
Locality-preserving 
minimal perfect hashing of k-mers

ISMB 2023

Lyon, France, 25 July 2023

Giulio Ermanno Pibiri
Ca’ Foscari University of Venice, Venice, Italy

@giulio_pibiri

@jermp

Joint work with 
Yoshihiro Shibuya 

(Institut Pasteur, Paris, France) 
and 

Antoine Limasset 
(CNRS, Lille, France)

MPHF. Given a set of distinct keys, a function such that
 for any , , is called a minimal perfect hash function (MPHF) for .

S ⊆ U n f : U → {1,…, n}
f(x) ≠ f(y) x, y ∈ S x ≠ y S

Minimal perfect hashing

S

1

2

3

4

5

6

ISMB

DSB

RECOMB

SIGIR

TKDE
WABI

f

Minimal perfect hashing

• A. Lower bound of bits/key [Mehlhorn, 1982].

• In practice: 2 – 4 bits/key and constant evaluation time.

• Many algorithms are known for minimal perfect hashing.

log2(e) ≈ 1.442

 - FCH [Fox et al., 1992] 
 - CHD [Belazzougui et al., 2009] 
 - EMPHF [Belazzougui et al., 2014]  
 - GOV [Genuzio et al., 2016] 
 - BBHash [Limasset et al., 2017] 
 - RecSplit [Esposito et al., 2019] 
 - PTHash [P. and Trani, 2021] 
 - SicHash [Lehmann et al., 2023] 
 - FMPHGO [Beling, 2023]

• Q. How much space do we need to represent a MPHF?

What about specific inputs?

• Note that the bits/key lower bound is valid for a generic input set and, as such,
does not exploit any property the keys might have.

• This does not rule out more succinct solutions if we consider specific inputs.

• In practice, the keys we hash often present some intrinsic relationships that we could exploit
to lower the bit-complexity and evaluation time of .

log2(e) S

f

What about specific inputs?

• Note that the bits/key lower bound is valid for a generic input set and, as such,
does not exploit any property the keys might have.

• This does not rule out more succinct solutions if we consider specific inputs.

• In practice, the keys we hash often present some intrinsic relationships that we could exploit
to lower the bit-complexity and evaluation time of .

log2(e) S

f

• Q. Any example?

What about specific inputs?

• Note that the bits/key lower bound is valid for a generic input set and, as such,
does not exploit any property the keys might have.

• This does not rule out more succinct solutions if we consider specific inputs.

• In practice, the keys we hash often present some intrinsic relationships that we could exploit
to lower the bit-complexity and evaluation time of .

log2(e) S

f

• Q. Any example?

• A. k-mer sets! Keys are strings of fixed length k, sharing -base overlaps.(k − 1)

Hashing k-mer sets

• Goal. Given a set of distinct k-mers, preserve as much as possible the local
relationships between consecutive k-mers in the codomain.

S n

ACGGTAGAACCGA  
 CGGTAGAACCGAT 
 GGTAGAACCGATT 
 GTAGAACCGATTC 
 TAGAACCGATTCA 
 AGAACCGATTCAA 
 GAACCGATTCAAA 
 AACCGATTCAAAT

1
2
3
4
5
6
7
8

f

Generic MPHF f

ACGGTAGAACCGA  
 CGGTAGAACCGAT 
 GGTAGAACCGATT 
 GTAGAACCGATTC 
 TAGAACCGATTCA 
 AGAACCGATTCAA 
 GAACCGATTCAAA 
 AACCGATTCAAAT

1
2
3
4
5
6
7
8

f

Locality-preserving MPHF f

• This behaviour is very desirable as it implies:

- Compression of k-mer satellite data. 
 
(Abundance counts, dBG unitig identifiers,
color classes, etc.) Consecutive k-mers tend to
have similar — if not identical — satellite data.
Locality-preservation induces a natural
clustering effect on the satellite values, which
aids compression.

- Faster access time. 
 
Enhanced locality of access when streaming
over consecutive k-mers: the next slot to
access will be already in cache.

