On Weighted K-Mer Dictionaries

Giulio Ermanno Pibiri

ISTI-CNR, giulio.ermanno.pibiri@isti.cnr.it

Tutorials on Data Structures for Text Indexation and Compression (TUDASTIC)
Lille, France, 9-10 May 2022

Agenda

1. Context, Motivations, and Problems
2. Sparse and Skew Hashing of K-Mers
3. Weight Compression
4. Conclusions and Future Directions

1. Context, Motivations, and Problems

Massive DNA Collections

－Peta bytes of data available：
－ENA（European Nucleotide Archive）
－SRA（Sequence Read Archive）
－RefSeq（Reference Sequence Database）

ENA受远造 Ensemb／
 European Nucleotide Archive

National Library of Medicine
National Center for Biotechnology Information
－Ensembl
－For example：as of Feb．2022，ENA has 2.7 billions of assembled sequences，for >12.6 trillion bases．
https：／／www．ebi．ac．uk／ena／browser／about／statistics
－These collections are paving the way to answer fundamental questions regarding biology and evolution．

K-Mers

- Q. But how do we exploit such potential? We need efficient methods to index and search data at this scale.
- One popular strategy: "reduce" a DNA sequence to a set of short sub-strings of fixed length k - the so-called k-mers.

```
ACGGTAGAACCGATTCAAATTCGACGTAGC...
ACGGTAGAACCGA
    CGGTAGAACCGAT
        GGTAGAACCGATT
        GTAGAACCGATTC
                                    \longleftarrow Example for }k=13
            TAGAACCGATTCA
                AGAACCGATTCAA
                GAACCGATTCAAA
                        AACCGATTCAAAT
```


K-Mer Applications

- Software tools based on k-mers are predominant in Bioinformatics.
- Many applications:
- genome assembly
- variant calling
- pan-genome analysis
- meta-genomics
- sequence comparison/alignment
- ...

A World of K-Mer Indexes

- Huge research effort produced many types of indexes based on k-mers, with different:
- representations (hashing, BWT-based, exact vs. approximate),
- features (e.g., static vs. dynamic),
- space/time trade-offs,
- operations, ecc.
- Recent surveys on this topic:
- Data Structures based on k-mers for Querying Large Collections of Sequencing Data Sets Marchet et al., Genome Research, 2020.
- Data Structures to Represent a Set of k-long DNA Sequences Chikhi et al., ACM Computing Surveys, 2021.

The Weighted K-Mer Dictionary Problem

- We are given a large string over the alphabet $\{A, C, G, T\}$ (e.g., a genome or a pan-genome) and let K be the set of all its n distinct k-mers.
Example: The human genome (GRCh38) has $>2.5 \mathrm{~B}$ distinct k-mers for $k=31$.
- K is a set of key-value pairs $\langle g, w(g)\rangle$, where g is a k-mer and $w(g)$ is the number of occurrences - the weight - of g in the input.
- Problem. We want to build a dictionary for K so that the following operations are efficient:
- $i=\operatorname{Lookup}(g)$, where $0 \leq i<n$ if $g \in K$ or $i=-1$ otherwise;
- $g=\operatorname{Access}(i)$ if $0 \leq i<n$;
- $w(g)=\operatorname{Count}(g)$ if $g \in K$.
(Other operations of interest are iteration and streaming membership queries.)

The Weighted K-Mer Dictionary Problem

- We are given a large string over the alphabet $\{A, C, G, T\}$ (e.g., a genome or a pan-genome) and let K be the set of all its n distinct k-mers.
Example: The human genome (GRCh38) has $>2.5 \mathrm{~B}$ distinct k-mers for $k=31$.
- K is a set of key-value pairs $\langle g, w(g)\rangle$, where g is a k-mer and $w(g)$ is the number of occurrences - the weight - of g in the input.
- Problem. We want to build a dictionary for K so that the following operations are efficient:
- $i=\operatorname{Lookup}(g)$, where $0 \leq i<n$ if $g \in K$ or $i=-1$ otherwise;
$-g=\operatorname{Access}(i)$ if $0 \leq i<n$;
$-w(g)=\operatorname{Count}(g)$ if $g \in K$.
Part 3.
(Other operations of interest are iteration and streaming membership queries.)

2. Sparse and Skew Hashing of K-Mers

Preliminary Observations

- The algorithmic literature about (compressed) string dictionaries is rich of solutions [MartínezPrieto et al., 2016] (e.g., Front-Coding, path-decomposed tries, double-array tries), but are relevant for "generic strings":
- variable-length,
- larger alphabets (e.g., ASCII),
- (usually) no particular properties of the strings to aid compression.
- Since k-mers are extracted consecutively from DNA, a k-mer following another one shares $k-1$ bases (very low entropy).
ACGGTAGAACCGATTCAAATTCGACGTAGC...
ACGGTAGAACCGA
$\begin{array}{ll}\text { CGGTAGAACCGAT } & \longleftarrow \quad \text { Example for } k=13 \text {. }\end{array}$
GTAGAACCGATTC
TAGAACCGATTCA

de Bruijn Graphs

Fact. Equivalence between a set of k-mers and a de Bruijn graph (dBG).

(c) set of stitched (maximal) unitigs

TCATTGGTAACCG
TGCGAA

de Bruijn Graphs

- Fact. Equivalence between a set of k-mers and a de Bruijn graph.
- There are efficient software tools to run the following pre-processing flow.

- BCALM [Chikhi et al., 2016]
- Cuttlefish [Khan and Patro, 2021]
- A collection of DNA strings with no duplicate k-mers.
- Efficient heuristic method to reduce the number of bases, e.g, UST [Rahman and Medvedev, 2020].

