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The colored k-mer indexing problem

 We are given a collection &£ = {R;, ..., Ry} of reference sequences.
Each R_ is a (long) sequence over the DNA alphabet {A,C,G,T}.

 Problem. We want to build an index for &£ so that we can retrieve the set
ColorSet(x) = {c|x € R.} efficiently for any k-mer x. Note that ColorSet(x) = D if x € X.



The colored k-mer indexing problem

 We are given a collection &£ = {R;, ..., Ry} of reference sequences.
Each R_ is a (long) sequence over the DNA alphabet {A,C,G,T}.

 Problem. We want to build an index for &£ so that we can retrieve the set
ColorSet(x) = {c|x € R.} efficiently for any k-mer x. Note that ColorSet(x) = D if x € X.

* A lot of hype in the indexing community for the case where &£ is a pangenome, i.e.,
a collection of related genomes.

* Applications. This problem is relevant for applications where sequences are first
matched against known references (i.e., mapping/alignment algorithms): single-cell
RNA-seqg, metagenomics, etc.



Modular indexing layout

 Goal. What we want is the map x — ColorSet(x) = {c|x € R_}.

e Two data structures:
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Modular indexing layout

 Goal. What we want is the map x — ColorSet(x) = {c|x € R_}.
* Two data structures:

1. All the distinct k-mers in & = {R,, ..., Ry} are stored in the dictionary .

O stores n distinct k-mers and supports a Lookup(x) operation which, given a k-mer X,
returns a unique integer | < h <nifx € Y, and L otherwise.

A
2. The sets {ColorSet(x)}, are stored in order
of Lookup(x) in the inverted index Z. — |
x —> 9 S | ColorSet(x)
]
||




Modular indexing layout

 Many k-mer based indexes (all of them?) are incarnations/adaptations of this
modular indexing layout, & + <

- deBGA [Liu et al. 2016]

- Kallisto [Bray et al. 2016] A
- BIGSI [Bradley et al. 2017]
- Rainbowfish [Almodaresi et al. 2017] ]
- Mantis [Pandey et al. 2018] -

- Pufferfish [Almodaresi et al. 2018] I
- SeqOthello [Yu et al. 2018] x = 9D —
- COBS [Bingmann et al. 2019]

- Reindeer [Marchet et al. 2020]

- Raptor [Seiler et al. 2021]

- Metagraph [Karasikov et al. 2022]
- NIQKI [Agret et al. 2022]

- Pufferfish2 [Fan et al. 2022]

- Themisto [Alanko et. al 2023]

- Fulgor [Fan et. al 2023, 2024; P. et al. 2024; Campanelli et al., 2024, 2025]

ColorSet(x)




Modular indexing layout

* Our problem reduces to that of representing two data structures, & and &.
 To do so at best, we must understand/exploit the properties of our problem.

* Q. What are these properties?

<
]

| ColorSet(x)




de Bruijn graphs

» The dictionary & is a set of k-mers with (k-1)-symbol overlaps.

» One-to-one correspondence between & and a dBG.
* Example for k = 3.




Colored de Bruijn graphs

« Example for k = 3 and N = 6 references. References in £ are spelled by paths in the graph.

y——

TGG GGT GTA TAA

4 TGC GCG CGA GAA
1



Colored de Bruijn graphs

« Example for k = 3 and N = 6 references. References in £ are spelled by paths in the graph.

—

TGG GGT GTA TAA

1,23} {1,2,3} {1,2,3}

{3,5,6} {3,5,6} {3,5,6} {3,5,6}

TCA CAT ATT TTG AAC ACC CCG

12,4} 12,4} 11,2} 11,2}

13,4,6} {3.4,6} ({346} {3,456}

4 TGC GCG
1



Colored de Bruijn graphs

« Example for k = 3 and N = 6 references. References in £ are spelled by paths in the graph.

11,2,3}

{1,2,3}

11,2,3}

{3,5,6} {3,5,6} {3,5,6} {3,5,6}

TCA gmg CAT | AAC gmd ACC == CCG

12,4}

12,4} 11,2} 11,2}

13,4,6} {3.4,6} ({346} {3,456}

4



Colored compacted de Bruijn graphs

 Example for k = 3 and N = 6 references.
* Nodes having the same color set along non-branching paths are collapsed into

monochromatic unitigs.
m{&sﬁ} o {1,2,3)

AACCG

(3.4,6}) (34,56} ) L2}
R N o

* Let’s now index this object!




