Sparse and Skew Hashing of K-Mers

Paper: https://doi.org/10.1093/bioinformatics/btac245

Code: https://github.com/jermp/sshash

Giulio Ermanno Pibiri

Ca' Foscari University of Venice and ISTI-CNR

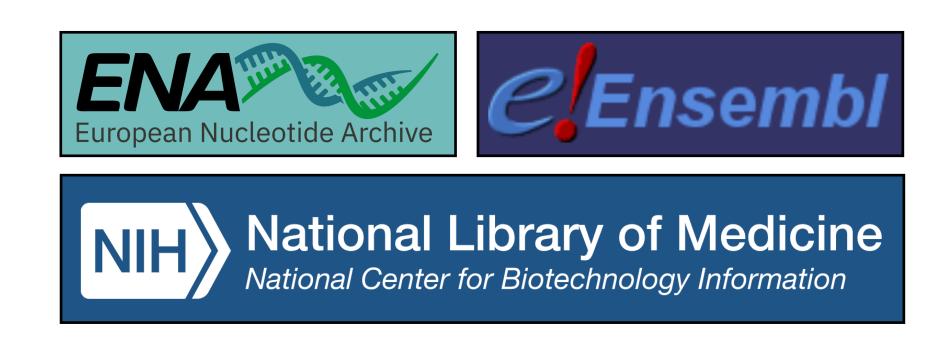
@giulio_pibiri

@jermp

ISMB 2022 (The 30-th Conference on Intelligent Systems for Molecular Biology) Madison, USA, 10-14 July 2022

Massive DNA Collections

- Peta bytes of data available:
 - ENA (European Nucleotide Archive)
 - SRA (Sequence Read Archive)
 - RefSeq (Reference Sequence Database)
 - Ensembl



 For example: as of Feb. 2022, ENA has 2.7 billions of assembled sequences, for >12.6 trillion bases.

https://www.ebi.ac.uk/ena/browser/about/statistics

 These collections are paving the way to answer fundamental questions regarding biology and evolution.

K-Mers

- Q. But how do we exploit such potential? We need efficient methods to index and search data at this scale.
- One popular strategy: "reduce" a DNA sequence to a set of short sub-strings of fixed length k the so-called k-mers.

```
ACGGTAGAACCGA

CGGTAGAACCGAT

GGTAGAACCGATT

GTAGAACCGATTC

TAGAACCGATTCA

AGAACCGATTCA

AGAACCGATTCAA

AACCGATTCAAA

AACCGATTCAAA

AACCGATTCAAA

AACCGATTCAAAA

AACCGATTCAAAA

AACCGATTCAAAA

AACCGATTCAAAAT
```

K-Mer Applications

- Software tools based on k-mers are predominant in Bioinformatics.
- Many applications:
 - genome assembly
 - variant calling
 - pan-genome analysis
 - meta-genomics
 - sequence comparison/alignment
 - . . .

The K-Mer Dictionary Problem

• We are given a large DNA string (e.g., a genome or a pan-genome) and let K be the set of all its n distinct k-mers.

Example: The human genome (GRCh38) has >2.5B distinct k-mers for k=31.

- Problem. We want to build a dictionary for K so that the following operations are efficient:
 - i = Lookup(g), where $0 \le i < n$ if the k-mer $g \in K$ or i = -1 otherwise;
 - return the k-mer g = Access(i) if $0 \le i < n$.

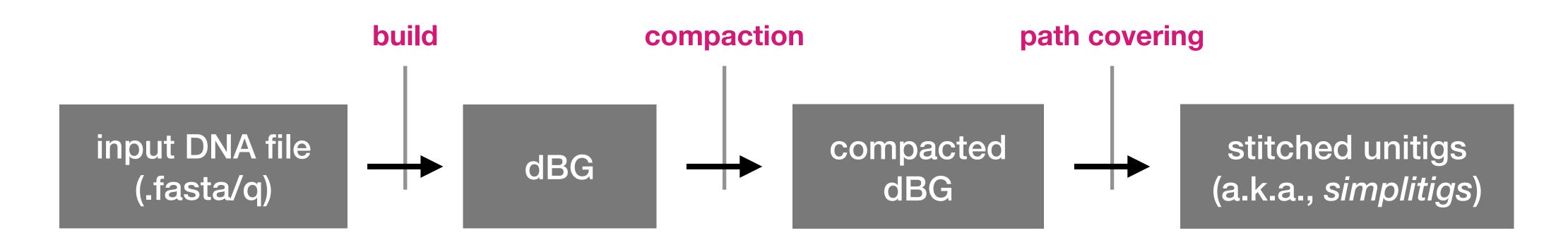
(Other operations of interest are *iteration* and *streaming* queries. See the paper for details.)

