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MPHF. Given a set  of  distinct keys, a function  such that 
 for any , , is called a minimal perfect hash function (MPHF) for . 

S ⊆ U n f : U → {1,…, n}
f(x) ≠ f(y) x, y ∈ S x ≠ y S
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Minimal perfect hashing

• A. Lower bound of  bits/key [Mehlhorn, 1982].


• In practice: 2 – 4 bits/key and constant evaluation time.

• Many algorithms are known for minimal perfect hashing.

log2(e) ≈ 1.442

    - FCH [Fox et al., 1992] 
    - CHD [Belazzougui et al., 2009] 
    - EMPHF [Belazzougui et al., 2014]  
    - GOV [Genuzio et al., 2016] 
    - BBHash [Limasset et al., 2017] 
    - RecSplit [Esposito et al., 2019] 
    - PTHash [P. and Trani, 2021] 
    - SicHash [Lehmann et al., 2023] 
    - FMPHGO [Beling, 2023]

• Q. How much space do we need to represent a MPHF?



What about specific inputs?

• Note that the  bits/key lower bound is valid for a generic input set  and, as such, 
does not exploit any property the keys might have.


• This does not rule out more succinct solutions if we consider specific inputs. 

• In practice, the keys we hash often present some intrinsic relationships that we could exploit 
to lower the bit-complexity and evaluation time of .
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• Q. Any example?
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• Q. Any example?

• A. k-mer sets! Keys are strings of fixed length k, sharing -base overlaps.(k − 1)



Hashing k-mer sets

• Goal. Given a set  of  distinct k-mers, preserve as much as possible the local 
relationships between consecutive k-mers in the codomain.
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• This behaviour is very desirable as it implies:


- Compression of k-mer satellite data. 
 
(Abundance counts, dBG unitig identifiers, 
color classes, etc.) Consecutive k-mers tend to 
have similar — if not identical — satellite data. 
Locality-preservation induces a natural 
clustering effect on the satellite values, which 
aids compression.


- Faster access time. 
 
Enhanced locality of access when streaming 
over consecutive k-mers: the next slot to 
access will be already in cache.

Hashing k-mer sets
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An example application

• Problem. (Experiment-discovery) Given a collection of references , how to 
retrieve the set of references where a given k-mer appears, with false positives allowed?

ℛ = {R1, …, RN}
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…

with locality-preserving hashing

distinct, compressed, 
inverted lists (no false positives)

https://arxiv.org/pdf/1905.09624.pdf


Locality-Preserving (LP) Hash — Overview

• Smaller than the classic  bits/key lower bound on k-mer sets. 
(Check out the paper for the new theoretical characterisation.)


• Space decreases when increasing k.


• Faster streaming query time compared to the fastest MPHFs (i.e., PTHash). 
Streaming query time decreases when increasing k.


• Scale to billions of k-mers.


• LPHash code in C++ available at https://github.com/jermp/lphash.


• Datasets used in the paper on Zenodo at https://doi.org/10.5281/zenodo.7239205.

log2(e) ≈ 1.442

https://github.com/jermp/lphash
https://doi.org/10.5281/zenodo.7239205


LPHash — Space



LPHash — Query time



LPHash — Tools and details

• Let’s now quickly see how to achieve this.



• Random minimizer. [Roberts et al., 2004] Given a k-mer  and a random hash function , the 
minimizer of  is any -mer  such that  for any other -mer  of , for some .


• Super-k-mer. [Li et al., 2013] Given a string , a super-k-mer  of  is a maximal sub-string of 
where each k-mer has the same minimizer  and  appears only once in . 
 
Example for  and : 
 
ACGGTAGAACCGATTCAAATTCGATCGATTAATTAGAGCGATAAC… 
ACGGTAGAACCGA  
 CGGTAGAACCGAT 
  GGTAGAACCGATT 
   GTAGAACCGATTC 
    TAGAACCGATTCA 
     AGAACCGATTCAA 
      GAACCGATTCAAA 
       AACCGATTCAAAT 
        …

x h
x m μ h(μ) ≤ h(y) m y x m < k

s g s s
μ μ s

k = 13 m = 4

super-k-mer

Minimizers and super-k-mers



Implicitly ranking k-mers with minimizers

• Let  be a super-k-mer and  its k-mers. Let  be the (starting) position of 
the minimizer in the -th kmer of , .


