Locality-preserving minimal perfect hashing of k-mers

Giulio Ermanno Pibiri

Ca' Foscari University of Venice, Venice, Italy

ISMB 2023 Lyon, France, 25 July 2023 Joint work with Yoshihiro Shibuya

(Institut Pasteur, Paris, France) and **Antoine Limasset** (CNRS, Lille, France)

Minimal perfect hashing

MPHF. Given a set $S \subseteq U$ of n distinct keys, a function $f: U \rightarrow \{1, ..., n\}$ such that $f(x) \neq f(y)$ for any $x, y \in S, x \neq y$, is called a *minimal perfect hash function* (MPHF) for S.

Minimal perfect hashing

- Q. How much space do we need to represent a MPHF?
- A. Lower bound of $\log_2(e) \approx 1.442$ bits/key [Mehlhorn, 1982].
- In practice: 2 4 bits/key and **constant** evaluation time.
- Many algorithms are known for minimal perfect hashing.
 - FCH [Fox et al., 1992]
 - CHD [Belazzougui et al., 2009]
 - EMPHF [Belazzougui et al., 2014]
 - GOV [Genuzio et al., 2016]
 - BBHash [Limasset et al., 2017]
 - RecSplit [Esposito et al., 2019]
 - PTHash [P. and Trani, 2021]
 - SicHash [Lehmann et al., 2023]
 - FMPHGO [Beling, 2023]

What about specific inputs?

- Note that the $\log_2(e)$ bits/key lower bound is valid for a **generic input** set S and, as such, does not exploit any property the keys might have.
- This does not rule out more succinct solutions if we consider specific inputs.
- In practice, the keys we hash often present some *intrinsic relationships* that we could exploit \bullet to lower the bit-complexity and evaluation time of f.

What about specific inputs?

- Note that the $\log_2(e)$ bits/key lower bound is valid for a **generic input** set S and, as such, does not exploit any property the keys might have.
- This does not rule out more succinct solutions if we consider specific inputs.
- In practice, the keys we hash often present some *intrinsic relationships* that we could exploit \bullet to lower the bit-complexity and evaluation time of f.
- **Q.** Any example? lacksquare

What about specific inputs?

- Note that the $\log_2(e)$ bits/key lower bound is valid for a **generic input** set S and, as such, does not exploit any property the keys might have.
- This does not rule out more succinct solutions if we consider specific inputs.
- In practice, the keys we hash often present some *intrinsic relationships* that we could exploit lacksquareto lower the bit-complexity and evaluation time of f.
- **Q.** Any example? lacksquare
- A. k-mer sets! Keys are strings of fixed length k, sharing (k-1)-base overlaps. \bullet

Hashing k-mer sets

• Goal. Given a set S of n distinct k-mers, preserve as much as possible the local relationships between consecutive k-mers in the codomain.

Generic MPHF f

Locality-preserving MPHF f

Hashing k-mer sets

- This behaviour is very desirable as it implies:
 - **Compression of k-mer satellite data.**

(Abundance counts, dBG unitig identifiers, color classes, etc.) Consecutive k-mers tend to have similar — *if not identical* — satellite data. Locality-preservation induces a natural clustering effect on the satellite values, which aids compression.

Faster access time.

Enhanced locality of access when streaming over consecutive k-mers: the next slot to access will be already in cache.

Locality-preserving MPHF f

An example application

• Problem. (Experiment-discovery) Given a collection of references $\mathscr{R} = \{R_1, \dots, R_N\}$, how to retrieve the set of references where a given k-mer appears, with false positives allowed?

An example application

•

Fig. 5 from [Bingmann et. al, 2019] https://arxiv.org/pdf/1905.09624.pdf

Problem. (Experiment-discovery) Given a collection of references $\mathscr{R} = \{R_1, \ldots, R_N\}$, how to retrieve the set of references where a given k-mer appears, with false positives allowed?

An example application

•

Fig. 5 from [Bingmann et. al, 2019] https://arxiv.org/pdf/1905.09624.pdf

Problem. (Experiment-discovery) Given a collection of references $\mathscr{R} = \{R_1, \ldots, R_N\}$, how to retrieve the set of references where a given k-mer appears, with false positives allowed?

with locality-preserving hashing

distinct, compressed, inverted lists (no false positives)

Locality-Preserving (LP) Hash — Overview

- **Smaller** than the classic $\log_2(e) \approx 1.442$ bits/key lower bound on k-mer sets. (Check out the paper for the new theoretical characterisation.)
- **Space decreases** when increasing k.
- **Faster streaming query** time compared to the fastest MPHFs (i.e., PTHash). Streaming query time decreases when increasing k.
- Scale to billions of k-mers.
- LPHash code in C++ available at <u>https://github.com/jermp/lphash</u>.
- Datasets used in the paper on Zenodo at <u>https://doi.org/10.5281/zenodo.7239205</u>.