Preliminary Observations

- Q. Do we need a specialised solution for this problem?
- The algorithmic literature about *(compressed) string dictionaries* is rich of solutions [Martínez-Prieto et al., 2016] (e.g., Front-Coding, path-decomposed tries, double-array tries), but are relevant for "generic strings":
 - variable-length,
 - larger alphabets (e.g., ASCII),
 - (usually) no particular properties of the strings to aid compression.
- But k-mers are fixed-length strings, drawn from a small alphabet, and extracted consecutively from DNA: a k-mer following another one shares k-1 bases (very low entropy).

de Bruijn Graphs

- Fact. Equivalence between a set of k-mers and a de Bruijn graph (dBG).
- There are efficient software tools to run the following pre-processing flow.



- BCALM [Chikhi et al., 2016]
- Cuttlefish [Khan and Patro, 2021]

- A collection of DNA strings with no duplicate k-mers.
- Efficient heuristic method to reduce the number of bases, e.g, UST [Rahman and Medvedev, 2020].

Super-k-Mers

• Property. Consecutive k-mers are likely to have the same minimizer [Roberts et al., 2004] — the smallest sub-string of length $m \le k$ according to a given order R.

```
Example for k=13 and m=4:

ACGGTAGAACCGATTCAAATTCGATCGATTAATTAGAGCGATAAC...

ACGGTAGAACCGAT

GGTAGAACCGATT

GTAGAACCGATTC

TAGAACCGATTCA

AGAACCGATTCA

AGAACCGATTCAAA

GAACCGATTCAAA

AACCGATTCAAA

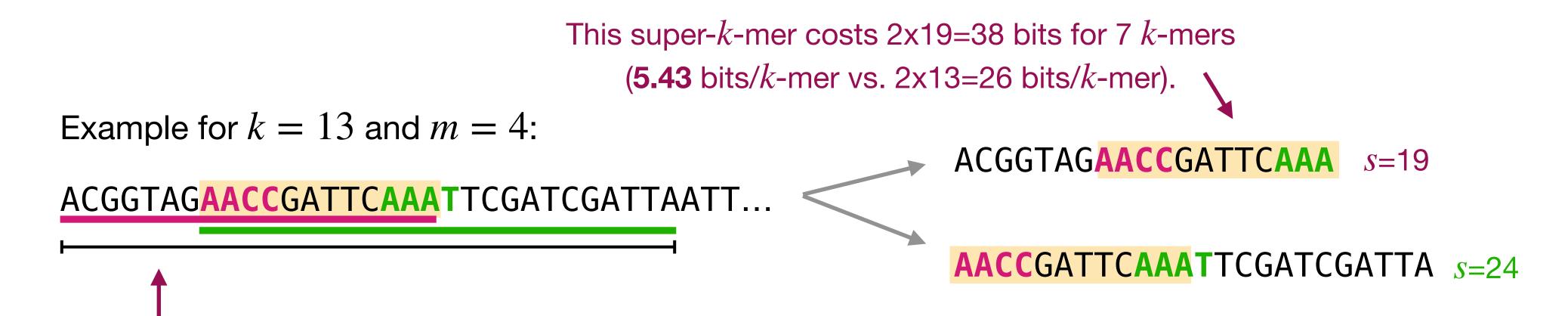
AACCGATTCAAAT

...
```

• Super-k-mer. [Li et al., 2013] Given a string, a super-k-mer is a maximal sequence of consecutive k-mers having the same minimizer.