Properties of colored compacted dBGs

1. Unitigs spell references in &.

— We can represent the set of unitigs instead of the set of k-mers: represent & with SSHash.
Better space effectiveness and cache locality (seen on Wed 2 July).

D

CAT
GACA
CGAACG
CGTCCG
AGCG
ATTAT
GAGTT
CGGAT
ATAGA
CGCTCG

Uio

=
o)




Properties of colored compacted dBGs

2. Unitigs are monochromatic.
— We store the color set of each unitig, rather than for each k-mer because ColorSet(x) = ColorSet(y)
If kK-mers x and y are part of the same unitig.
Thus, we need an efficient map from k-mers to unitigs: x — Unitig(x).

D L
U1 >C1 = 6,8]
 For SSHash, it is easy to compute U m >C, = [12,16]
the unitig identifier Unitig(x) given P CGAACG ~C; = [2,3,15]
the k-mer Xx. T CGTCCG >C, = [1,3,5,7,9,10,11]
Us m >CS = [3,4,5,9,10,11,13,15]
° NO:{’Y gfrtcrestOIO'rset(bX) Ejor't?aCh us BN\ >Cs = [1,3,6,7,9,11,12,13,14,16]
unitig in the order given by Unitig(x). . P Co = [6.8]
Fa CGGAT >Cs = [1,3,5,7,9,11,13]
P ATAGA >Cy = [1,3,8,11,12,13,14,16]
/I CGCTCG >C;o = [3,4,5,9,10,11,13,15]
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Properties of colored compacted dBGs

3. Unitigs co-occur. — Distinct unitigs often have the same color se, i.e., they co-occur in the same
subset of references. We have way less distinct color sets than unitigs.

We need an efficient map from unitigs to distinct color sets: Unitig(x) — ColorSet(x).
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Properties of colored compacted dBGs

3. Unitigs co-occur. — Distinct unitigs often have the same color se, i.e., they co-occur in the same
subset of references. We have way less distinct color sets than unitigs.

We need an efficient map from unitigs to distinct color sets: Unitig(x) — ColorSet(x).

e Remember from Wed 2 D

July: SSHash stores a set
of unitigs in any wanted ”
order (order-preserving).
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* \We can thus permute the Uy

unitigs in & so that Us
consecutive unitigs have

ATTAT
the same color set.

GAGTT
CGGAT
ATAGA
CGCTCG

* Then, mapping a unitig to Usg
its color is as simple as a
rank query over a bitmap
(see next). U410




Properties of colored compacted dBGs

3. Unitigs co-occur. — Distinct unitigs often have the same color se, i.e., they co-occur in the same
subset of references. We have way less distinct color sets than unitigs.

We need an efficient map from unitigs to distinct color sets: Unitig(x) — ColorSet(x).

>

e Remember from Wed 2 D
July: SSHash stores a set ' CAT

of unitigs in any wanted P /A
order (order-preserving).

Us CGAACG ""‘ Us CGAACG ‘>C2
* \We can thus permute the UVl CGTCCG A' Uyl CGTCCG
unitigs in & so that 3 AGCG ‘ 3 CGGAT >C,

consecutive unitigs have / X

CGCTCG NGl

3,4,5,9,10,11,13,15]
2,3,15]

1,3,5,7,9,10,11]
1,3,5,7,9,11,13]

v
§3

the same color set. il ATTAT 7R YRC ATTAT -~C; = [1,3,6,7,9,11,12,13, 14, 16]
VBN GAGTT 4’/ Uz ~—»Cs = 6,8]
o Then, mapping a unitig to 23 CGGAT ‘ Usg c, = [1,3,8,11,12,13,14, 16]
its color is as simple as a —7
. U ATAGA Ug = [12,16]
rank query over a bitmap | »Cg = 112,

oxibasen

(See next)_ 50N CGCTCG




Mapping unitigs to color sets In succinct space

D

B
U ) L
Uz 0 C
Us 1 C;
C
Uy 1 g G\QQ 3
O
CcP .
“  Unitig(x) ° -
X i ug —m - 0
Uz 1 Cm

N

Just 1 + o(1) bits per unitig.