Minimizers

- Minimizer. [Roberts et al., 2004] Given a k-mer and an order relation R, the minimizer of length $m \leq k$ is the smallest m-mer of the k-mer according to R.
- Example. Given $g=$ ACGGTAGAACCGA $(k=13)$ and $m=4$:

```
ACGG
    CGGT
        GGTA
            GTAG
            TAGA
                AGAA
                GAAC
                    AACC
                    ACCG
                    CCGA
```

```
h(ACGG) = 9842978325
```

h(ACGG) = 9842978325
h(CGGT) = 817612312
h(CGGT) = 817612312
h(GGTA) = 8265731 \longleftarrow smallest hash code
h(GGTA) = 8265731 \longleftarrow smallest hash code
h(GTAG) = 478491248
h(GTAG) = 478491248
h(TAGA) = 17491411
h(TAGA) = 17491411
h(AGAA) = 17148914
h(AGAA) = 17148914
h(GAAC) = 91815379
h(GAAC) = 91815379
h(AACC) = 645793914
h(AACC) = 645793914
h(ACCG) = 918417644
h(ACCG) = 918417644
h(CCGA) = 814188124
h(CCGA) = 814188124
If R is the lexicographic order.
If R is defined by a random hash function h.

```

\section*{Super-k-Mers}
- Property. Consecutive \(k\)-mers are likely to have the same minimizer.

Example for \(k=13\) and \(m=4\) :
ACGGTAGAACCGATTCAAATTCGATCGATTAATTAGAGCGATAAC... ACGGTAGAACCGA CGGTAGAACCGAT GGTAGAACCGATT GTAGAACCGATTC TAGAACCGATTCA AGAACCGATTCAA GAACCGATTCAAA AACCGATTCAAAT
- Super-k-mer. [Li et al., 2013] Given a string, a super- \(k\)-mer is a maximal sequence of consecutive \(k\)-mers having the same minimizer.

\section*{Super-k-Mers}
- Observation 1. Since consecutive \(k\)-mers are likely to have the same minimizers, there are far fewer super- \(k\)-mers than \(k\)-mers - approx. \((k-m+2) / 2\) times less for random minimizers \(\rightarrow\) sparse indexing.
- Observation 2. A super- \(k\)-mer of length \(s\) is a space-efficient representation of the set of its constituent \(s-k+1 k\)-mers: \(2 s /(s-k+1) \mathrm{vs}\). \(2 k\) bits/k-mer. If \(s\) is sufficiently large and/or we have long chains of super- \(k\)-mers, the cost becomes approx. 2 bits \(/ k\)-mer.

This super- \(k\)-mer costs \(2 \times 19=38\) bits for \(7 k\)-mers
( \(5.43 \mathrm{bits} / k\)-mer vs. \(2 \times 13=26 \mathrm{bits} / k\)-mer).
Example for \(k=13\) and \(m=4\) :
ACGGTAGAACCGATTCAAA \(s=19\)
ACGGTAGAACCGATTCAAATTCGATCGATTAATT...
\(\uparrow\)

\section*{AACCGATTCAAATTCGATCGATTA \(s=24\)}

\footnotetext{
This chain is of length 31 and costs \(2 \times 31=62\) bits for \(19 k\)-mers ( 3.26 bits \(/ k\)-mer).
}

\section*{Sparse Hashing}
- Q. How to index super- \(k\)-mers?
- Do not break the chains of super- \(k\)-mers to avoid wasting \(2(k-1)\) bits per super- \(k\)-mer.
- Locate super- \(k\)-mers with an array of offsets into the strings, indexed by a minimal perfect hash function (MPHF) on the minimizers. (An offset is an integer in [0,N), where \(N\) is the number of bases in the strings.)
- Upon Lookup \((g)\) : if \(r\) is the minimizer of \(g\), locate and scan the "bucket" of \(r\) - the set of super- \(k\)-mers that have minimizer \(r\).
\[
r=\text { ATCCTGAA }
\]

AGATGATGAACCTGAAAACATCCTGAAAATCGTCAAAGAATGGCGGCGTTCACAGGGGCTACCCTTGTTTAAAGACTCTAAATAAAGTA. ATTTTCAGGATG TTTTCAGGTTCATCATCTCCCTTCTTTGCAGGATAGTAGATAAGATCGETCATCAACGGATGTTGTGTAATTCTGGTAAGATGTTCTTCTAGATCATCCCAA TATTTGTCAAGCACTTCCCCTTTTAATTGAGCGTTATCCCCGG. AGATGATGAACCTGAAAACATCCTGAAAATTGTCAAAGAATGGCGGCGTTCACAGGGG CTA. ATTGTCAAAGAATGGCGGCGTTCACAGGGGTTACCCTTGTTTAAAGACTCTAAATAAAGTAGATAATAAAACTATATATGGAACATCATCGCATCTGG

\section*{Minimal Perfect Hashing}

MPHF. Given a set \(S\) of \(n\) distinct keys, a function \(f\) that bijectively maps the keys of \(S\) into the range \(\{0, \ldots, n-1\}\) is called a minimal perfect hash function (MPHF) for \(S\).
- Lower bound of 1.44 bits/key - in practice: 2-4 bits/key and constant time evaluation.
- Many algorithms available:
- FCH [Fox et al., 1992]
- CHD [Belazzougui et al., 2009]
- EMPHF [Belazzougui et al., 2014]
- GOV [Genuzio et al., 2016]
- BBHash [Limasset et al., 2017]
- RecSplit [Esposito et al., 2019]
- PTHash [P. and Trani, 2021]


\section*{Sparse Hashing - Example}


\section*{Sparse Hashing - Example}


\section*{Elias-Fano Encoding}
- Elias-Fano [Elias, 1974; Fano, 1971] is a succinct data structure representing a monotone integer list \(X[0 . . n)\) in \(n\left\lceil\log _{2}(U / n)\right\rceil+2 n\) bits, where \(U\) is such that \(U \geq X[n-1]\).
- With just \(+o(n)\) extra bits: random Access in \(O(1)\) and Predecessor queries in \(O(\log (U / n))\).
- Found to be crucial for many practical data structures/applications (e.g., inverted indexes, compressed tries, MPHF).