Super-k-Mers

- Observation 1. Since consecutive k-mers are likely to have the same minimizers, there are far fewer super-k-mers than k-mers approx. (k-m+2)/2 times less for random minimizers \rightarrow sparse indexing.
- Observation 2. A super-k-mer of length s is a space-efficient representation of the set of its constituent s k + 1 k-mers: 2s/(s k + 1) vs. 2k bits/k-mer. If s is sufficiently large and/or we have long chains of super-k-mers, the cost becomes approx. 2 bits/k-mer.



This **chain** is of length 31 and costs 2x31=62 bits for 19 k-mers (**3.26** bits/k-mer).

Sparse Hashing

- Q. How to index super-k-mers?
- Do not break the chains of super-k-mers to avoid wasting 2(k-1) bits per super-k-mer.
- Locate super-k-mers with an array of offsets into the strings, indexed by a minimal perfect hash function (MPHF) on the minimizers.
- Upon Lookup(g): if r is the minimizer of g, locate and scan the "bucket" of r the set of super-k-mers that have minimizer r.

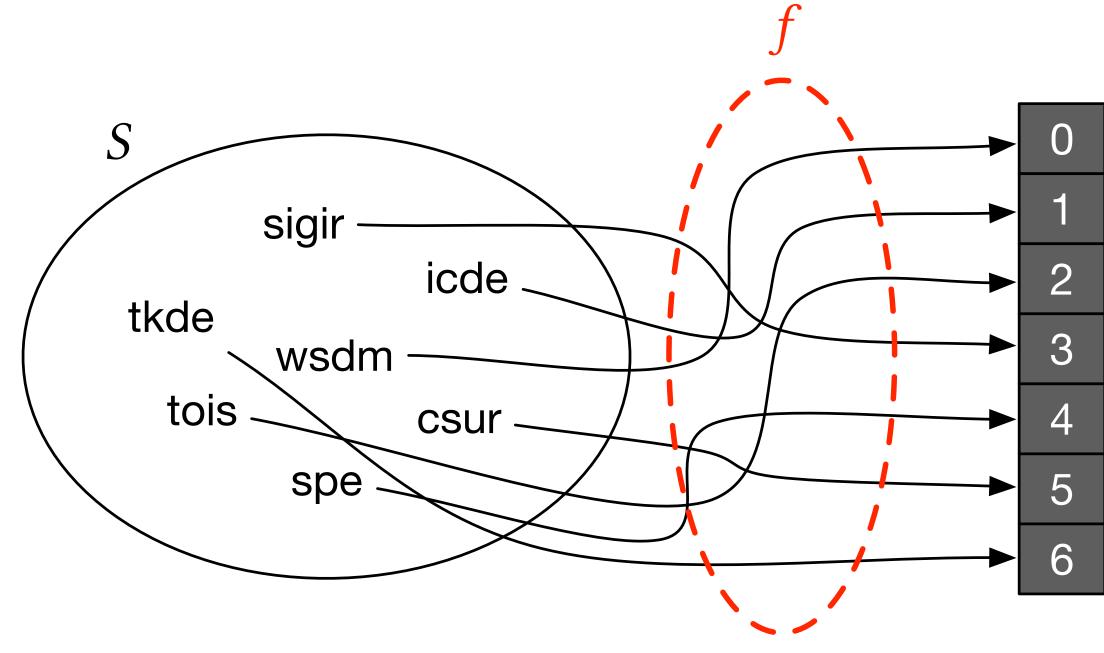
r = ATCCTGAA

Minimal Perfect Hashing

MPHF. Given a set S of n distinct keys, a function f that bijectively maps the keys of S into the range $\{0, ..., n-1\}$ is called a minimal perfect hash function (MPHF) for S.

