Locality-preserving

minimal perfect hashing of k-mers

Giulio Ermanno Pibiri Joint work with
Ca’ Foscari University of Venice, Venice, Italy Yoshihiro Shibuya
(Institut Pasteur, Paris, France)

and

Antoine Limasset
(CNRS, Lille, France)

ISMB 2023
Lyon, France, 25 July 2023

Minimal perfect hashing

MPHF. Given a set § C U of n distinct keys, a functionf: U — {1,...,n} such that
f(x) # f(y) forany x,y € §, x # v, is called a minimal perfect hash function (MPHF) for S.

Minimal perfect hashing

* Q. How much space do we need to represent a MPHF?

e A. Lower bound of log,(e) ~ 1.442 bits/key [Mehlhorn, 1982].

* |n practice: 2 — 4 bits/key and constant evaluation time.

 Many algorithms are known for minimal perfect hashing.

- FCH [Fox et al., 1992]

- CHD [Belazzougui et al., 2009]

- EMPHF [Belazzougui et al., 2014]
- GOV [Genuzio et al., 2016]

- BBHash [Limasset et al., 2017]

- RecSplit [Esposito et al., 2019]

- PTHash [P. and Trani, 2021]

- SicHash [Lehmann et al., 2023]

- FMPHGO [Beling, 2023]

What about specific inputs?

» Note that the log,(e) bits/key lower bound is valid for a generic input set S and, as such,
does not exploit any property the keys might have.

 This does not rule out more succinct solutions if we consider specific inputs.

* |n practice, the keys we hash often present some intrinsic relationships that we could exploit
to lower the bit-complexity and evaluation time of f.

What about specific inputs?

» Note that the log,(e) bits/key lower bound is valid for a generic input set S and, as such,
does not exploit any property the keys might have.

 This does not rule out more succinct solutions if we consider specific inputs.

* |n practice, the keys we hash often present some intrinsic relationships that we could exploit
to lower the bit-complexity and evaluation time of f.

* Q. Any example?

What about specific inputs?

» Note that the log,(e) bits/key lower bound is valid for a generic input set S and, as such,
does not exploit any property the keys might have.

 This does not rule out more succinct solutions if we consider specific inputs.

* |n practice, the keys we hash often present some intrinsic relationships that we could exploit
to lower the bit-complexity and evaluation time of f.

* Q. Any example?

* A. k-mer sets! Keys are strings of fixed length k, sharing (k — 1)-base overlaps.

Hashing k-mer sets

e Goal. Given a set S of n distinct k-mers, preserve as much as possible the local
relationships between consecutive k-mers in the codomain.

ACGGTAGAACCGA
CGGTAGAACCGAT-
GGTAGAACCGATT
GTAGAACCGATTC
TAGAACCGATTCA
AGAACCGATTCAA
GAACCGATTCAAA
AACCGATTCAAAT

Generic MPHF f

ACGGTAGAACCGA I Em
CGGTAGAACCGAT
GGTAGAACCGATT

GTAGAACCGATTC -~~~/ I
TAGAACCGATTCA g’
AGAACCGATTCAA Y A IR

GAACCGATTCAAA
AACCGATTCAAAT

Locality-preserving MPHF f

Hashing k-mer sets

* This behaviour is very desirable as it implies:

- Compression of k-mer satellite data.

(Abundance counts, dBG unitig identifiers,
color classes, etc.) Consecutive k-mers tend to
have similar — if not identical — satellite data.
Locality-preservation induces a natural
clustering effect on the satellite values, which
alds compression.

- Faster access time.

Enhanced locality of access when streaming
over consecutive k-mers: the next slot to
access will be already in cache.

ACGGTAGAACCGA I Em
CGGTAGAACCGAT B
GGTAGAACCGATT
GTAGAACCGATTC 4
TAGAACCGATTCA
AGAACCGATTCAA 6
GAACCGATTCAAA
AACCGATTCAAAT

Locality-preserving MPHF f

An example application

« Problem. (Experiment-discovery) Given a collection of references £ = {R;, ..., Ry}, how to
retrieve the set of references where a given k-mer appears, with false positives allowed?

An example application

« Problem. (Experiment-discovery) Given a collection of references £ = {R;, ..., Ry}, how to
retrieve the set of references where a given k-mer appears, with false positives allowed?