Hashing k-mer sets

ACGGTAGAACCGA  
 CGGTAGAACCGAT 
 GGTAGAACCGATT 
 GTAGAACCGATTC 
 TAGAACCGATTCA 
 AGAACCGATTCAA 
 GAACCGATTCAAA 
 AACCGATTCAAAT

1
2
3
4
5
6
7
8

f

Locality-preserving MPHF f

An example application

• Problem. (Experiment-discovery) Given a collection of references , how to
retrieve the set of references where a given k-mer appears, with false positives allowed?

ℛ = {R1, …, RN}

An example application

• Problem. (Experiment-discovery) Given a collection of references , how to
retrieve the set of references where a given k-mer appears, with false positives allowed?

ℛ = {R1, …, RN}

Fig. 5 from [Bingmann et. al, 2019]  
https://arxiv.org/pdf/1905.09624.pdf

COBS

https://arxiv.org/pdf/1905.09624.pdf

An example application

• Problem. (Experiment-discovery) Given a collection of references , how to
retrieve the set of references where a given k-mer appears, with false positives allowed?

ℛ = {R1, …, RN}

Fig. 5 from [Bingmann et. al, 2019]  
https://arxiv.org/pdf/1905.09624.pdf

COBS

…

with locality-preserving hashing

distinct, compressed, 
inverted lists (no false positives)

https://arxiv.org/pdf/1905.09624.pdf

Locality-Preserving (LP) Hash — Overview

• Smaller than the classic bits/key lower bound on k-mer sets. 
(Check out the paper for the new theoretical characterisation.)

• Space decreases when increasing k.

• Faster streaming query time compared to the fastest MPHFs (i.e., PTHash). 
Streaming query time decreases when increasing k.

• Scale to billions of k-mers.

• LPHash code in C++ available at https://github.com/jermp/lphash.

• Datasets used in the paper on Zenodo at https://doi.org/10.5281/zenodo.7239205.

log2(e) ≈ 1.442

https://github.com/jermp/lphash
https://doi.org/10.5281/zenodo.7239205

LPHash — Space

LPHash — Query time

LPHash — Tools and details

• Let’s now quickly see how to achieve this.

• Random minimizer. [Roberts et al., 2004] Given a k-mer and a random hash function , the
minimizer of is any -mer such that for any other -mer of , for some .

• Super-k-mer. [Li et al., 2013] Given a string , a super-k-mer of is a maximal sub-string of
where each k-mer has the same minimizer and appears only once in . 
 
Example for and : 
 
ACGGTAGAACCGATTCAAATTCGATCGATTAATTAGAGCGATAAC… 
ACGGTAGAACCGA  
 CGGTAGAACCGAT 
 GGTAGAACCGATT 
 GTAGAACCGATTC 
 TAGAACCGATTCA 
 AGAACCGATTCAA 
 GAACCGATTCAAA 
 AACCGATTCAAAT 
 …

x h
x m μ h(μ) ≤ h(y) m y x m < k

s g s s
μ μ s

k = 13 m = 4

super-k-mer

Minimizers and super-k-mers

Implicitly ranking k-mers with minimizers

• Let be a super-k-mer and its k-mers. Let be the (starting) position of
the minimizer in the -th kmer of , .

• Then, .

• Since k-mers are consecutive, the minimizer position “slides” by one position to the left: 
rank values are consecutive too locality is preserved.

g xg,1, …, xg,|g|−k+1 pg,i
i g xg,i

Rank(xg,i) = pg,1 − pg,i + 1

→

Rank(xg,1) = 1

Rank(xg,2) = 2

Rank(xg,3) = 3

Rank(xg,4) = 4

Basic construction

• Given , the idea is to split the evaluation of in two parts: 
 
 
 
  
 
 
 
 
 
 
for every super-k-mer .

• This can be implemented using two arrays, and .

Rank(xg,i) = pg,1 − pg,i + 1 f

f(xg,i) = f(xg,1) + Rank(xg,i) − 1 = f(xg,1) + pg,1 − pg,i

g

L P

global 
component

local 
component

Basic construction

• Given , the idea is to split the evaluation of in two parts: 
 
 
 
  
 
 
 
 
 
 
for every super-k-mer .