- Lower bound of 1.44 bits/key in practice:
 2-4 bits/key and constant time evaluation.
- Many algorithms available:
 - FCH [Fox et al., 1992]
 - CHD [Belazzougui et al., 2009]
 - EMPHF [Belazzougui et al., 2014]
 - GOV [Genuzio et al., 2016]
 - BBHash [Limasset et al., 2017]
 - RecSplit [Esposito et al., 2019]
 - PTHash [P. and Trani, 2021]

https://github.com/jermp/pthash



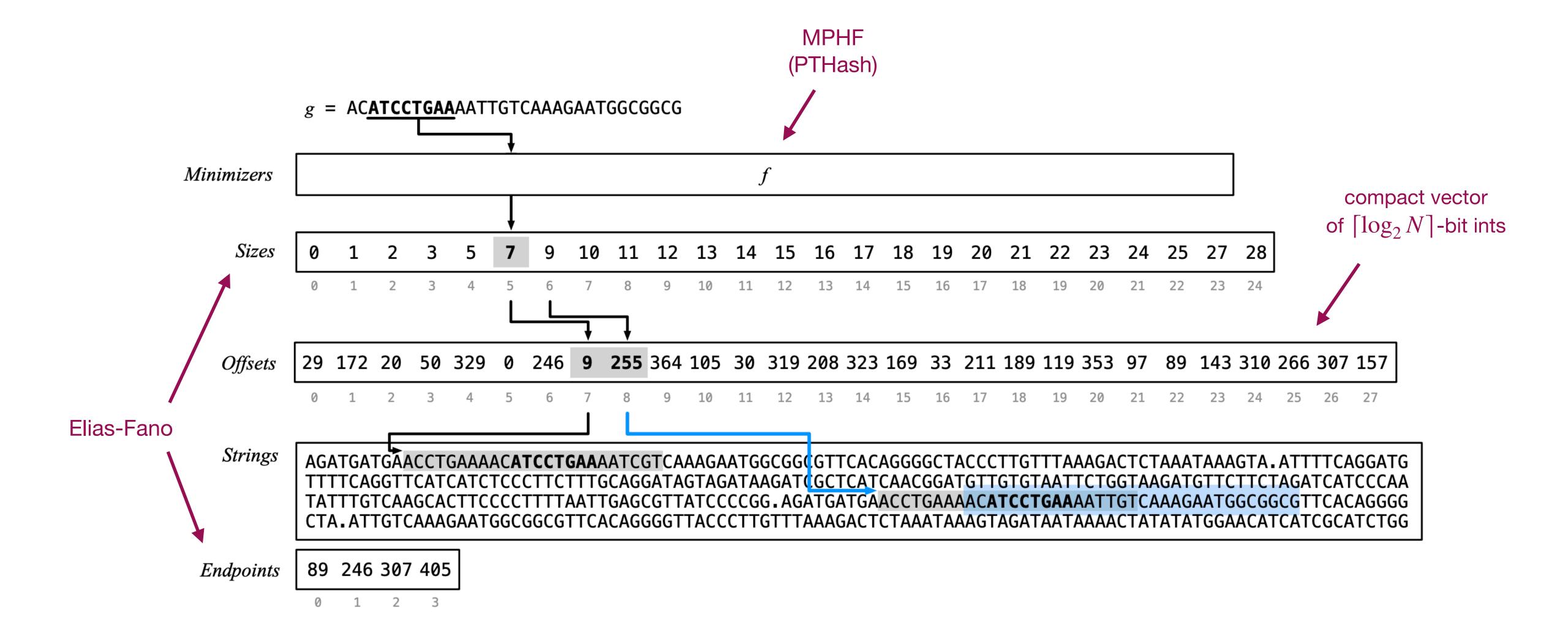
Sparse Hashing — Example

a collection of **4** stitched unitigs: 285 k-mers for k=31, N=408 bases

TCGTCAAA: 29 CATCCCAA: 172 24 minimizers, for m = 8ATCGTCAA: 20 **GACTCTAA:** 50 329 AACCTGAA: 0 246 ATCCTGAA: 9 255 offsets GAACATCA: 364 GCAGGATA: 105 AGGGGCTA: 30 CTTGTTTA: 319 GAGCGTTA: 208 TTTAAAGA: 323 CTTCTAGA: 169 GGCTACCC: 33 CGTTATCC: 211 AGCACTTC: 189 AAGATCGC: 119 AACTATAT: 353 CCTTCTTT: 97 TTCAGGTT: 89 ACGGATGT: 143 ACAGGGGT: 310 TGTCAAAG: 266 307

TAATTCTG: 157

Sparse Hashing — Example



Skew Hashing

• Problem. Some buckets can be very large.