LPHash – Space

BBHash size ($\gamma=1)=3.06$ bits/k-mer, PTHash size (lpha=0.99, c=5.0) pprox 2.1 bits/k-mer

LPHash – Query time

Query time in average nanoseconds per k-mer.

Method	k	Yeast		Ele	gans	C	lod	Ke	strel	Human		
method	10	stream	random									
	31	29	110	40	118	79	144	84	145	107	162	
	35	28	125	35	124	65	147	69	149	90	166	
	39	27	130	32	131	60	149	63	153	82	166	
	43	25	137	30	135	52	152	54	155	73	169	
LPHash	47	24	145	28	143	47	155	49	159	69	172	
	51	24	152	28	150	45	159	46	162	63	174	
	55	23	157	26	157	41	165	42	167	59	176	
	59	23	165	25	165	39	171	39	173	57	182	
	63	22	174	24	172	37	180	37	179	53	188	
PTHash-v1		24		46		(57	72		72		
PTHash-v2 3		8 6		54	1	130		155		175		
BBHash-v1	BBHash-v1 42		42	1	18	1	70	1	75	175		
BBHash-v2		2	42	1	25	1	80	1	90	190		

LPHash — Tools and details

Let's now quickly see how to achieve this.

Minimizers and super-k-mers

- where each k-mer has the same minimizer μ and μ appears only once in s.

Example for k = 13 and m = 4:

ACGGTAGAACCGATTCAAATTCGATCGATTAATTAGAGCGATAAC... ACGGTAGAACCGA CGGTAGAACCGAT **GGTAGAACCGATT** super-k-mer **GTAGAACCGATTC** TAGAACCGATTCA AGAACCGATTCAA **GAACC**GATTCAAA AACCGATTCAAAT . . .

Random minimizer. [Roberts et al., 2004] Given a k-mer x and a random hash function h, the minimizer of x is any m-mer μ such that $h(\mu) \leq h(y)$ for any other m-mer y of x, for some m < k.

• Super-k-mer. [Li et al., 2013] Given a string s, a super-k-mer g of s is a maximal sub-string of s

Implicitly ranking k-mers with minimizers

the minimizer in the *i*-th kmer of g, $x_{g,i}$.

• Then,
$$\operatorname{Rank}(x_{g,i}) = p_{g,1} - p_{g,i} + 1$$
.

rank values are consecutive too \rightarrow locality is preserved.

<i>g</i>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
$x_{g,1}$	1	2	3	4	5	6	7	8	9	10	11	12	13	p _{g,}	1 =	6		$Rank(x_{g,1}) = 1$
х	¢g,2	1	2	3	4	5	6	7	8	9	10	11	12	13	p_{g_i}	, ₂ =	5	$Rank(x_{g,2}) = 2$
	x	с <i>д</i> ,3	1	2	3	4	5	6	7	8	9	10	11	12	13	pg	_{,3} = 4	$Rank(x_{g,3}) = 3$
		х	<i>g</i> ,4	1	2	3	4	5	6	7	8	9	10	11	12	13	$p_{g,4} = 3$	$Rank(x_{g,4}) = 4$

• Let g be a super-k-mer and $x_{g,1}, \ldots, x_{g,|g|-k+1}$ its k-mers. Let $p_{g,i}$ be the (starting) position of

• Since k-mers are consecutive, the minimizer position "slides" by one position to the left:

• Given $Rank(x_{g,i}) = p_{g,1} - p_{g,i} + 1$, the idea is to split the evaluation of f in two parts:

$$f(x_{g,i}) = f(x_{g,1}) + \text{Rank}(x_{g,i}) - 1 = f(x_{g,i})$$

for every super-k-mer g.

• This can be implemented using two arrays, L and P.

 $(x_{g,1}) + p_{g,1} - p_{g,i}$

• Given $Rank(x_{g,i}) = p_{g,1} - p_{g,i} + 1$, the idea is to split the evaluation of f in two parts:

for every super-k-mer g.

• This can be implemented using two arrays, L and P.

