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The text indexing problem

» Given a string 7[0..n) over the alphabet 2 = [0..0), pre-process T so that the following
queries can be answered efficiently for any string P[0..m):

- Locate(P, T): return all the positions where P occurs in T;
- Count(P, T): count the number of occurrences of P in T;
- Extract(i, j, T): report the substring 711 . . J].

* Fundamental and well-studied problem.
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* More about this on Friday: “25 years of compressed self-indexes” !
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The text indexing problem

 Many solutions with different trade-offs between space and time.

* Solutions broadly fall into two categories:

1. Compressed: The text is replaced (is “self-indexed”) with a compressed representation.

2. Uncompressed: A redundancy (an “index”) is attached to 1 to accelerate queries.

* Solutions in 1. are very space-efficient but generally slower to build and query than solutions
in 2. which — on the other hand — are space-inefficient.

 Example. The (uncompressed) suffix array is much faster to query than the FM-index but
requires O(n log n) bits on top of the text.



Our contribution

 We focus on the uncompressed case, i.e., we attach an index to the text, and address the
space-inefficiency of the index while supporting efficient queries.
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be smaller/faster than Index(T) because S is a lot smaller than 7, for any Index.

« At query time: we also compute Q = Sketch(P) and match Q against 5. Candidate
matches (including false positives) are mapped back to 1 to be verified.



Our contribution

 We focus on the uncompressed case, i.e., we attach an index to the text, and address the
space-inefficiency of the index while supporting efficient queries.

« Main idea: if we compute a sketch of the text T, say S = Sketch(T), then Index(S) will
be smaller/faster than Index(T) because S is a lot smaller than 7, for any Index.

« At query time: we also compute Q = Sketch(P) and match Q against 5. Candidate
matches (including false positives) are mapped back to 1 to be verified.

* Thatis, we have a universal framework because:

- any index can be used for ;

- any locally-consistent sampling algorithm can be used to sketch the text and obtain 3.



Intermezzo: sketching with minimizers

» Consider each window of w consecutive k-mers from a string 7: sample one k-mer out of w
and call it the “representative” of the window — or its minimizer.

» We would like to sample the same minimizer from Example forw =4 and k = 7.

consecutive windows so that the set of distinct
minimizers forms a succinct sketch for T. ACGGTAGAACCGATTCAAATTCGAT...

ACGGTAGAAC
CGGTAGAACC
GGTAGAACCG
GTAGAACCGA
TAGAACCGAT
AGAACCGATT
GAACCGATTC
AACCGATTCA
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* Q. How do we compare different sampling algorithms?

A. We define the density of a sampling algorithm as the fraction between the number of
(distinct) minimizers and the total number of k-mers of 7.

The lower the density, the better!



Intermezzo: sketching with minimizers

* Q. How do we compare different sampling algorithms?

A. We define the density of a sampling algorithm as the fraction between the number of
(distinct) minimizers and the total number of k-mers of 7.

The lower the density, the better!

» Since the same k-mer cannot be a minimizer for more than w consecutive k-mers, we
immediately have a lower bound of 1/w on the density of any sampling algorithm.

TAGAACCGAT
AGAACCGATT
GAACCGATTC
AACCGATTCA



The “folklore”, random, minimizer

1: function MINIMIZER(W, w, k, Ok) Example forw =4 and k = 7.
2: min = T
N A ACGGTAGAACCGATTCAAATTCGAT..
4: for:=0;:<w;t=14+1do

’ . ACGGTAGAAC
6: if 0 < 0;pin then GGTAGAACCG
7 Omin — O GTAGAACCGA
] p=1i TAGAACCGAT
9: | return p AGAACCGATT

GAACCGATTC

AACCGATTCA

* We usually define the total order using a random
hash function (random minimizer).

* In this case, the density is 2/(w + 1): almost a
factor of 2 away from the lower bound for large w.



The “folklore”, random, minimizer

1: function MINIMIZER(W, w, k, Ok) Example forw =4 and k = 7.
2: min = T
N A ACGGTAGAACCGATTCAAATTCGAT..
4: for: =02 <w;i1=1+1do

’ . ACGGTAGAAC
6: if 0 < 0;in then GGTAGAACCG
7: Omin — O GTAGAACCGA
] p=1i TAGAACCGAT
9: | return p AGAACCGATT

GAACCGATTC

AACCGATTCA

* We usually define the total order using a random
hash function (random minimizer).

* In this case, the density is 2/(w + 1): almost a More about them
factor of 2 away from the lower bound for large w. on Thursday!
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- = lower bound (improved, 2024)

— minimizer (2004)
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double-decyclying (2023)
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open-closed mod-minimizer (2025)

[Groot Koerkamp and P., 2024]
|Groot Koerkamp, Liu, and P., 2025]
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The U-index framework for matching long patterns

« Wefixintegers £ > 0Oandk > Oandletw := ¢ — k + 1, so that any pattern P of length
m > ¢ contains at least one minimizer.
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An example

minimizer strinq
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Theoretical guarantees

« Using some machinery, we guarantee that an occurrence p € Locate(Q, S) is verified in O(1),
rather than O(m). This can be done in O(z) space on top of the space of the text, where z is the
number of minimizers of 7.




Results — Index size and build space for human chr 1
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Results — Query and build time for human chr 1

511 . . Time sketching the input
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An example application

 We demonstrated that the U-index framework can be useful for long read mapping.

* A core problem in Computational Biology; it involves aligning long patterns to a reference
genome.

* Experimental setting: we align 450 HiFi long reads (avg. length is 16 kbp) on a complete
human reference genome. We use k = 8 and £ = 128.



An example application

 We demonstrated that the U-index framework can be useful for long read mapping.

* A core problem in Computational Biology; it involves aligning long patterns to a reference
genome.

* Experimental setting: we align 450 HiFi long reads (avg. length is 16 kbp) on a complete
human reference genome. We use k = 8 and £ = 128.

* Very practical numbers using a suffix array as index: the U-index is bulilt in 12 seconds with
~ 9us per pattern (23 avg. false positives per pattern).
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Conclusions

* Main take-away: U-index is a framework to enhance the performance of any off-the-shelf
text index, provided that the patterns to match are reasonably long.

* The framework is very flexible: many space vs. time trade-offs possible depending on the
index and sampling scheme used.

* Bottleneck: veritying false positive matches.

* Rust code: https://github.com/u-index/u-index-rs
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Thank you for the attention!
A special thank to all my co-authors!
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