
Spectrum Preserving Tilings Enable
Sparse and Modular Reference Indexing

Data Structures in Bioinformatics (DSB) 
Delft, Netherlands, 21 March 2023

Giulio Ermanno Pibiri
Ca’ Foscari University of Venice

@giulio_pibiri

@jermp

Join work with Jason Fan, Jamshed Khan, and Rob Patro 
University of Maryland (USA)

• We are given a collection of reference sequences. Each is a
(large) sequence over the DNA alphabet {A,C,G,T}, .

• Problem. We want to build an index for so that we can answer the following
queries efficiently for any k-mer .

- Membership: does appear in ?

- Count: if so, how many times?

- Color: and in what references?

- Locate: and at what positions in the references?

ℛ = {R1, …, Rm} Ri
1 ≤ i ≤ m

ℛ
x

x ℛ

The reference indexing problem

• Applications: This problem is relevant for applications where sequences are first
matched against known references (i.e., mapping/alignment algorithms): single-cell
RNA-seq, metagenomics, etc.

Index overview

• All the distinct k-mers in  
are stored in a dictionary .

• What we want for a k-mer is the map: 
 
 , 
 
where position in of the -th k-mer of . The collection of all is
the inverted index .

ℛ = {R1, …, Rm}
𝒟

x

x → Lx = {(i, {pij}) |x ∈ Ri}

pij := Ri j Ri Lx
ℒ

• Queries:

- Membership: does appear in ? Use the dictionary .

- Count: if so, how many times? The length of .

- Color: and in what references? The set .

- Locate: and at what positions in the references? The set .

x ℛ 𝒟
Lx

{i |x ∈ Ri}
{(i, {pij}) |x ∈ Ri}

• From the references we build a reference dBG.
• Result: each reference is spelled by a tiling of the unitigs in the graph. We call this

representation of a “spectrum preserving tiling” (or SPT).

• (Each k-mer appears once, in a certain unitig.)

ℛ = {R1, …, Rm}

ℛ

Spectrum preserving tilings (SPTs)

u1 u3 u2 u3 u4

u1 u3u2 u3

u4 u5 u6 u1

R1 :

R2 :

R3 :

u2 u5

-symbol overlaps(k − 1)

tiling of unitigs: u4 → u5 → u6 → u1

Set of unitigs: .𝒰 = {u1, u2, u3, u4, u5, u6}

The inverted index

• Q. How are the inverted lists of the k-mers in the same unitig, say, ?u2

u1 u3 GTTCGACGu2 : u3 u4

u1 u3 GTTCGACGu2 : u3

u4 u5 u6 u1

R1 :

R2 :

R3 :

 GTTCGACGu2 : u5

k = 3

• Property. By construction of SPTs, the inverted lists of the k-mers in the same
unitig are identical.

• So instead of keeping a separate inverted list for each -mer in , we store
inverted lists at the unitig level much fewer lists and much fewer positions.

k 𝒟
→

The interplay between and 𝒟 ℒ
• Our map now is .

• But we need the position of the k-mer in the reference (not that of the unitig)!

unitig(x) → Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

The interplay between and 𝒟 ℒ
• Our map now is .

• But we need the position of the k-mer in the reference (not that of the unitig)!

unitig(x) → Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

• TCG
• The result is:

x =

{(1,{3 + p13 − 1, 3 + p16 − 1}), (2,{3 + p21 − 1})}

u1 u3 GTTCGACGu2 : u3 u4

u1 u3 GTTCGACGu2 : u3

R1 :

R2 :

 GTTCGACGu2 :

k = 3

p13p21 p16

offset(TCG) = 3

u5

• Solution. Store the unitigs in the dictionary with SSHash [P., 2022] to compute the relative position of
the k-mer in on-the-fly. Let’s call it .

• The positions of in are computed as: .

𝒟
x unitig(x) offset(x)

x ℛ {(i, {offset(x) + pij − 1}) |unitig(x) ∈ Ri}

• We have therefore decomposed our problem into two distinct mappings
with simple APIs. 
 
1. From k-mer to unitig. 
 
  
 
 
2. From unitig to inverted list. 
 

x 𝒟 (unitig(x), offset(x))

unitig(x) ℒ Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

Modular reference indexing

The dictionary data structure

• From k-mer to unitig: x 𝒟 (unitig(x), offset(x))

• For we use SSHash — Sparse and Skew Hashing of k-mers [P., 2022]  

- Order-preserving: consecutive k-mers in the unitigs get consecutive hash codes  
(that’s how we implement the mapping) 

- Fast and compact (builds on minimal perfect hashing and minimizers)

- Exact, associative, weighted

- Support for point/streaming/navigational queries

- Scale to large datasets using external memory

𝒟

The inverted index data structure

• From unitig to inverted list:

• Lists are sorted (for example, first by reference identifier , then by positions) and
compressed.

• Plethora of compression techniques to compress sorted integer sequences with
different space/time trade-offs (see, e.g., [P. and Venturini, 2021]).

• But…on genomic collections, these lists are short. E.g., 90% or more are shorter
than 1000 :(

unitig(x) ℒ Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

i

Occurrence distribution
7 Humans 4000 E. Coli 30k Human gut

• y-axis: cumulative % of occurrences in the inverted index
for unitigs that appear < x times.