For example on the human genome (GRCh38), for k=31 and m=20: largest bucket size can be as large as 3.6×10^4 .

• Property. Minimizers have a (very) skew distribution for sufficiently-long length m.

Bucket size distribution (%) for k = 31 and the first $n = 10^9$ k-mers of the human genome, by varying minimizer length m.

size / m	11	12	13	14	15	16	17	18	19	20	21
1	13.7	19.8	29.7	42.4	61.5	79.5	89.8	94.4	96.3	97.1	97.5
2	7.5	10.6	14.4	17.7	19.4	13.6	7.3	3.9	2.4	1.7	1.4
3	5.2	7.3	8.8	10.4	8.4	3.7	1.4	0.8	0.5	0.4	0.4
4	4.0	5.5	6.0	7.0	4.1	1.3	0.5	0.3	0.2	0.2	0.2
											0.1

On the **full** human genome (GRCh38), for k=31 and m=20: 2,505,445,761 k-mers 421,845,806 minimizers 388,018,280 (91.98%) only appear **once!**

Skew Hashing

- We fix an integer ℓ : by virtue of the skew distribution, the fraction of buckets having more than 2^{ℓ} super-k-mers is small.
- So, we can afford a MPHF over the set of k-mers that belong to such super-k-mers. The output of the MPHF for a k-mer g is the identifier of the super-k-mer where g is present.
- Upon Lookup, we will scan one super-k-mer only.

Bucket size distribution (%) for k = 31 and the first $n = 10^9$ k-mers of the human genome, by varying minimizer length m.

size / m											
1	13.7	19.8	29.7	42.4	61.5	79.5	89.8	94.4	96.3	97.1	97.5
2	7.5	10.6	14.4	17.7	19.4	13.6	7.3	3.9	2.4	1.7	1.4
3	5.2	7.3	8.8	10.4	8.4	3.7	1.4	0.8	0.5	0.4	0.4
4	4.0	5.5	6.0	7.0	4.1	1.3	0.5	0.3	0.2	0.2	0.2
1 2 3 4 5	3.2	4.4	4.5	5.0	2.2	0.6	0.3	0.2	0.1	0.1	0.1

For $\ell=2$, just 100.0-(97.1+1.7+0.4+0.2)%=0.6% of buckets with more than $2^{\ell=2}=4$ super-k-mers.

