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• We are given a collection  of reference sequences. Each  is a 
(large) sequence over the DNA alphabet {A,C,G,T}, .


• Problem. We want to build an index for  so that we can answer the following 
queries efficiently for any k-mer .

- Membership: does  appear in ?

- Count: if so, how many times?

- Color: and in what references?

- Locate: and at what positions in the references?

ℛ = {R1, …, Rm} Ri
1 ≤ i ≤ m

ℛ
x

x ℛ

The reference indexing problem

• Applications: This problem is relevant for applications where sequences are first 
matched against known references (i.e., mapping/alignment algorithms): single-cell 
RNA-seq, metagenomics, etc.



Index overview

• All the distinct k-mers in  
are stored in a dictionary .


• What we want for a k-mer  is the map: 
 
 , 
 
where position in  of the -th k-mer of . The collection of all  is 
the inverted index .

ℛ = {R1, …, Rm}
𝒟

x

x → Lx = {(i, {pij}) |x ∈ Ri}

pij := Ri j Ri Lx
ℒ

• Queries:

- Membership: does  appear in ? Use the dictionary .

- Count: if so, how many times? The length of .

- Color: and in what references? The set .

- Locate: and at what positions in the references? The set .

x ℛ 𝒟
Lx

{i |x ∈ Ri}
{(i, {pij}) |x ∈ Ri}



• From the references  we build a reference dBG. 
• Result: each reference is spelled by a tiling of the unitigs in the graph. We call this 

representation of  a “spectrum preserving tiling” (or SPT).

• (Each k-mer appears once, in a certain unitig.)

ℛ = {R1, …, Rm}

ℛ

Spectrum preserving tilings (SPTs)

u1 u3 u2 u3 u4

u1 u3u2 u3

u4 u5 u6 u1

R1 :

R2 :

R3 :

u2 u5

-symbol overlaps(k − 1)

tiling of unitigs: u4 → u5 → u6 → u1

Set of unitigs: .𝒰 = {u1, u2, u3, u4, u5, u6}



The inverted index

• Q. How are the inverted lists of the k-mers in the same unitig, say, ?u2

u1 u3  GTTCGACGu2 : u3 u4

u1 u3 GTTCGACGu2 : u3

u4 u5 u6 u1

R1 :

R2 :

R3 :

 GTTCGACGu2 : u5

k = 3

• Property. By construction of SPTs, the inverted lists of the k-mers in the same 
unitig are identical.


• So instead of keeping a separate inverted list for each -mer in , we store 
inverted lists at the unitig level  much fewer lists and much fewer positions.

k 𝒟
→



The interplay between  and 𝒟 ℒ
• Our map now is .


• But we need the position of the k-mer in the reference (not that of the unitig)!

unitig(x) → Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}
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• But we need the position of the k-mer in the reference (not that of the unitig)!

unitig(x) → Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

• TCG 
• The result is:

x =

{(1,{3 + p13 − 1, 3 + p16 − 1}), (2,{3 + p21 − 1})}

u1 u3  GTTCGACGu2 : u3 u4

u1 u3 GTTCGACGu2 : u3

R1 :

R2 :

 GTTCGACGu2 :

k = 3

p13p21 p16

offset(TCG) = 3

u5

• Solution. Store the unitigs in the dictionary  with SSHash [P., 2022] to compute the relative position of 
the k-mer  in  on-the-fly. Let’s call it .


• The positions of  in  are computed as: .

𝒟
x unitig(x) offset(x)

x ℛ {(i, {offset(x) + pij − 1}) |unitig(x) ∈ Ri}



• We have therefore decomposed our problem into two distinct mappings 
with simple APIs. 
 