4096 4096 4096

65%

>95% 100%≈

• For comparison: on Web-page datasets (natural language)
we retain 93%, 94%, 98% of the occurrences if we throw
away lists shorter than 4096.

Sampling vs. Compression
• In [Fan, Khan, P., Patro 2023] we use a simple sampling scheme where we keep 1 unitig every

unitigs in the inverted index: if a unitig is not sampled, we do not store its occurrences.

• It is still possible to “re-construct” exactly its occurrences by walking back over the reference tilings.

s

Sampling vs. Compression
• In [Fan, Khan, P., Patro 2023] we use a simple sampling scheme where we keep 1 unitig every

unitigs in the inverted index: if a unitig is not sampled, we do not store its occurrences.

• It is still possible to “re-construct” exactly its occurrences by walking back over the reference tilings.

s

u1 u3 u2 u3 u4

u1 u3u2 u3

R1 :

R2 :

u2

-symbol overlaps(k − 1)

Suppose = CGGT is not sampled, but and are sampled.u3 u1 u2
ℒ

u3 ???k = 3

u5

Sampling vs. Compression
• In [Fan, Khan, P., Patro 2023] we use a simple sampling scheme where we keep 1 unitig every

unitigs in the inverted index: if a unitig is not sampled, we do not store its occurrences.

• It is still possible to “re-construct” exactly its occurrences by walking back over the reference tilings.

s

u1 u3 u2 u3 u4

u1 u3u2 u3

R1 :

R2 :

u2

-symbol overlaps(k − 1)

Suppose = CGGT is not sampled, but and are sampled.u3 u1 u2
ℒ

u3 ???k = 3

u5

CGGT = u3
C
A query the dictionary for CCG and ACG:→

 and .unitig(CCG) = u1 unitig(ACG) = u2

C A A C

predecessor nucleotides

Sampling vs. Compression
• In [Fan, Khan, P., Patro 2023] we use a simple sampling scheme where we keep 1 unitig every

unitigs in the inverted index: if a unitig is not sampled, we do not store its occurrences.

• It is still possible to “re-construct” exactly its occurrences by walking back over the reference tilings.

s

u1 u3 u2 u3 u4

u1 u3u2 u3

R1 :

R2 :

u2

-symbol overlaps(k − 1)

Suppose = CGGT is not sampled, but and are sampled.u3 u1 u2
ℒ

u3 ???k = 3

u5

u1

u2 G A G

G G

successor nucleotides

CGGT = u3
C
A query the dictionary for CCG and ACG:→

 and .unitig(CCG) = u1 unitig(ACG) = u2

C A A C

predecessor nucleotides

Sampling the inverted index

(2.15×)
(1.70×)

(2.08×)
(1.63×)

(1.90×)
(1.59×)
(2.50×)
(1.90×)

Index

Sampling the inverted index

AWS EC2 instances pricing:

• https://instances.vantage.sh/aws/ec2/x2gd.xlarge 

64 GiB of RAM — 243 USD per month

• https://instances.vantage.sh/aws/ec2/x2gd.2xlarge 

128 GiB of RAM — 478 USD per month

• https://instances.vantage.sh/aws/ec2/x2gd.4xlarge 

256 GiB of RAM — 975 USD per month

https://instances.vantage.sh/aws/ec2/x2gd.xlarge
https://instances.vantage.sh/aws/ec2/x2gd.2xlarge
https://instances.vantage.sh/aws/ec2/x2gd.4xlarge

Comparison against MONI

• MONI [Rossi et al., 2022] is based on the r-index [Gagie et al., 2018].

• Tested on 4,000 bacterial collection.

• Space: 51GB vs. 11GB (4.6X less space).

• 10M random (positive) k-mers: 1500 sec vs. 420 sec (3.6X faster).

• But MONI can find patterns of arbitrary length (not only k) and MEMs, which Pufferfish2
cannot do.

Conclusions

• Spectrum preserving tilings (SPTs) enable a modular and sparse solutions to the reference
indexing problem based on two distinct abstract data types: a dictionary and an inverted
index .

• While substantial work has been done for , little work has been done for (for DNA
references).

• We have shown that, by construction of reference tilings: 
- we can reduce the number of lists and positions stored in ;  
- we can sample tiles’ occurrences. 
 
This leads to a much better space usage compared to other state-of-the-art solutions.

• Depending on how is represented (e.g., lossless/lossy, sampled/compressed, etc.): 
a whole class of related reference indexing data structures can be obtained.

• Try Pufferfish2: https://github.com/COMBINE-lab/pufferfish2.

𝒟
ℒ

𝒟 ℒ

ℒ

ℒ

https://github.com/COMBINE-lab/pufferfish2

Thank you for the attention!

A special thank to 
Jason Fan, Jamshed Khan, and Rob Patro  

University of Maryland (USA)

“Spectrum preserving tilings enable sparse and modular reference indexing”  
Jason Fan, Jamshed Khan, Giulio Ermanno Pibiri, and Rob Patro. 2023. RECOMB. To appear.