Skew Hashing

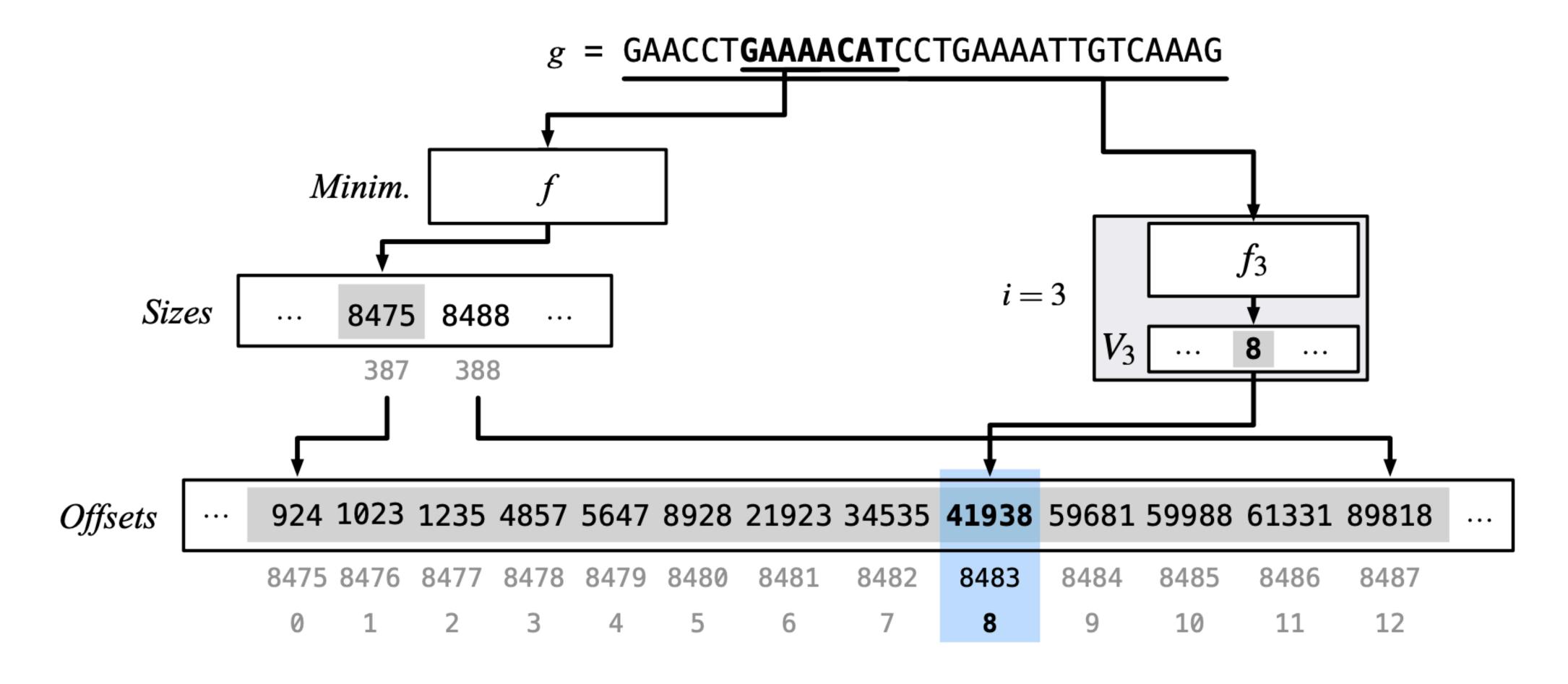
- The super-k-mer identifiers can be written space-efficiently, as follows.
- For $i=\ell,\ldots,L$, let K_i is the set of all k-mers belonging to buckets of size s, with s such that:

$$\begin{cases} 2^{i} < s \le 2^{i+1} & \ell \le i < L \\ 2^{L} < s \le max & i = L \end{cases}$$

• We build a MPHF f_i for each set K_i . For a k-mer $g \in K_i$, we know that its bucket contains at most 2^{i+1} super-k-mers, so we write the identifier of the super-k-mer containing g in a (compact) vector V_i of (i+1)-bit ints.

Skew Hashing — Example

Example for $\ell = 3$.



Experimental Setup and Datasets

- Processor: Intel(R) Core(TM) i9-9940X CPU @ 3.30GHz.
- Compiler and OS: gcc version 11.2.0, Ubuntu 11.2.0-7ubuntu2.
- Compiler optimization flags: -03 -march=native.
- All experiments are single-threaded.
- Code in C++17: https://github.com/jermp/sshash.

Some basic statistics for the datasets used in the experiments, for k = 31, such as number of: k-mers (n), paths (p), and bases (N).

Dataset	n	p	N	$\lceil \log_2(N) \rceil$
Cod	502,465,200	2,406,681	574,665,630	30
Kestrel	1,150,399,205	682,344	1,170,869,525	31
Human	2,505,445,761	13,014,641	2,895,884,991	32
Bacterial	5,350,807,438	26,449,008	6,144,277,678	33

NOTE: We used BCALM (v2) [Chikhi et al., 2016] to build the compacted dBG and then UST [Rahman and Medvedev, 2020] to compute the stitched unitigs.

Trade-offs by Varying Minimizer Length (m)

Space in bits/k-mer (bpk) and Lookup time (indicated by Lkp⁺ for positive queries; by Lkp⁻ for negative) in average ns/k-mer for regular and canonical SSHash dictionaries by varying minimizer length m. For each dataset, we indicate promising configurations in bold font.