- See Section 3.4 of

Techniques for Inverted Index Compression
P. and Venturini, ACM Computing Surveys, 2021.
- https://github.com/jermp/data compression course

\section*{Skew Hashing}
- Problem. Some buckets can be very large.

For example on the human genome (GRCh38), for \(k=31\) and \(m=20\) : largest bucket size can be as large as \(3.6 \times 10^{4}\).
- Property. Minimizers have a (very) skew distribution for sufficiently long length.

Bucket size distribution (\%) for \(k=31\) and the first \(n=10^{9} k\)-mers of the human genome, by varying minimizer length \(m\).
\begin{tabular}{crrrrrr|rrrrr}
\hline size \(/ m\) & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\
\hline 1 & 13.7 & 19.8 & 29.7 & 42.4 & 61.5 & 79.5 & 89.8 & 94.4 & 96.3 & 97.1 & 97.5 \\
2 & 7.5 & 10.6 & 14.4 & 17.7 & 19.4 & 13.6 & 7.3 & 3.9 & 2.4 & 1.7 & 1.4 \\
3 & 5.2 & 7.3 & 8.8 & 10.4 & 8.4 & 3.7 & 1.4 & 0.8 & 0.5 & 0.4 & 0.4 \\
4 & 4.0 & 5.5 & 6.0 & 7.0 & 4.1 & 1.3 & 0.5 & 0.3 & 0.2 & 0.2 & 0.2 \\
5 & 3.2 & 4.4 & 4.5 & 5.0 & 2.2 & 0.6 & 0.3 & 0.2 & 0.1 & 0.1 & 0.1 \\
\hline
\end{tabular}

On the full human genome (GRCh38),
\[
\text { for } k=31 \text { and } m=20
\]
\(2,505,445,761 k\)-mers
421, 845, 806 minimizers
\(388,018,280(91.98 \%)\) only appear once!

\section*{Skew Hashing}
- We fix an integer \(\ell\) : by virtue of the skew distribution, the fraction of buckets having more than \(2^{\ell}\) super- \(k\)-mers is small.
- So, we can afford a MPHF over the set of \(k\)-mers that belong to such super- \(k\)-mers.

Bucket size distribution (\%) for \(k=31\) and the first \(n=10^{9} k\)-mers of the human genome, by varying minimizer length \(m\).
\begin{tabular}{crrrrrrrrr|r|r}
\hline size / \(m\) & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\
\hline 1 & 13.7 & 19.8 & 29.7 & 42.4 & 61.5 & 79.5 & 89.8 & 94.4 & 96.3 & 97.1 & 97.5 \\
2 & 7.5 & 10.6 & 14.4 & 17.7 & 19.4 & 13.6 & 7.3 & 3.9 & 2.4 & 1.7 & 1.4 \\
3 & 5.2 & 7.3 & 8.8 & 10.4 & 8.4 & 3.7 & 1.4 & 0.8 & 0.5 & 0.4 & 0.4 \\
4 & 4.0 & 5.5 & 6.0 & 7.0 & 4.1 & 1.3 & 0.5 & 0.3 & 0.2 & 0.2 & 0.2 \\
5 & 3.2 & 4.4 & 4.5 & 5.0 & 2.2 & 0.6 & 0.3 & 0.2 & 0.1 & 0.1 & 0.1 \\
\hline
\end{tabular}

\section*{Skew Hashing}
- For \(i=\ell, \ldots, L\), let \(K_{i}\) is the set of all \(k\)-mers belonging to buckets of size \(s\), with \(s\) such that:
\[
\left\{\begin{array}{l}
2^{i}<s \leq 2^{i+1} \quad \ell \leq i<L \\
2^{L}<s \leq \max \quad i=L
\end{array}\right.
\]
- We build a MPHF \(f_{i}\) for each set \(K_{i}\). For a \(k\)-mer \(g \in K_{i}\), we know that its bucket contains at most \(2^{i+1}\) super- \(k\)-mers, so we write the identifier of the super- \(k\)-mer containing \(g\) in a (compact) vector \(V_{i}\) of \((i+1)\)-bit ints.
- Upon Lookup, we will scan one super- \(k\)-mer only.

\section*{Skew Hashing - Example}

Example for \(\ell=3\).


\section*{Experimental Setup and Datasets}
- Processor: Intel(R) Core(TM) i9-9940X CPU @ 3.30GHz
- Compiler and OS: gcc version 11.2.0, Ubuntu 11.2.0-7ubuntu2
- Code in \(\mathrm{C}++17\), compiled with flags: -03 -march=native

Some basic statistics for the datasets used in the experiments, for \(k=31\), such as number of: \(k\)-mers ( \(n\) ), paths ( \(p\) ), and bases \((N)\).
\begin{tabular}{lrrrc} 
Dataset & \(n\) & \(p\) & \(N\) & \(\left\lceil\log _{2}(N)\right\rceil\) \\
\hline Cod & \(502,465,200\) & \(2,406,681\) & \(574,665,630\) & 30 \\
Kestrel & \(1,150,399,205\) & 682,344 & \(1,170,869,525\) & 31 \\
Human & \(2,505,445,761\) & \(13,014,641\) & \(2,895,884,991\) & 32 \\
Bacterial & \(5,350,807,438\) & \(26,449,008\) & \(6,144,277,678\) & 33 \\
\hline
\end{tabular}

NOTE: We used BCALM (v2) [Chikhi et al., 2016] to build the compacted dBG and then UST
[Rahman and Medvedev, 2020]
to compute the stitched unitigs.

\section*{Trade-offs by Varying Minimizer Length}

Space in bits/k-mer (bpk) and Lookup time (indicated by \(\mathrm{Lkp}^{+}\)for positive queries; by \(\mathrm{Lkp}^{-}\)for negative) in average \(\mathrm{ns} / k\)-mer for regular and canonical SSHash dictionaries by varying minimizer length \(m\). For each dataset, we indicate promising configurations in bold font.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Dataset} & \(m\) & \(m\) & \(m\) & \(m\) \\
\hline & bpk \(\mathrm{Lkp}^{+} \mathrm{Lkp}^{-}\) & bpk \(\mathrm{Lkp}^{+} \mathrm{Lkp}^{-}\) & bpk Lkp \({ }^{+} \mathrm{Lkp}^{-}\) & bpk \(\mathrm{Lkp}^{+} \mathrm{Lkp}^{-}\) \\
\hline Cod & 15 & 16 & 17 & 18 \\
