heavy” buckets; 
- Order of the -mers induces runs in the weights: suitable for RLE.


• Compared to BWT-based indexes: one order of magnitude faster for “just” 2X more space. 
Compared to other hashing schemes: 2-5X smaller with comparable of faster query time.


• Weights add very small extra space and do not impact query time.


• Code in C++17 is available at: https://github.com/jermp/sshash.

k

https://github.com/jermp/pthash
https://github.com/jermp/sshash


(Possible) Future Directions

• Provide an external-memory construction. 
Trade-off RAM usage for disk during construction for better scaling to 
larger datasets.


• Add support for multi-threading (for queries and construction).


• Add support for other types of queries, like navigational queries.


• Use the index as backbone for other problems: 
- positional indexing of -mers; 
- -mer quantification across collections of documents; 
- others?

k
k



Open Questions

• What happens if we replace the minimizers in SSHash with other types 
of seeds? For example, strobemers [Sahlin, 2021], bi-directional string 
anchors [Loukides and Pissis, 2021], …


• What if we change the hash function used to select the minimizers?


• Does it lead to an improvement in space (less seeds/lower density)?


• Beyond SPSS: allow duplicates in the representation, e.g., matchtigs 
[Schmidt et al., 2022]?


• What is the cost of dynamism, i.e., support for insertions/deletions?



Thank you for the attention!