COBS

ACGA

CGAA —=>
N

GAAT —\ B—s
N\
\ .

s

Fig. 5 from [Bingmann et. al, 2019]
https://arxiv.org/pdf/1905.09624.pdf

https://arxiv.org/pdf/1905.09624.pdf

An example application

« Problem. (Experiment-discovery) Given a collection of references £ = {R;, ..., Ry}, how to
retrieve the set of references where a given k-mer appears, with false positives allowed?

with locality-preserving hashing
COBS

ACGA ACGA
CGAA — CGAAX
GAAT 1\ « B GAAT
\ .
/

distinct, compressed,
inverted lists (no false positives)

Fig. 5 from [Bingmann et. al, 2019]
https://arxiv.org/pdf/1905.09624.pdf

https://arxiv.org/pdf/1905.09624.pdf

Locality-Preserving (LP) Hash — Overview

 Smaller than the classic log,(e) ~ 1.442 bits/key lower bound on k-mer sets.
(Check out the paper for the new theoretical characterisation.)

* Space decreases when increasing k.

* Faster streaming query time compared to the fastest MPHFs (i.e., PTHash).
Streaming query time decreases when increasing K.

e Scale to billions of k-mers.

 [PHash code in C++ available at https://github.com/jermp/lphash.

 Datasets used in the paper on Zenodo at https://doi.org/10.5281/zenodo.7239205.

https://github.com/jermp/lphash
https://doi.org/10.5281/zenodo.7239205

LPHash — Space

2

1.8 |
1.6
1.4
1.2

1

0.8

Space |bits/ k-mer]

0.6
0.4 -
0.2 -

0 31 35 39 43 47 51 55 59 63

k

--- MPHF lower bound —=— Human —<— Cod —=— Kestrel —— C.Elegans —<— Yeast

BBHash size (v = 1) = 3.06 bits/k-mer, PTHash size (o = 0.99, ¢ = 5.0) = 2.1 bits/k-mer

LPHash — Query time

Query time 1n average nanoseconds per k-mer.

Method L Yeast Elegans Cod Kestrel Human
stream random = stream random = stream random = stream random = stream random
31 29 110 40 118 79 144 84 145 107 162
35 28 125 35 124 65 147 69 149 90 166
39 27 130 32 131 60 149 63 153 82 166
43 25 137 30 135 52 152 54 155 73 169
[LPHash 47 24 145 28 143 47 155 49 159 69 172
51 24 152 28 150 45 159 46 162 63 174
55 23 157 26 157 41 165 42 167 59 176
59 23 165 25 165 39 171 39 173 57 182
63 22 174 24 172 37 180 37 179 53 188
PTHash-v1 24 46 67 72 72
PTHash-v2 38 64 130 155 175
BBHash-v1 42 118 170 175 175

BBHash-v2 42 125 180 190 190

LPHash — Tools and details

* |et’'s now quickly see how to achieve this.

Minimizers and super-k-mers

 Random minimizer. [Roberts et al., 2004] Given a k-mer x and a random hash function 4, the
minimizer of x is any m-mer u such that 4(u¢) < h(y) for any other m-mer y of x, for some m < k.

 Super-k-mer. [Li et al., 2013] Given a string s, a super-k-mer g of s is a maximal sub-string of s
where each k-mer has the same minimizer i and i appears only once in s.

Example for k = 13 and m = 4

ACGGTAGAACCGATTCAAATTCGATCGATTAATTAGAGCGATAAC...

ACGGTAGAACCGA
CGGTAGAACCGAT
GGTAGAACCGATT
GTAGAACCGATTC Superk-mer
TAGAACCGATTCA
AGAACCGATTCAA
GAACCGATTCAAA
AACCGATTCAAAT

Implicitly ranking k-mers with minimizers

« Let g2 be a super-k-mer and Xg 15+ +3Xg o] —k+1 its k-mers. Let P be the (starting) position of
the minimizer in the i-th kmer of g, x,, ;.

- Then, Rank(x, ;) = p,; — p,; + 1.

* Since k-mers are consecutive, the minimizer position “slides” by one position to the left:
rank values are consecutive too — locality Is preserved.

N I 3 0 3 N I 0 £ K R K K
Rank(x, ;) =1

Xg,2 Pg2 = J Rank(xgaz) =2

Pg3 = 4 Rank(xg,:;)) =3
pgs=3 Rank(x,,) =4

Basic construction

- Given Rank(x, ;) = p, | — p,; + 1, the idea is to split the evaluation of fin two parts:

f(xg,i) :f(xg,l) T Rank(xg,i) — 1 :f(xg,l) +pg,1 _pg,i

for every super-k-mer g.

« This can be implemented using two arrays, L and P.

Basic construction

- Given Rank(x, ;) = p, | — p,; + 1, the idea is to split the evaluation of fin two parts:

f(xg,i) :f(xg,l) T Rank(‘xg,i) — 1 :f(xg,l) +pg,1 _pg,i

T T

global local
component component

for every super-k-mer g.