\hline regular & 6.6012361267 & 6.8211001174 & 6.9810451158 & 7.2110151157 \\
\hline canonical & \(\begin{array}{llll}7.68 & 945 & 768\end{array}\) & \(\begin{array}{llll}7.92 & 834 & 690\end{array}\) & \(8.18 \quad 786 \quad 672\) & \(8.47 \quad 755 \quad 658\) \\
\hline Kestrel & 16 & 17 & 18 & 19 \\
\hline regular & 6.1911371323 & 6.4810421265 & 6.7910051245 & 7.129971240 \\
\hline canonical & \(\begin{array}{llll}7.30 & 882 & \mathbf{7 8 1}\end{array}\) & 7.68790722 & 8.09743696 & \(8.51 \quad 730 \quad 691\) \\
\hline Human & 17 & 18 & 19 & 20 \\
\hline regular & 7.4415911668 & 7.6714591573 & 7.9514061547 & 8.2813381530 \\
\hline canonical & 8.761150936 & 9.041054881 & \(\begin{array}{lll}9.39 & 990 & 854\end{array}\) & \(\begin{array}{lll}9.80 & 958 & 838\end{array}\) \\
\hline Bacterial & 18 & 19 & 20 & 21 \\
\hline regular & 7.4215351867 & 7.8014251813 & 8.2213891780 & 8.7013681774 \\
\hline canonical & 8.7511291043 & 9.221051995 & 9.751028947 & \(10.34 \quad 998 \quad 956\) \\
\hline
\end{tabular}

\section*{NOTE 1:}

We used \(\ell=6\) and \(L=12\) for all experiments.

\section*{NOTE 2:}

A good rule of thumb is \(m=\left\lceil\log _{4}(N)\right\rceil+1\) or \(m=\left\lceil\log _{4}(N)\right\rceil+2\).

\section*{Space Breakdowns}


Space breakdowns for the Human dataset, for both (a) regular and (b) canonical dictionaries. The numbers next to each bar indicate the bits/k-mer (bpk) spent by the respective components.

\section*{Competitors}
- dBG-FM [Chikhi et al., 2014]: FM-index [Ferragina and Manzini, 2000]
- Pufferfish [Almodaresi et al., 2018]: MPHF
- Blight [Marchet et al., 2021]: MPHF+minimizers

\section*{Overall Comparison - Space and Lookup}

Dictionary space in total GB and average bits/k-mer (bpk).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Dictionary} & \multicolumn{2}{|r|}{Cod} & \multicolumn{2}{|l|}{Kestrel} & \multicolumn{2}{|l|}{Human} & \multicolumn{2}{|l|}{Bacterial} \\
\hline & GB & bpk & GB & bpk & GB & bpk & GB & bpk \\
\hline dBG-FM, \(s=128\) & 0.22 & 3.48 & 0.44 & 3.07 & - & - & & \\
\hline dBG-FM, \(s=64\) & 0.27 & 4.38 & 0.55 & 3.86 & & - & & \\
\hline dBG-FM, \(s=32\) & 0.39 & 6.16 & 0.78 & 5.43 & - & - & - & \\
\hline \multirow[t]{2}{*}{Pufferfish, sparse} & 1.75 & 27.80 & 3.69 & 25.66 & 8.87 & 28.32 & 18.91 & 28.28 \\
\hline & 1.49 & 23.70 & 3.37 & 23.40 & 7.50 & 23.96 & 16.09 & 24.06 \\
\hline \multirow[t]{2}{*}{Pufferfish, dense} & 2.69 & 42.76 & 5.97 & 41.54 & 14.11 & 45.04 & 30.70 & 45.89 \\
\hline & 2.43 & 38.66 & 5.65 & 39.28 & 12.74 & 40.68 & 27.88 & 41.68 \\
\hline Blight, \(b=4\) & 0.91 & 14.53 & 2.16 & 15.00 & 5.04 & 16.11 & 11.40 & 17.04 \\
\hline Blight, \(b=2\) & 1.04 & 16.57 & 2.45 & 17.04 & 5.67 & 18.13 & 12.74 & 19.05 \\
\hline Blight, \(b=0\) & 1.17 & 18.61 & 2.74 & 19.06 & 6.32 & 20.17 & 14.12 & 21.11 \\
\hline SSHash, regular & 0.44 & 6.98 & 0.93 & 6.48 & 2.59 & 8.28 & 5.50 & 8.22 \\
\hline SSHash, canonical & 0.50 & 7.92 & 1.00 & 7.30 & 2.94 & 9.39 & 6.17 & 9.22 \\
\hline
\end{tabular}

Dictionary Lookup time in average \(\mathrm{ns} / k\)-mer.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Dictionary} & \multicolumn{2}{|r|}{Cod} & \multicolumn{2}{|l|}{Kestrel} & \multicolumn{2}{|l|}{Human} & \multicolumn{2}{|l|}{Bacterial} \\
\hline & Lkp \({ }^{+}\) & \(\mathrm{Lkp}^{-}\) \\
\hline dBG-FM, \(s=128\) & 22,980 & 16,501 & 23,934 & 16,764 & - & - & - & - \\
\hline dBG-FM, \(s=64\) & 15,013 & 10,919 & 15,929 & 11,462 & - & - & - & - \\
\hline dBG-FM, \(s=32\) & 11,386 & 7929 & 11,703 & 8073 & - & - & - & - \\
\hline Pufferfish, sparse & 1110 & 700 & 5456 & 769 & 13,656 & 862 & 27,748 & 983 \\
\hline Pufferfish, dense & 624 & 439 & 635 & 485 & 720 & 519 & 816 & 582 \\
\hline Blight, \(b=4\) & 2520 & 2751 & 2743 & 3104 & 2820 & 3329 & 3105 & 3913 \\
\hline Blight, \(b=2\) & 1800 & 1643 & 1916 & 1820 & 2008 & 1975 & 2095 & 2146 \\
\hline Blight, \(b=0\) & 1571 & 1317 & 1692 & 1472 & 1780 & 1610 & 1859 & 1751 \\
\hline SSHash, regular & 1045 & 1158 & 1042 & 1265 & 1338 & 1530 & 1389 & 1780 \\
\hline SSHash, canonical & 834 & 690 & 882 & 781 & 990 & 854 & 1051 & 995 \\
\hline
\end{tabular}

\section*{Overall Comparison - Streaming Queries}

Query time for streaming membership queries for various dictionaries. The query time is reported as total time in minutes (tot), and average ns/k-mer (avg). We also indicate the query file (SRR number) and the percentage of hits. Both high-hit ( \(>70 \%\) hits) and low-hit ( \(<1 \%\) hits) workloads are considered.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Dictionary} & \multicolumn{2}{|c|}{Cod} & \multicolumn{2}{|r|}{Kestrel} & \multicolumn{2}{|r|}{Human} & \multicolumn{2}{|l|}{Bacterial} & \multicolumn{3}{|c|}{Cod} & \multicolumn{2}{|r|}{Kestrel} & \multicolumn{2}{|l|}{Human} & \multicolumn{2}{|l|}{Bacterial} \\