• Given $Rank(x_{g,i}) = p_{g,1} - p_{g,i} + 1$, the idea is to split the evaluation of f in two parts:

for every super-k-mer g.

• This can be implemented using two arrays, L and P.

$$(x_{g,1}) + p_{g,1} - p_{g,i}$$

red computed on-the-fly
at query time

- Where f_m is a MPHF for the set of all the distinct minimizers of the input *S*. For a super-k-mer *g* whose minimizer μ is such that $f_m(\mu) = i$, let:
 - L[i] be the number of k-mers belonging to super-k-mers having minimizer z such that $f_m(z) < i$. It follows that $f(x_{g,1}) = L[i]$.
 - $P[i] = p_{g,1}$.

1. We compute f by evaluating f_m and with two array accesses.

- 1. We compute f by evaluating f_m and with two array accesses.

2. If two consecutive k-mers have the same minimizer: we have already computed $f_m(\mu)$ and accessed L and P, hence we just need to compute the position of the minimizer in the query k-mer (no array accesses nor hash calculations) \rightarrow faster streaming queries.

- 1. We compute f by evaluating f_m and with two array accesses.
- 3. We spend space proportional to the number of minimizers. The expected number of and *m* is fixed.

2. If two consecutive k-mers have the same minimizer: we have already computed $f_m(\mu)$ and accessed L and P, hence we just need to compute the position of the minimizer in the query k-mer (no array accesses nor hash calculations) \rightarrow faster streaming queries.

minimizers of length m is 2n/(k - m + 2). Hence, the **space decreases** when k increases

Super-k-mer types

and **last** k-mer, g can be of one of the following four types.

(a) left-right-max

⁽c) left-max

• FL rule. Let g be a super-k-mer. Depending on the **position** of the minimizer in its **first**

(b) right-max

(d) non-max

Super-k-mer types

(a) left-right-max

(b) right-max

(c) left-max

 $p_{g,1} = k - m + 1$ and $|g| = k - m + 1 \rightarrow$ no need to store any entry in L and P for *left-right-max* super-k-mers

 $p_{g,1} = k - m + 1 \rightarrow$ no need to store any entry in P for *right-max* super-k-mers (only store an array L_r)

 $p_{g,1} = |g| - k + 1 \rightarrow$ no need to store any entry in Pfor *left-max* super-k-mers (only store an array L_1)

Partitioned construction

• Where R is an 2-bit integer array holding the super-k-mer types.

We need the operation $Rank_t(i)$ for a position i in R and a super-k-mer type t. So, R is represented with a wavelet tree [Grossi et al., 2003].

Partitioned construction

• Q. Is this effective? Any guarantee?

Partitioned construction

- Q. Is this effective? Any guarantee?
- of super-k-mer types will all be $\approx 1/4$, hence we save a lot of space.

Theorem 2. For any random minimizer scheme (k, m, h) we have

 $P_{lr} = \mathbb{P}[g \text{ is left-right-max}]$

 $P_l = \mathbb{P}[g \text{ is left-max}] = W$

 $P_r = \mathbb{P}[g \text{ is right-max}] = W$

 $P_n = \mathbb{P}[q \text{ is non-max}] = W^2$

where
$$W = \frac{1}{2} \cdot \left(1 - \frac{1}{w}\right)$$
 and $w = k - m$

• A. Yes, for **Theorem 2** below. So for sufficiently large k - m + 1, the expected fraction

$$= W^{2} + 1/w$$

 $W(1 - W)$
 $W(1 - W)$

+1.

Ambiguous minimizers

- If a minimizer appears in two or more super-k-mers, we say it is ambiguous.
- In this case, a single minimizer position is **not** enough to rank k-mers without ambiguity.
- We therefore build a separate MPHF for all k-mers belonging to super-k-mers having ambiguous minimizers.
- The fraction of ambiguous minimizers is small, e.g., 1-4% on the datasets we tested in the paper.

Conclusions

- LPHash is an efficient solution to the minimal perfect hashing problem for k-mer sets.
- Example: 0.87 bits/k-mer on the human genome (2.7B k-mers, for k=63) with very fast streaming queries.
- Space usage decreases for increasing k, and in the (near) future we are going to have longer k-mers.
- Better solutions to classic problems if we restrict our attention to specific input classes.
- LPHash ingredients:
 - implicit ranking of k-mers with minimizers;
 - structural characterisation of super-k-mers.

Thank you for the attention!