• Then, .


• Since k-mers are consecutive, the minimizer position “slides” by one position to the left: 
rank values are consecutive too  locality is preserved.

g xg,1, …, xg,|g|−k+1 pg,i
i g xg,i

Rank(xg,i) = pg,1 − pg,i + 1

→

Rank(xg,1) = 1

Rank(xg,2) = 2

Rank(xg,3) = 3

Rank(xg,4) = 4



Basic construction

• Given , the idea is to split the evaluation of  in two parts: 
 
 
 
     
 
 
 
 
 
 
for every super-k-mer .


• This can be implemented using two arrays,  and .

Rank(xg,i) = pg,1 − pg,i + 1 f

f(xg,i) = f(xg,1) + Rank(xg,i) − 1 = f(xg,1) + pg,1 − pg,i

g

L P
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computed on-the-fly 
at query time

stored 
explicitly
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Basic construction

L
P

• Where  is a MPHF for the set of all the distinct minimizers of the input . 
For a super-k-mer  whose minimizer  is such that , let:


-  be the number of k-mers belonging to super-k-mers having minimizer  such 
that . It follows that .


- .

fm S
g μ fm(μ) = i

L[i] z
fm(z) < i f(xg,1) = L[i]

P[i] = pg,1
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Basic construction — Remarks

L
P

1. We compute  by evaluating  and with two array accesses.f fm
2. If two consecutive k-mers have the same minimizer: we have already computed  and 

accessed  and , hence we just need to compute the position of the minimizer in the 
query k-mer (no array accesses nor hash calculations)  faster streaming queries.

fm(μ)
L P

→



Basic construction — Remarks

L
P

1. We compute  by evaluating  and with two array accesses.f fm
2. If two consecutive k-mers have the same minimizer: we have already computed  and 

accessed  and , hence we just need to compute the position of the minimizer in the 
query k-mer (no array accesses nor hash calculations)  faster streaming queries.

fm(μ)
L P

→
3. We spend space proportional to the number of minimizers. The expected number of 

minimizers of length  is . Hence, the space decreases when  increases 
and  is fixed.

m 2n/(k − m + 2) k
m



Super-k-mer types

• FL rule. Let  be a super-k-mer. Depending on the position of the minimizer in its first 
and last k-mer,  can be of one of the following four types.

g
g



Super-k-mer types

 and   no need to 
store any entry in  and  for left-right-max super-k-mers
pg,1 = k − m + 1 |g | = k − m + 1 →

L P

  no need to store any entry in  
for right-max super-k-mers ( only store an array  )
pg,1 = k − m + 1 → P

Lr

  no need to store any entry in  
for left-max super-k-mers ( only store an array  )
pg,1 = |g | − k + 1 → P

Ll



Partitioned construction

• Where  is an 2-bit integer array holding the super-k-mer types. 
 
We need the operation  for a position  in  and a super-k-mer 
type . So,  is represented with a wavelet tree [Grossi et al., 2003].

R

Rankt(i) i R
t R



Partitioned construction

• Q. Is this effective? Any guarantee?



Partitioned construction

• Q. Is this effective? Any guarantee?

• A. Yes, for Theorem 2 below. So for sufficiently large , the expected fraction 
of super-k-mer types will all be , hence we save a lot of space.

k − m + 1
≈ 1/4



Ambiguous minimizers

• If a minimizer appears in two or more super-k-mers, we say it is ambiguous.


• In this case, a single minimizer position is not enough to rank k-mers without ambiguity.


• We therefore build a separate MPHF for all k-mers belonging to super-k-mers having 
ambiguous minimizers.


• The fraction of ambiguous minimizers is small, e.g., 1—4% on the datasets we tested in 
the paper.



Conclusions

• LPHash is an efficient solution to the minimal perfect hashing problem for k-mer sets.


• Example: 0.87 bits/k-mer on the human genome (2.7B k-mers, for k=63) with very fast 
streaming queries.


• Space usage decreases for increasing k, and in the (near) future we are going to have 
longer k-mers.


• Better solutions to classic problems if we restrict our attention to specific input classes.


• LPHash ingredients: 
 
  - implicit ranking of k-mers with minimizers; 
 
  - structural characterisation of super-k-mers.



Thank you for the attention!