\hline & \multicolumn{2}{|l|}{SRR12858649} & \multicolumn{2}{|l|}{SRR11449743} & \multicolumn{2}{|l|}{SRR5833294} & \multicolumn{2}{|l|}{SRR5901135} & \multirow[t]{2}{*}{Dictionary} & \multicolumn{2}{|l|}{SRR11449743} & \multicolumn{2}{|l|}{SRR12858649} & \multicolumn{2}{|l|}{SRR5901135} & \multicolumn{2}{|l|}{SRR5833294} \\
\hline & \multicolumn{2}{|l|}{81.37\% hits} & \multicolumn{2}{|l|}{74.60\% hits} & \multicolumn{2}{|l|}{91.65\% hits} & \multicolumn{2}{|l|}{87.79\% hits} & & \multicolumn{2}{|l|}{0.659\% hits} & \multicolumn{2}{|l|}{0.484\% hits} & \multicolumn{2}{|l|}{0.002\% hits} & \multicolumn{2}{|l|}{0.086\% hits} \\
\hline & tot & avg & tot & avg & tot & avg & tot & avg & & tot & avg & tot & avg & tot & avg & tot & avg \\
\hline Pufferfish, sparse & 0.6 & 214 & 14.1 & 609 & 17.0 & 651 & 9.1 & 691 & Pufferfish, sparse & 14.6 & 627 & 0.9 & 312 & 11.3 & 855 & 25.5 & 975 \\
\hline Pufferfish, dense & 0.2 & 92 & 8.5 & 368 & 10.5 & 402 & 5.3 & 404 & Pufferfish, dense & 8.7 & 374 & 0.2 & 92 & 5.8 & 435 & 13.6 & 518 \\
\hline Blight, \(b=4\) & 2.1 & 766 & 32.5 & 1400 & 27.3 & 1041 & 11.4 & 864 & Blight, \(b=4\) & 72.2 & 3112 & 6.6 & 2407 & 35.7 & 2704 & 253.2 & 9675 \\
\hline Blight, \(b=2\) & 1.2 & 453 & 16.6 & 714 & 17.5 & 670 & 8.6 & 648 & Blight, \(b=2\) & 45.9 & 1978 & 3.0 & 1115 & 19.1 & 1445 & 117.7 & 4498 \\
\hline Blight, \(b=0\) & 0.8 & 282 & 10.8 & 464 & 11.5 & 440 & 5.8 & 434 & Blight, \(b=0\) & 18.1 & 780 & 1.8 & 655 & 14.4 & 1088 & 32.2 & 1232 \\
\hline SSHash, regular & 0.5 & 166 & 6.2 & 267 & 8.2 & 311 & 3.0 & 223 & SSHash, regular & 10.7 & 463 & 0.9 & 314 & 6.2 & 463 & 14.3 & 544 \\
\hline SSHash, canonical & 0.3 & 111 & 5.1 & 219 & 6.7 & 253 & 2.4 & 184 & SSHash, canonical & 5.1 & 220 & 0.4 & 155 & 2.5 & 183 & 6.4 & 244 \\
\hline
\end{tabular}
(a) high-hit workload

\section*{Construction Time and Space}

Dictionary construction times in minutes (using a single processing thread) and peak internal memory used during construction in GB. (Blight's performance was the same for all values of \(b\) in the experiment.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Dictionary} & \multicolumn{2}{|l|}{Cod} & \multicolumn{2}{|l|}{Kestrel} & \multicolumn{2}{|l|}{Human} & \multicolumn{2}{|l|}{Bacterial} \\
\hline & min & GB & min & & min & GB & min & GB \\
\hline dBG-FM, \(s=128\) & 28.5 & 0.5 & 100.0 & 0.7 & - & - & - & \\
\hline dBG-FM, \(s=64\) & 28.5 & 0.6 & 100.0 & & - & - & - & \\
\hline dBG-FM, \(s=32\) & 28.5 & 0.7 & 100.0 & 1.1 & - & - & - & - \\
\hline Pufferfish, sparse & 15.5 & 3.3 & 35.2 & 6.7 & 86.0 & 19.4 & 200.8 & 40.1 \\
\hline Pufferfish, dense & 13.0 & 2.8 & 29.2 & 5.9 & 70.7 & 14.0 & 173.2 & 30.4 \\
\hline Blight & 5.0 & 3.3 & 11.0 & 7.0 & 25.0 & 7.5 & 50.0 & 15.8 \\
\hline SSHash, regular & 1.5 & 2.6 & 3.8 & 5.7 & 12.5 & 15.4 & 29.6 & 33.4 \\
\hline SSHash, canonical & 2.0 & 2.8 & 4.4 & 5.8 & 16.2 & 17.3 & 36.0 & 36.6 \\
\hline
\end{tabular}

NOTE: SSHash construction works entirely in internal memory.
(This is going to change in future releases.)

\section*{3. Weight Compression}

\section*{SSHash is Order-Preserving}
- Quick Recap. For a set \(K\) of \(n\) distinct \(k\)-mers, SSHash implements a function (Lookup) \(h: \Sigma^{k} \rightarrow\{-1,0, \ldots, n-1\}\), where \(0 \leq h(g)<n\) if \(g \in K\) and \(h(g)=-1\) if \(g \notin K\).
- Order-Preserving Property. If \(g_{2}\) if the successor of \(g_{1}\), then \(h\left(g_{2}\right)=h\left(g_{1}\right)+1\).
- This is a direct consequence of indexing a spectrum-preserving string set (SPSS): \(K\) is reduced to a set of \(p\) strings \(\mathcal{S}=\left\{S_{0}, \ldots, S_{p-1}\right\}\).
- Any order on \(\mathcal{S}\) uniquely determines an order \(i=0, \ldots, n-1\) for the \(k\)-mers \(\left\{g_{i}\right\}_{i}\), thus: \(h\left(g_{i}\right)=i\).

\section*{The Weights}
- Let \(W[0 . . n-1]\) be the sequence of \(k\)-mer weights, where \(W[i]=w\left(g_{i}\right)\) and \(i=h\left(g_{i}\right)\).
- Property. The order-preserving property of \(h\) makes \(W\) have runs of equal weights, because consecutive \(k\)-mers are likely to have the same weight.
- We exploit the order of the \(k\)-mers to preserve the natural order of the weights.
```