Compression of color sets

* Any method to compress integer sequences would work.

Techniqgues for inverted index compression

» Here, we used three simple encodings based on the density of a set (ratio | C | /N ):
e If |C|/N < 1/4, the set is sparse and we compress the gaps with Elias’ o.

o If |C|/N > 3/4, the set is very dense and we compress the gaps of C
(complementary set) with Elias’ o.

« Otherwise, the set is dense and we code it with a bitmap of /V bits.

* (The thresholds 1/4 and 3/4 are optimal.)



Results

F U lgo r (V‘I ) https.//github.com/jermp/fulgor/releases/tag/v1.0.0 (2023, 2024)

Fulgor Themisto MetaG.-B  MetaG.-NB COBS

Genomes Rate
mm:ss GB h:mm:ss GB mm:ss GB himm:ss GB h:mm:ss GB
EC 3,682 98.99 2:10 1.68 0:03:40 2.46 22:00 30.44 1:05:41 0.40 0:45:11 34.93
5,000 89.49 1:16 0.82 0:03:50 1.82 14:14 36.54 0:20:32 0.33 0:38:34 41.93
10,000 89.71 2:26 2.11 0:07:35 4.16 28:15 92.18 0:43:40 0.61 1:01:14 8&4.20
SE 50,000 91.25 19:15 18.53 0:42:02 33.14 — —  4:30:03 2.72 3:54:18 408.82
100,000 91.41 27:30 42.78 1:22:00 75.93 — —  9:40:06 4.82 8:07:29 522.56
150,000 91.52 42:30 70.55 2:00:13 124.27 - - — — T7:47:14 522.63
GB 30,691 9291 0:01:20 48.47 28:55 15.86 0:22:05 9.91 0:34:45 225.57

01:10 30.02

Full-intersection query mode; 16 processing threads; Max RSS in GB; output of /usr/bin/t1ime.


https://github.com/jermp/fulgor/releases/tag/v1.0.0

Yet another property!

1. Unitigs spell references in 4.

2. Unitigs are monochromatic.

3. Unitigs co-occur.

4. Color sets are similar when indexing pangenomes. — Opportunity to achieve much better
compression if color sets are not compressed individually (each set independently of the
others) but common patterns are factored out and compressed once.



Color sets are similar when indexing pangenomes

C1 = [3,4,5,9,10,11,13,15] e The pattern {3,5,9,11} is
C, = [2,3,15] currently represented three
times.
C; = [1,3,5,7,9,10,11]
* The pattern
c, = 11,3,5,7,9,11,13] |
¢ = | (1,11,12,13,14,16} is
Cs = [1,3,6,7,9,11,12,13,14,16] represented twice.
C6 -— [6,8]
¢ = 11,3,8,11,12,13,14,16]
Cg = [12,16]



Color sets are similar when indexing pangenomes

C1 = [3,4,5,9,10,11,13,15] e The pattern {3,5,9,11} is
C, = [2,3,15] currently represented three
times.

C, = [1,3,5,7,9,10,11]

* The pattern
C, = [1,3,5,7,9,11,13] |
* (1,11,12,13,14,16} is
Cs = [1,3,6,7,9,11,12,13,14,16] represented twice.
C6 — [618] . .

« (5 and C, are very similar.
c, = [1,3,8,11,12,13,14,16]
Cg = [12,16]



Color sets are similar when indexing pangenomes

C1 = [3,4,5,9,10,11,13,15] e The pattern {3,5,9,11} is
C, = [2,3,15] currently represented three
times.

C; = I1,3,5,7,9,10,11]

* The pattern
C, = [1,3,5,7,9,11,13] |
: (1,11,12,13,14,16)} is
Cs = [1,3,6,7,9,11,12,13,14,16] represented twice.
C6 = [6;8] . .

« (5 and C, are very similar.
c, = [1,3,8,11,12,13,14,16]
Cg = [12,16]

* Q. How to factor out this redundancy?



