
U-index: A Universal Indexing Framework
for Matching Long Patterns

23-rd Symposium on Experimental Algorithms (SEA 2025) 
Venice, Italy, 22 July 2025

Giulio Ermanno Pibiri
Ca’ Foscari University of Venice

@jermp.bsky.social

@jermp

Joint work with 
Lorraine A. K. Ayad 

Gabriele Fici 
Ragnar Groot Koerkamp 

Grigorios Loukides 
Rob Patro 

Solon P. Pissis

The text indexing problem

• Given a string over the alphabet , pre-process so that the following
queries can be answered efficiently for any string : 
 
- : return all the positions where occurs in ; 
- : count the number of occurrences of in ; 
- : report the substring .

• Fundamental and well-studied problem.

T[0..n) Σ = [0..σ) T
P[0..m)

Locate(P, T) P T
Count(P, T) P T
Extract(i, j, T) T[i . . j]

The text indexing problem

• Given a string over the alphabet , pre-process so that the following
queries can be answered efficiently for any string : 
 
- : return all the positions where occurs in ; 
- : count the number of occurrences of in ; 
- : report the substring .

• Fundamental and well-studied problem.

T[0..n) Σ = [0..σ) T
P[0..m)

Locate(P, T) P T
Count(P, T) P T
Extract(i, j, T) T[i . . j]

• More about this on Friday: “25 years of compressed self-indexes” !

The text indexing problem

• Many solutions with different trade-offs between space and time.

• Solutions broadly fall into two categories:

The text indexing problem

• Many solutions with different trade-offs between space and time.

• Solutions broadly fall into two categories:

1. Compressed: The text is replaced (is “self-indexed”) with a compressed representation.

2. Uncompressed: A redundancy (an “index”) is attached to to accelerate queries.T

The text indexing problem

• Many solutions with different trade-offs between space and time.

• Solutions broadly fall into two categories:

• Solutions in 1. are very space-efficient but generally slower to build and query than solutions
in 2. which — on the other hand — are space-inefficient.

• Example. The (uncompressed) suffix array is much faster to query than the FM-index but
requires bits on top of the text.O(n log n)

1. Compressed: The text is replaced (is “self-indexed”) with a compressed representation.

2. Uncompressed: A redundancy (an “index”) is attached to to accelerate queries.T

Our contribution

• We focus on the uncompressed case, i.e., we attach an index to the text, and address the
space-inefficiency of the index while supporting efficient queries.

Our contribution

• We focus on the uncompressed case, i.e., we attach an index to the text, and address the
space-inefficiency of the index while supporting efficient queries.

• Main idea: if we compute a sketch of the text , say , then will
be smaller/faster than because is a lot smaller than , for any .

• At query time: we also compute and match against . Candidate
matches (including false positives) are mapped back to to be verified.

T S = Sketch(T) Index(S)
Index(T) S T Index

Q = Sketch(P) Q S
T

Our contribution

• We focus on the uncompressed case, i.e., we attach an index to the text, and address the
space-inefficiency of the index while supporting efficient queries.

• Main idea: if we compute a sketch of the text , say , then will
be smaller/faster than because is a lot smaller than , for any .

• At query time: we also compute and match against . Candidate
matches (including false positives) are mapped back to to be verified.

T S = Sketch(T) Index(S)
Index(T) S T Index

Q = Sketch(P) Q S
T

• That is, we have a universal framework because:

- any index can be used for ;

- any locally-consistent sampling algorithm can be used to sketch the text and obtain .

S

S

• We would like to sample the same minimizer from
consecutive windows so that the set of distinct
minimizers forms a succinct sketch for .T

Example for and . 
 
ACGGTAGAACCGATTCAAATTCGAT… 
 
ACGGTAGAAC
 CGGTAGAACC
 GGTAGAACCG
 GTAGAACCGA
 TAGAACCGAT
 AGAACCGATT
 GAACCGATTC
 AACCGATTCA
 …

w = 4 k = 7

• Consider each window of consecutive -mers from a string : sample one -mer out of
and call it the “representative” of the window — or its minimizer.

w k T k w

Intermezzo: sketching with minimizers

Intermezzo: sketching with minimizers

• Q. How do we compare different sampling algorithms? 
 
A. We define the density of a sampling algorithm as the fraction between the number of
(distinct) minimizers and the total number of -mers of . 
 
The lower the density, the better!

k T

Intermezzo: sketching with minimizers

• Q. How do we compare different sampling algorithms? 
 
A. We define the density of a sampling algorithm as the fraction between the number of
(distinct) minimizers and the total number of -mers of . 
 
The lower the density, the better!

k T

• Since the same -mer cannot be a minimizer for more than consecutive -mers, we
immediately have a lower bound of on the density of any sampling algorithm.

k w k
1/w

The “folklore”, random, minimizer

• We usually define the total order using a random
hash function (random minimizer).

• In this case, the density is : almost a
factor of away from the lower bound for large .

2/(w + 1)
2 w

Example for and . 
 