>55555555555555
GGTAATGCAGCCAGGGATGCAACGACCGCAACAGAAAAAGCCCG
111114444
CAGCTCATTACAGAAAAAATACCGCTCACCGCCCTGCACCGTCAGGTCAATTTCCCTGAGCACCACCCGCGGTGACTGCTCTGATTTAACC
>444444444444444444444444444444
CAGCTATGCAGGAGACAAGAATCGCCAGCTTACCCGTTACAGCGATACCCGCTGGCATG
>13 13 13 13 13 13 13 13
TCAGGTGTACGGTGTGCGTAAAGTCTGGCGTCAGTTG

```

We have 6 runs in this example:
TCAGGTGTACGGTGTGCGTAAAGTCTGGCGTCAGTTG

\section*{Run-Length Encoding (RLE)}
- Represent \(W\) with \(r\) runs as a sequence of run-length pairs \(R L W=\left\langle w_{0}, \ell_{0}\right\rangle\left\langle w_{1}, \ell_{1}\right\rangle \ldots\left\langle w_{r-1}, \ell_{r-1}\right\rangle\).
- Take the prefix-sums of the lengths \(0, \ell_{0}, \ell_{1}, \ldots, \ell_{r-2}\) into an array \(P[0 . . r-1]\) and encode it with Elias-Fano.
- We spend, at most

- To retrieve \(w(g)\) from \(i=h(g)\), all that we need is a predecessor query over \(P\) which is done in \(O(\log (n / r))\) with Elias-Fano.

\section*{Reducing the Number of Runs}
- Strategy. Change the order of the strings in \(\mathcal{S}=\left\{S_{0}, \ldots, S_{p-1}\right\}\) and possibly take the reversecomplement of a string (and reverse the corresponding weights) to reduce the number of runs.
- Goal. Compute a signed permutation \(\pi[0 . . p-1]\) where \(\pi[i]=j\) indicates that:
- if \(j<0\) : reverse \(\left(S_{i}\right)\) has to appear in position \(-j\);
- else: \(S_{i}\) has to appear in position \(j\).
1 :
1: \begin{tabular}{llllllll}
5 & 5 & 2 & \(\ldots\) & 2 & 2 & & \\
& \(A\) & \(C\) & \(C\) & \(\ldots\) & G T & G T
\end{tabular}
2:
\begin{tabular}{llllllll}
1 & 1 & 2 & \(\ldots\) & 2 & 2 & & \\
C & T & T & \(\ldots\) & C A & T T & &
\end{tabular}
3 :
\begin{tabular}{llllllll}
3 & 3 & 3 & \(\ldots\) & 2 & 2 & & \\
C & G & A & \(\ldots\) & T & T & T & C
\end{tabular}
4:
3
3
G A T
G A T
\(1:\)

\(\begin{array}{llllllll}3 & 3 & 3 & \ldots & 2 & 2 & & \\ \text { C } & G & A & \ldots & \text { T } & \text { T } & \text { T } & \text { C }\end{array}\)
4: \(\begin{array}{lllllllll}3 & 3 & 1 & \ldots & 1 & 1 & \\ \text { G A A T } & \ldots & C & C & G & A\end{array}\)
2 :
```