1. From k-mer to unitig. 
 
     
 
 
2. From unitig to inverted list. 
 
    

x 𝒟 (unitig(x), offset(x))

unitig(x) ℒ Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

Modular reference indexing



The dictionary data structure

• From k-mer to unitig: x 𝒟 (unitig(x), offset(x))

• For  we use SSHash — Sparse and Skew Hashing of k-mers [P., 2022]  

- Order-preserving: consecutive k-mers in the unitigs get consecutive hash codes  
(that’s how we implement the mapping) 

- Fast and compact (builds on minimal perfect hashing and minimizers)

- Exact, associative, weighted

- Support for point/streaming/navigational queries

- Scale to large datasets using external memory

𝒟



The inverted index data structure

• From unitig to inverted list: 


• Lists are sorted (for example, first by reference identifier , then by positions) and 
compressed.


• Plethora of compression techniques to compress sorted integer sequences with 
different space/time trade-offs (see, e.g., [P. and Venturini, 2021]).


• But…on genomic collections, these lists are short. E.g., 90% or more are shorter 
than 1000 :(

unitig(x) ℒ Lunitig(x) = {(i, {pij}) |unitig(x) ∈ Ri}

i



Occurrence distribution
7 Humans 4000 E. Coli 30k Human gut

• y-axis: cumulative % of occurrences in the inverted index 
for unitigs that appear < x times.

4096 4096 4096

65%

>95% 100%≈

• For comparison: on Web-page datasets (natural language) 
we retain 93%, 94%, 98% of the occurrences if we throw 
away lists shorter than 4096.



Sampling vs. Compression
• In [Fan, Khan, P., Patro 2023] we use a simple sampling scheme where we keep 1 unitig every  

unitigs in the inverted index: if a unitig is not sampled, we do not store its occurrences.


• It is still possible to “re-construct” exactly its occurrences by walking back over the reference tilings.
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ℒ

u3 ???k = 3
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u1

u2 G A G

G G
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CGGT = u3
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C A A C

predecessor nucleotides



Sampling the inverted index

(2.15×)
(1.70×)

(2.08×)
(1.63×)

(1.90×)
(1.59×)
(2.50×)
(1.90×)

Index



Sampling the inverted index

AWS EC2 instances pricing:

• https://instances.vantage.sh/aws/ec2/x2gd.xlarge 

64 GiB of RAM — 243 USD per month

• https://instances.vantage.sh/aws/ec2/x2gd.2xlarge 

128 GiB of RAM — 478 USD per month

• https://instances.vantage.sh/aws/ec2/x2gd.4xlarge 

256 GiB of RAM — 975 USD per month

https://instances.vantage.sh/aws/ec2/x2gd.xlarge
https://instances.vantage.sh/aws/ec2/x2gd.2xlarge
https://instances.vantage.sh/aws/ec2/x2gd.4xlarge


Comparison against MONI

• MONI [Rossi et al., 2022] is based on the r-index [Gagie et al., 2018].


• Tested on 4,000 bacterial collection.


• Space: 51GB vs. 11GB (4.6X less space).


• 10M random (positive) k-mers: 1500 sec vs. 420 sec (3.6X faster).


• But MONI can find patterns of arbitrary length (not only k) and MEMs, which Pufferfish2 
cannot do.



Conclusions

• Spectrum preserving tilings (SPTs) enable a modular and sparse solutions to the reference 
indexing problem based on two distinct abstract data types: a dictionary  and an inverted 
index .


• While substantial work has been done for , little work has been done for  (for DNA 
references).


• We have shown that, by construction of reference tilings: 
- we can reduce the number of lists and positions stored in ;  
- we can sample tiles’ occurrences. 
 
This leads to a much better space usage compared to other state-of-the-art solutions.


• Depending on how  is represented (e.g., lossless/lossy, sampled/compressed, etc.): 
a whole class of related reference indexing data structures can be obtained.


• Try Pufferfish2: https://github.com/COMBINE-lab/pufferfish2.

𝒟
ℒ

𝒟 ℒ

ℒ

ℒ

https://github.com/COMBINE-lab/pufferfish2
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