Dataset		m			m			m			m		
Dataset	bpk	Lkp ⁺	Lkp ⁻	bpk	Lkp ⁺	Lkp ⁻	bpk	Lkp ⁺	Lkp ⁻	bpk	Lkp ⁺	Lkp ⁻	
Cod		15			16			17			18		
regular	6.60	1236	1267	6.82	1100	1174	6.98	1045	1158	7.21	1015	1157	
canonical	7.68	945	768	7.92	834	690	8.18	786	672	8.47	755	658	
Kestrel		16			17			18			19		
regular	6.19	1137	1323	6.48	1042	1265	6.79	1005	1245	7.12	997	1240	
canonical	7.30	882	781	7.68	790	722	8.09	743	696	8.51	730	691	
Human		17			18			19			20		
regular	7.44	1591	1668	7.67	1459	1573	7.95	1406	1547	8.28	1338	1530	
canonical	8.76	1150	936	9.04	1054	881	9.39	990	854	9.80	958	838	
Bacterial		18			19			20			21		
regular	7.42	1535	1867	7.80	1425	1813	8.22	1389	1780	8.70	1368	1774	
canonical	8.75	1129	1043	9.22	1051	995	9.75	1028	947	10.34	998	956	

NOTE 1: We used $\ell = 6$ and L = 12 for all experiments.

NOTE 2: A good rule of thumb is $m = \lceil \log_4(N) \rceil + 1$ or $m = \lceil \log_4(N) \rceil + 2$.

Competitors

- dBG-FM [Chikhi et al., 2014]: FM-index [Ferragina and Manzini, 2000]
- Pufferfish [Almodaresi et al., 2018]: MPHF
- Blight [Marchet et al., 2021]: MPHF+minimizers

Overall Comparison — Space and Lookup

Dictionary space in total GB and average bits/k-mer (bpk).

Dictionary	C	od	Ke	strel	Hur	nan	Bact	erial
Dictionary	GB	bpk	GB	bpk	GB	bpk	GB	bpk
dBG-FM, $s = 128$	0.22	3.48	0.44	3.07	_	_	_	_
dBG-FM, $s = 64$	0.27	4.38	0.55	3.86	_	_	_	_
dBG-FM, $s = 32$	0.39	6.16	0.78	5.43	_	_	_	_
Pufferfish, sparse	1.75	27.80	3.69	25.66	8.87	28.32	18.91	28.28
	1.49	23.70	3.37	23.40	7.50	23.96	16.09	24.06
Pufferfish, dense	2.69	42.76	5.97	41.54	14.11	45.04	30.70	45.89
	2.43	38.66	5.65	39.28	12.74	40.68	27.88	41.68
Blight, $b = 4$	0.91	14.53	2.16	15.00	5.04	16.11	11.40	17.04
Blight, $b = 2$	1.04	16.57	2.45	17.04	5.67	18.13	12.74	19.05
Blight, $b = 0$	1.17	18.61	2.74	19.06	6.32	20.17	14.12	21.11
SSHash, regular	0.44	6.98	0.93	6.48	2.59	8.28	5.50	8.22
SSHash, canonical	0.50	7.92	1.00	7.30	2.94	9.39	6.17	9.22

Dictionary Lookup time in average ns/k-mer.

Dictionary	Co	od	Kes	trel	Hun	nan	Bacterial		
Dictionary	Lkp ⁺	Lkp ⁻							
dBG-FM, $s = 128$	22,980	16,501	23,934	16,764	_	_	_	_	
dBG-FM, s = 64	15,013	10,919	15,929	11,462	_	_	_	_	
dBG-FM, $s = 32$	11,386	7929	11,703	8073	_	_	_	_	
Pufferfish, sparse	1110	700	5456	769	13,656	862	27,748	983	
Pufferfish, dense	624	439	635	485	720	519	816	582	
Blight, $b = 4$	2520	2751	2743	3104	2820	3329	3105	3913	
Blight, $b = 2$	1800	1643	1916	1820	2008	1975	2095	2146	
Blight, $b = 0$	1571	1317	1692	1472	1780	1610	1859	1751	
SSHash, regular	1045	1158	1042	1265	1338	1530	1389	1780	
SSHash, canonical	834	690	882	781	990	854	1051	995	

- Compared to BWT-based indexes: one order of magnitude faster for "just" 2x more space.
- Compared to other hashing schemes: 2-5x smaller with comparable of faster query time.