$$
\begin{array}{llllllll}
1 & 1 & 2 & \ldots & 2 & 2 & & \\
\hline \mathrm{C} & \mathrm{~T} & \mathrm{~T} & \ldots & \mathrm{C} & \mathrm{~A} & \mathrm{~T} & \mathrm{~T}
\end{array}
$$

```

\[
\pi=\left[\begin{array}{c}
+1,+4, \\
1
\end{array}+\underset{3}{4},-2,+3\right]
\]

NOTE: The result \(\pi\) only depends on the end-point weights of a string and not on the other weights, nor on the nucleotide sequences.

\section*{End-Point Weight Graphs and Path Covers}
- Since the result \(\pi\) only depends on the end-point weights, it is convenient to consider the end-point weight graph \(e w G(\mathcal{S})\) for \(\mathcal{S}\).
- A (disjoint-node) path cover \(C\) for \(e w G(\mathcal{S})\) determines a signed permutation \(\pi\).
- Minimizing the number of runs in \(\mathcal{S}\) is equivalent to finding a minimum-cardinality path cover \(C\) for \(e w G(\mathcal{S})\).
- We can compute a lower bound on the number of runs.

(a)

(b)
\(\pi=[+1,+4,-2,+3]\)

(c)
\[
\pi=[+4,+1,-2,+3]
\]

\section*{Computing a Path Cover}
```