« This can be implemented using two arrays, L and P.

Basic construction

- Given Rank(x, ;) = p, | — p,; + 1, the idea is to split the evaluation of fin two parts:

f(xg,i) :f(xg,l) T Rank(xg,i) — 1 :f(xg,l) +pg,l _pg,i

T T T T

global local stored computed on-the-fly
component component explicitly at query time

for every super-k-mer g.

« This can be implemented using two arrays, L and P.

Basic construction

" minimizer P
LT T]

» Where f, is a MPHF for the set of all the distinct minimizers of the input S.
For a super-k-mer g whose minimizer yu is such that f(u) = i, let:

- L[1] be the number of k-mers belonging to super-k-mers having minimizer z such
that f,,(z) < i. It follows that f(x, ;) = Lli].

Basic construction — Remarks

X minimizer I
li

Basic construction — Remarks

X minimizer I
li

L
P

1. We compute f by evaluating f,, and with two array accesses.

Basic construction

" minimizer 0u—-
LT T]

L
P

1. We compute f by evaluating f,, and with two array accesses.

2. If two consecutive k-mers have the same minimizer: we have already computed f, (¢) and

accessed L and P, hence we just need to compute the position of the minimizer in the
query k-mer (no array accesses nor hash calculations) — faster streaming queries.

Basic construction

" minimizer °—-
LT T]

L
P

1. We compute f by evaluating f,, and with two array accesses.

2. If two consecutive k-mers have the same minimizer: we have already computed f, (¢) and

accessed L and P, hence we just need to compute the position of the minimizer in the
query k-mer (no array accesses nor hash calculations) — faster streaming queries.

3. We spend space proportional to the number of minimizers. The expected number of
minimizers of length m is 2n/(k — m + 2). Hence, the space decreases when k increases
and m Is fixed.

Super-k-mer types

* FL rule. Let g be a super-k-mer. Depending on the position of the minimizer in its first
and last k-mer, g can be of one of the following four types.

T T TTTTTTTTT]
[

IZI:D

(a) left-right-max (b) right-max

HEN

ENEEEE

al L[]
EEEEEN
=IIIIII
1

ENEEEEEEEE
ENENCENEEENEN

(c) left-max (d) non-max

Super-k-mer types

[T 111

Poi=k—m+1land |g| =k—m+1— noneedto
store any entry in L and P for left-right-max super-k-mers

(a) left-right-max

H | .
Po1 = k —m + 1 — no need to store any entry in P

for right-max super-k-mers (only store an array L,)

3

(b) right-max

“ Po1 = gl —k+ 1 — noneed to store any entry in P

for left-max super-k-mers (only store an array L)

(c) left-max

Partitioned construction

X minimizer I
li

R

/

LT L CEEEm
J

L1}
Pn11]

 Where R is an 2-bit integer array holding the super-k-mer types.

We need the operation Rank(i) for a position 7 in R and a super-k-mer
type t. So, R is represented with a wavelet tree [Grossi et al., 2003].

Partitioned construction

* Q. Is this effective? Any guarantee?

Partitioned construction

* Q. Is this effective? Any guarantee?

* A. Yes, for Theorem 2 below. So for sufficiently large kK — m + 1, the expected fraction
of super-k-mer types will all be ~ 1/4, hence we save a lot of space.

Theorem 2. For any random minimizer scheme (k, m, h) we have

Py, = Plg is left-right-max] = W?* + 1/w
P, = P|g is left-max| = W (1 — W)

P, = P|g is right-max] = W (1 — W)

P,, = P[g is non-max] = W~

whereW:%-(l i)andwzk—m—l—l.

Ambiguous minimizers

* |f a minimizer appears in two or more super-k-mers, we say it is ambiguous.
* In this case, a single minimizer position is not enough to rank k-mers without ambiguity.

* We therefore build a separate MPHF for all k-mers belonging to super-k-mers having
ambiguous minimizers.

* The fraction of ambiguous minimizers is small, e.g., 1—4% on the datasets we tested In
the paper.

Conclusions

 [LPHash is an efficient solution to the minimal perfect hashing problem for k-mer sets.

 Example: 0.87 bits/k-mer on the human genome (2.7B k-mers, for k=63) with very fast
streaming queries.

* Space usage decreases for increasing k, and in the (near) future we are going to have
longer k-mers.

* Better solutions to classic problems if we restrict our attention to specific input classes.

 LPHash ingredients:
- Implicit ranking of k-mers with minimizers;

- structural characterisation of super-k-mers.

Thank you for the attention!