ACGGTAGAACCGATTCAAATTCGAT… 
 
ACGGTAGAAC
 CGGTAGAACC
 GGTAGAACCG
 GTAGAACCGA
 TAGAACCGAT
 AGAACCGATT
 GAACCGATTC
 AACCGATTCA
 …

w = 4 k = 7

The “folklore”, random, minimizer

• We usually define the total order using a random
hash function (random minimizer).

• In this case, the density is : almost a
factor of away from the lower bound for large .

2/(w + 1)
2 w

Example for and . 
 
ACGGTAGAACCGATTCAAATTCGAT… 
 
ACGGTAGAAC
 CGGTAGAACC
 GGTAGAACCG
 GTAGAACCGA
 TAGAACCGAT
 AGAACCGATT
 GAACCGATTC
 AACCGATTCA
 …

w = 4 k = 7

More about them
on Thursday!

Density by varying k

• Example for .

• Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

• https://github.com/jermp/minimizers

w = 24

de
ns

ity

0.050

0.054

0.057

0.061

0.064

0.068

0.072

0.075

0.079

0.082

0.086

m
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

lower bound (improved, 2024)
minimizer (2004)
miniception (2020)
double-decyclying (2023)

k

https://github.com/jermp/minimizers

Density by varying k

• Example for .

• Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

• https://github.com/jermp/minimizers

w = 24

de
ns

ity

0.050

0.054

0.057

0.061

0.064

0.068

0.072

0.075

0.079

0.082

0.086

m
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

lower bound (improved, 2024)
minimizer (2004)
miniception (2020)
double-decyclying (2023)

k

de
ns

ity

0.050

0.054

0.057

0.061

0.064

0.068

0.072

0.075

0.079

0.082

0.086

m
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

lower bound (improved, 2024)
minimizer (2004)
miniception (2020)
double-decyclying (2023)
mod-minimizer (2024)

[Groot Koerkamp and P., 2024]

k

https://github.com/jermp/minimizers

Density by varying k

• Example for .

• Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

• https://github.com/jermp/minimizers

w = 24

de
ns

ity

0.050

0.054

0.057

0.061

0.064

0.068

0.072

0.075

0.079

0.082

0.086

m
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

lower bound (improved, 2024)
minimizer (2004)
miniception (2020)
double-decyclying (2023)

k

de
ns

ity

0.050

0.054

0.057

0.061

0.064

0.068

0.072

0.075

0.079

0.082

0.086

m
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

lower bound (improved, 2024)
minimizer (2004)
miniception (2020)
double-decyclying (2023)
mod-minimizer (2024)

[Groot Koerkamp and P., 2024]

k

de
ns

ity

0.050

0.054

0.057

0.061

0.064

0.068

0.072

0.075

0.079

0.082

0.086

m
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

lower bound (improved, 2024)
minimizer (2004)
miniception (2020)
double-decyclying (2023)
mod-minimizer (2024)
open-closed mod-minimizer (2025)

[Groot Koerkamp and P., 2024]

[Groot Koerkamp, Liu, and P., 2025]

k

https://github.com/jermp/minimizers

The U-index framework for matching long patterns

• We fix integers and and let , so that any pattern of length
 contains at least one minimizer.

ℓ > 0 k > 0 w := ℓ − k + 1 P
m ≥ ℓ

An example

Theoretical guarantees
• Using some machinery, we guarantee that an occurrence is verified in ,

rather than . This can be done in space on top of the space of the text, where is the
number of minimizers of .

p ∈ Locate(Q, S) O(1)
O(m) O(z) z

T

Results — Index size and build space for human chr 1

Results — Query and build time for human chr 1

An example application

• We demonstrated that the U-index framework can be useful for long read mapping.

• A core problem in Computational Biology; it involves aligning long patterns to a reference
genome.

• Experimental setting: we align 450 HiFi long reads (avg. length is 16 kbp) on a complete
human reference genome. We use and . k = 8 ℓ = 128

An example application

• We demonstrated that the U-index framework can be useful for long read mapping.

• A core problem in Computational Biology; it involves aligning long patterns to a reference
genome.

• Experimental setting: we align 450 HiFi long reads (avg. length is 16 kbp) on a complete
human reference genome. We use and . k = 8 ℓ = 128

48%

18%

33% Sketch
Locate
Verify

• Very practical numbers using a suffix array as index: the U-index is built in 12 seconds with 
s per pattern (23 avg. false positives per pattern).≈ 9μ

Conclusions

• Main take-away: U-index is a framework to enhance the performance of any off-the-shelf
text index, provided that the patterns to match are reasonably long.

• The framework is very flexible: many space vs. time trade-offs possible depending on the
index and sampling scheme used.

• Bottleneck: verifying false positive matches.

• Rust code: https://github.com/u-index/u-index-rs

https://github.com/u-index/u-index-rs

Conclusions

• Main take-away: U-index is a framework to enhance the performance of any off-the-shelf
text index, provided that the patterns to match are reasonably long.

• The framework is very flexible: many space vs. time trade-offs possible depending on the
index and sampling scheme used.

• Bottleneck: verifying false positive matches.

• Rust code: https://github.com/u-index/u-index-rs

Thank you for the attention!
A special thank to all my co-authors!

https://github.com/u-index/u-index-rs