cover(ewG(\mathcal{S})):
incidence = \varnothing

```
    unvisited \(=\varnothing\)
    for each node \(u \in \operatorname{ew} G(\mathcal{S})\) :
            unvisited.insert( \(u\) )
            incidence[u.left].insert(u)
            incidence \([u . r i g h t] . \operatorname{insert}(u)\)
while unvisited \(\neq \varnothing\) :
            \(u=\) unvisited.take()
            \(p=\varnothing\)
            while true :
            extend \(p\) with \(u\)
            unvisited.erase ( \(u\) )
            incidence [u.left].erase ( \(u\) )
            incidence \([u . r i g h t]\). .erase \((u)\)
            if incidence \([p . b a c k . r i g h t] \neq \varnothing\) :
                    \(u=\) incidence \([p . b a c k . r i g h t] . \operatorname{take}()\)
- If we use hashing to implement incidence and unvisited, then insert/erase/take are all supported in \(O(1)\) expected time.
- So the overall complexity (in both time and space) is linear in the number of nodes in \(e w G(\mathcal{S})\).
\(u=\) unvisited.take()
\(p=\varnothing\)
while true :
extend \(p\) with \(u\)
unvisited.era incidence \([u . r i g h t]\). .erase \((u)\)
if incidence \([p . b a c k . r i g h t] \neq \varnothing\) :
\(u=\) incidence \([p . b a c k . r i g h t]\). take()
else if incidence \([p\). front.left \(] \neq \varnothing\) :
\(u=\) incidence[p.front.left].take()
else : break

for each \(u \in p\) :
print (u.sign, u.id)

\section*{Examples of Path Covers}

\(C\) contains 3 paths (optimal).

\(C\) contains 4 paths.

\section*{Experimental Setup and Datasets}
- Processor: Intel(R) Core(TM) i9-9940X CPU @ 3.30GHz
- Compiler and OS: gcc version 11.2.0, Ubuntu 11.2.0-7ubuntu2
- Code in C++17, compiled with flags: -03 -march=native

Some basic statistics for the datasets used in the experiments, for \(k=31\), such as: number of distinct \(k\)-mers ( \(n\) ), number of distinct weights \((|\mathcal{D}|\) ), largest weight (max), expected weight value \((E)\), and empirical entropy of the weights \(\left(H_{0}(W)\right)\).
\begin{tabular}{lrccccrr}
\hline Dataset & \(n\) & \(|\mathcal{D}|\) & \(\left\lceil\log _{2}|\mathcal{D}|\right\rceil\) & \(\max\) & \(\left\lceil\log _{2} \max \right\rceil\) & \(E\) & \(H_{0}(W)\) \\
\hline E-Coli & \(5,235,781\) & 22 & 5 & 27 & 5 & 1.05 & 0.206 \\
S-Enterica-100 & \(13,074,614\) & 587 & 10 & 3,483 & 12 & 37.47 & 4.420 \\
Human-Chr-13 & \(90,911,778\) & 806 & 10 & 6,354 & 13 & 1.08 & 0.160 \\
C-Elegans & \(94,006,897\) & 398 & 9 & 3,478 & 12 & 1.07 & 0.223 \\
\hline
\end{tabular}

\section*{Weight Compression}

Space for the weights in bits/k-mer, before and after the run-reduction optimization. In parentheses, we report the compression ratio compared to the empirical entropy.
\begin{tabular}{lccrcc}
\hline Dataset & \(H_{0}(W)\) & before & \multicolumn{3}{c}{ after } \\
\hline E-Coli & 0.206 & 0.017 & \((12.11 \times)\) & 0.014 & \((15.10 \times)\) \\
S-Enterica-100 & 4.420 & 0.592 & \((7.47 \times)\) & 0.401 & \((11.02 \times)\) \\
Human-Chr-13 & 0.160 & 0.136 & \((1.18 \times)\) & 0.107 & \((1.50 \times)\) \\
C-Elegans & 0.223 & 0.069 & \((3.23 \times)\) & 0.055 & \((4.05 \times)\) \\
\hline
\end{tabular}

Number of strings \((p)\), number of runs \((r)\) in comparison to the lower bound \(\left(r_{l o}\right)\), and the run-time of the path cover algorithm (Alg. 3).
\begin{tabular}{lrrrcc}
\hline Dataset & \(p\) & \(r_{l o}\) & \(r\) & Alg. 3 (ms) & Alg. 3 (ns/node) \\
\hline E-Coli & 2,102 & 3,723 & 3,723 & 0.6 & 285 \\
S-Enterica-100 & 150,604 & 277,649 & 277,658 & 53.0 & 352 \\
Human-Chr-13 & 266,113 & 462,175 & 462,197 & 94.6 & 355 \\
C-Elegans & 140,452 & 247,661 & 247,669 & 47.1 & 335 \\
\hline
\end{tabular}

\section*{Competitors}
- dBG-FM [Chikhi et al., 2014]: FM-index [Ferragina and Manzini, 2000]
- cw-dBG [Italiano et al., 2021]: weighted BOSS [Bowe et al., 2012]
- BCFS and AMB [Shibuya et al., 2021]: compressed static functions (CSFs) efficient maps from \(k\)-mers to weights (the \(k\)-mers are not represented)

\section*{Overall Comparison}

Dictionary space in average bits/k-mer and count time in average \(\mu \mathrm{sec} / k\)-mer. For reference, we report in gray color the space and time of SSHash without the weight information.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Dictionary} & \multicolumn{2}{|r|}{E-Coli} & \multicolumn{2}{|l|}{S-Enterica-100} & \multicolumn{2}{|l|}{Human-Chr-13} & \multicolumn{2}{|r|}{C-Elegans} \\
\hline & space & query-time & space & query-time & space & query-time & space & query-time \\
\hline dBG-FM, \(s=128\) & 3.20 & 14.73 & 113.78 & 16.47 & 3.23 & 17.40 & 3.18 & 18.05 \\
\hline dBG-FM, \(s=64\) & 4.02 & 7.91 & 142.25 & 11.13 & 4.07 & 11.33 & 4.01 & 10.89 \\
\hline dBG-FM, \(s=32\) & 5.65 & 4.62 & 198.71 & 8.57 & 5.73 & 8.20 & 5.67 & 7.90 \\
\hline cw-dBG, \(s=128\) & 2.79 & 109.13 & 5.59 & 120.72 & 2.80 & 100.88 & 2.77 & 127.86 \\
\hline \(\mathrm{cw}-\mathrm{dBG}, s=64\) & 2.86 & 70.93 & 5.74 & 85.73 & 2.86 & 73.91 & 2.84 & 84.19 \\
\hline \(\mathrm{cw}-\mathrm{dBG}, \mathrm{s}=32\) & 2.99 & 52.29 & 6.03 & 66.25 & 2.99 & 59.85 & 2.97 & 62.54 \\
\hline SSHash+BCSF & 5.07 & 0.82 & 11.12 & 0.89 & 6.15 & 1.25 & 6.00 & 1.28 \\
\hline SSHash+AMB & 4.90 & 1.34 & 9.27 & 1.65 & 6.08 & 1.95 & 5.88 & 1.97 \\
\hline w-SSHash & 4.80 & 0.37 & 6.57 & 0.48 & 6.04 & 0.84 & 5.75 & 0.85 \\
\hline SSHash & 4.79 & 0.34 & 6.15 & 0.41 & 5.93 & 0.76 & 5.69 & 0.77 \\
\hline
\end{tabular}

\section*{Additional Results for w-SSHash}

Number of \(k\)-mers, number of strings ( \(p\) ), number of runs \((r)\) in comparison to the lower bound ( \(r_{l o}\) ), and the run-time of the path cover algorithm in total seconds (Alg. 3), index space in bits/k-mers, and query time in \(\mu \mathrm{sec} / k\)-mer.
\begin{tabular}{lrrrrcccc}
\hline Dataset & \(n\) & \(p\) & \(r_{l o}\) & \(r\) & Alg. 3 & \(H_{0}(W)\) & space & query-time \\
\hline Cod & \(502,465,200\) & \(2,406,681\) & \(4,183,202\) & \(4,183,230\) & 1.2 & 0.441 & \(6.98+0.19\) & 1.3 \\
Kestrel & \(1,150,399,205\) & 682,344 & \(1,140,743\) & \(1,140,747\) & 0.3 & 0.089 & \(6.49+0.02\) & 1.1 \\
Human & \(2,505,445,761\) & \(13,014,641\) & \(22,680,047\) & \(22,680,099\) & 7.5 & 0.453 & \(8.28+0.22\) & 1.6 \\
Bacterial & \(5,350,807,438\) & \(26,448,286\) & \(56,662,230\) & \(56,662,304\) & 17.2 & 1.890 & \(8.22+0.24\) & 1.9 \\
\hline
\end{tabular}

\section*{4. Conclusions and Future Directions}

\section*{Conclusions}
- SSHash is an efficient solution to the Weighted K-Mer Dictionary problem: good trade-off between space and time.
- Tool-box: SPSS, minimizers, MPHF (https://github.com/jermp/pthash), Elias-Fano, RLE.
- Ingredients:
- Sparse indexing to obtain good space effectiveness;
- Skew hashing to guarantee fast lookup for "heavy" buckets;
- Order of the \(k\)-mers induces runs in the weights: suitable for RLE.
- Compared to BWT-based indexes: one order of magnitude faster for "just" 2X more space. Compared to other hashing schemes: 2-5X smaller with comparable of faster query time.
- Weights add very small extra space and do not impact query time.
- Code in C++17 is available at: https://github.com/jermp/sshash.

\section*{(Possible) Future Directions}
- Provide an external-memory construction. Trade-off RAM usage for disk during construction for better scaling to larger datasets.
- Add support for multi-threading (for queries and construction).
- Add support for other types of queries, like navigational queries.
- Use the index as backbone for other problems:
- positional indexing of \(k\)-mers;
- \(k\)-mer quantification across collections of documents;
- others?

\section*{Open Questions}
- What happens if we replace the minimizers in SSHash with other types of seeds? For example, strobemers [Sahlin, 2021], bi-directional string anchors [Loukides and Pissis, 2021], ...
- What if we change the hash function used to select the minimizers?
- Does it lead to an improvement in space (less seeds/lower density)?
- Beyond SPSS: allow duplicates in the representation, e.g., matchtigs [Schmidt et al., 2022]?
- What is the cost of dynamism, i.e., support for insertions/deletions?

Thank you for the attention!```