Overall Comparison — Streaming Queries

Query time for streaming membership queries for various dictionaries. The query time is reported as total time in minutes (tot), and average ns/k-mer (avg). We also indicate the query file (SRR number) and the percentage of hits. Both high-hit (> 70% hits) and low-hit (< 1% hits) workloads are considered.

	C	od	Ke	strel	Hu	man	Bac	terial		C	od	K	estrel	Hu	man	Bact	erial
Dictionary	SRR12858649 81.37% hits		SRR11449743 74.60% hits		SRR5833294 91.65% hits		SRR5901135 87.79% hits		Dictionary	SRR11449743 0.659% hits		SRR12858649 0.484% hits		SRR5901135 0.002% hits		SRR5833294 0.086% hits	
	tot	avg	tot	avg	tot	avg	tot	avg		tot	avg	tot	avg	tot	avg	tot	avg
Pufferfish, sparse	0.6	214	14.1	609	17.0	651	9.1	691	Pufferfish, sparse	14.6	627	0.9	312	11.3	855	25.5	975
Pufferfish, dense	0.2	92	8.5	368	10.5	402	5.3	404	Pufferfish, dense	8.7	374	0.2	92	5.8	435	13.6	518
Blight, $b = 4$	2.1	766	32.5	1400	27.3	1041	11.4	864	Blight, $b = 4$	72.2	3112	6.6	2407	35.7	2704	253.2	9675
Blight, $b = 2$	1.2	453	16.6	714	17.5	670	8.6	648	Blight, $b = 2$	45.9	1978	3.0	1115	19.1	1445	117.7	4498
Blight, $b = 0$	0.8	282	10.8	464	11.5	440	5.8	434	Blight, $b = 0$	18.1	780	1.8	655	14.4	1088	32.2	1232
SSHash, regular	0.5	166	6.2	267	8.2	311	3.0	223	SSHash, regular	10.7	463	0.9	314	6.2	463	14.3	544
SSHash, canonical	0.3	111	5.1	219	6.7	253	2.4	184	SSHash, canonical	5.1	220	0.4	155	2.5	183	6.4	244

⁽a) high-hit workload

Construction Time and Space

Dictionary construction times in minutes (using a single processing thread) and peak internal memory used during construction in GB. (Blight's performance was the same for all values of b in the experiment.)

Dictionary	Cod	Kestrel	Human	Bacterial		
Dictionary	min GB	min GB	min GB	min GB		
dBG-FM, $s = 128$	28.5 0.5	100.0 0.7				
dBG-FM, s = 64	28.5 0.6	100.0 0.9				
dBG-FM, s = 32	28.5 0.7	100.0 1.1				
Pufferfish, sparse	15.5 3.3	35.2 6.7	86.0 19.4	200.8 40.1		
Pufferfish, dense	13.0 2.8	29.2 5.9	70.7 14.0	173.2 30.4		
Blight	5.0 3.3	11.0 7.0	25.0 7.5	50.0 15.8		
SSHash, regular	1.5 2.6	3.8 5.7	12.5 15.4	29.6 33.4		
SSHash, canonical	2.0 2.8	4.4 5.8	16.2 17.3	36.0 36.6		

NOTE: For this experiment, the SSHash's construction algorithm works entirely in internal memory.

Conclusions

- SSHash is an efficient solution to the K-Mer Dictionary problem: good trade-off between space and time.
- Tool-box: spectrum-preserving string sets (SPSSs), minimizers, minimal perfect hashing (PTHash, https://github.com/jermp/pthash), compressed encodings (e.g., Elias-Fano).
- Ingredients:
 - Sparse indexing to obtain good space effectiveness;
 - Skew hashing to guarantee fast lookup for "heavy" buckets.
- Code in C++17 is available at: https://github.com/jermp/sshash.

Other Features

- As of release v3.0.0 of the library:
 - external-memory construction (reduced RAM usage during construction)
 - compressed abundances (WABI 2022)
 - navigational queries
- https://github.com/jermp/sshash/releases

Thank you for the attention!