• This can be implemented using two arrays, and .

Rank(xg,i) = pg,1 − pg,i + 1 f

f(xg,i) = f(xg,1) + Rank(xg,i) − 1 = f(xg,1) + pg,1 − pg,i

g

L P

global 
component

local 
component

computed on-the-fly 
at query time

stored 
explicitly

Basic construction

• Given , the idea is to split the evaluation of in two parts: 
 
 
 
  
 
 
 
 
 
 
for every super-k-mer .

• This can be implemented using two arrays, and .

Rank(xg,i) = pg,1 − pg,i + 1 f

f(xg,i) = f(xg,1) + Rank(xg,i) − 1 = f(xg,1) + pg,1 − pg,i

g

L P

Basic construction

L
P

• Where is a MPHF for the set of all the distinct minimizers of the input . 
For a super-k-mer whose minimizer is such that , let:

- be the number of k-mers belonging to super-k-mers having minimizer such
that . It follows that .

- .

fm S
g μ fm(μ) = i

L[i] z
fm(z) < i f(xg,1) = L[i]

P[i] = pg,1

Basic construction — Remarks

L
P

Basic construction — Remarks

L
P

1. We compute by evaluating and with two array accesses.f fm

Basic construction — Remarks

L
P

1. We compute by evaluating and with two array accesses.f fm
2. If two consecutive k-mers have the same minimizer: we have already computed and

accessed and , hence we just need to compute the position of the minimizer in the
query k-mer (no array accesses nor hash calculations) faster streaming queries.

fm(μ)
L P

→

Basic construction — Remarks

L
P

1. We compute by evaluating and with two array accesses.f fm
2. If two consecutive k-mers have the same minimizer: we have already computed and

accessed and , hence we just need to compute the position of the minimizer in the
query k-mer (no array accesses nor hash calculations) faster streaming queries.

fm(μ)
L P

→
3. We spend space proportional to the number of minimizers. The expected number of

minimizers of length is . Hence, the space decreases when increases
and is fixed.

m 2n/(k − m + 2) k
m

Super-k-mer types

• FL rule. Let be a super-k-mer. Depending on the position of the minimizer in its first
and last k-mer, can be of one of the following four types.

g
g

Super-k-mer types

 and no need to
store any entry in and for left-right-max super-k-mers
pg,1 = k − m + 1 |g | = k − m + 1 →

L P

 no need to store any entry in
for right-max super-k-mers (only store an array)
pg,1 = k − m + 1 → P

Lr

 no need to store any entry in
for left-max super-k-mers (only store an array)
pg,1 = |g | − k + 1 → P

Ll

Partitioned construction

• Where is an 2-bit integer array holding the super-k-mer types. 
 
We need the operation for a position in and a super-k-mer
type . So, is represented with a wavelet tree [Grossi et al., 2003].

R

Rankt(i) i R
t R

Partitioned construction

• Q. Is this effective? Any guarantee?

Partitioned construction

• Q. Is this effective? Any guarantee?

• A. Yes, for Theorem 2 below. So for sufficiently large , the expected fraction
of super-k-mer types will all be , hence we save a lot of space.

k − m + 1
≈ 1/4

Ambiguous minimizers

• If a minimizer appears in two or more super-k-mers, we say it is ambiguous.

• In this case, a single minimizer position is not enough to rank k-mers without ambiguity.

• We therefore build a separate MPHF for all k-mers belonging to super-k-mers having
ambiguous minimizers.

• The fraction of ambiguous minimizers is small, e.g., 1—4% on the datasets we tested in
the paper.

Conclusions

• LPHash is an efficient solution to the minimal perfect hashing problem for k-mer sets.

• Example: 0.87 bits/k-mer on the human genome (2.7B k-mers, for k=63) with very fast
streaming queries.

• Space usage decreases for increasing k, and in the (near) future we are going to have 
longer k-mers.

• Better solutions to classic problems if we restrict our attention to specific input classes.

• LPHash ingredients: 
 
 - implicit ranking of k-mers with minimizers; 
 
 - structural characterisation of super-k-mers.

Thank you for the attention!