Two ways of partitioning the color sets

C, = [3,4,5,9,10,11,13,15] C:; = [3,4,5,9,10,11,13,15]

C, = [2,3,15] C, = [2,3,15]

Cc; = [1,3,5,7,9,10,11] C; = [1,3,5,7,9,10,11]

c, = [1,3,5,7,9,11,13] c, = [1,3,5,7,9,11,13]

Cs = [1,3,6,7,9,11,12,13,14,16] Cs = [1,3,6,7,9,11,12,13,14,16]
Cs = [6,8] Cs = [6,8]

C, = [1,3,8,11,12,13,14,16] C, = [1,3,8,11,12,13,14,16]

Cs = [12,16] Ce = [12,16]

(a) Three horizontal partitions (b) Four vertical partitions



Horizontal partitioning: diff. and repr. color sets

* Example for N = 16 references and 4 partitions.

D

L

U

U

Uy

Usg

A\ — (differential color sets)

%%(Al ACy)

T80 -

[1,4,7,15]
[13]
[10]

“s m\(AZACZ) _

%_75’(142 ACg) =

[6,8]
[2,3,15]

- A - (representative color sets)
A= [1,3,5,7,9,10,11,13]

Az = [2,3,6,8,15]

v« GOl — 4,80 -

(A3 A Cy)

A3 ACg) =
o [0

[6,7,9]

[8]
[1,3,11,13,14]

As = [1,3,11,12,13,14,16]




* Example for N = 16 references and 4 partitions.

Vertical partitioning: meta and partial color sets

{112131416 }{359}{711}{ 2 4 6 8 1015} _ this defines a
111213 14 15 16

new identifiers -1 2 3 4 5

[3,4,5,9,10,11,13,15]
2,3,15]
1,3,5,7,9,10,11]
1,3,5,7,9,11,13]
1,3,6,7,9,11,12,13,14,16]
6,8]
1,3,8,11,12,13,14,16]

12,16]

678

9 10

6
106,7, 8

6,7,8

11,16

10]12, 15, 16]

9,10/15]

1,3|6,7, 8|9, 10]

1,2,3,4,5|6,8|9,10(13]
13, 14]
1,2,3,4,5|6/10[14]
2,5]

permutation 7
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partition 2
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Vertical partitioning: meta and partial color sets

* Example for N = 16 references and 4 partitions.
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* Example for N = 16 references and 4 partitions.

Vertical partitioning: meta and partial color sets

{112131416 }{359}{711}{ 2 4 6 8 1015} _ this defines a
111213 1415 16

new identifiers -1 2 3 4 5
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6]

6,8]




Vertical partitioning: meta and partial color sets

* Example for N = 16 references and 4 partitions.

D L
U
., M _—(meta color sets) P _ (partial color sets)
2
- [(1;1)1(211)1(3;1);(411)] Pll — [3] P31 = [2]
= [(2,2),(4,2)] P, = [1] P3, = [1,2]
= [(1,2),(2,1),(3,2),(4,3)] | || P13 = [1,3]
= [(1,3),(2,1),(3,2)] 1;1,4 = [1,2,3,4,5] ?1,1 = [2,5,6]
1.5 = [215] 42 = [116]
= [(1,4),(2,3),(3,2),(4,4 ’
[(1,4),(2,3),(3,2),(4,4)] Pys = [5]
= [(4,5)] Py; = [1,2,3] Pygq = [3]
= [(1,4),(2,2),(3,1),(4,6)] || Pyp = [1] Pys = [3,4]
= [(1,5)] Pas = 11,31 Pag = 141




Vertical partitioning: meta and partial color sets

* Example for N = 16 references and 4 partitions.
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Vertical partitioning: meta and partial color sets

* Example for N = 16 references and 4 partitions.

D L
U
., M _—(meta color sets) P _ (partial color sets)
2
- [(1;1)1(211)1(3;1);(411)] Pll — [3] P31 = [2]
= [(2,2),(4,2)] P, = [1] P3, = [1,2]
= [(1,2),(2,1),(3,2),(4,3)] ||| P13 = [1,3]
= [(1,3),(2,1),(3,2)] 1;1,4 = [1,2,3,4,5] 11;4,1 = [2,5,6]
1.5 = [215] 42 = [116]
= [(1,4),(2,3),(3,2),(4,4 ’
[(1,4),(2,3),(3,2),(4,4)] Pys = [5]
= [(4,5)] Py; = [1,2,3] Pygq = [3]
= [(1,4),(2,2),(3,1),(4,6)] || | Pp = [1] Pys = [3,4]
= [(1,5)] Pas = 11,31 Pag = 141




Results — Index size

F U 1 g O r (V3) https://github.com/jermp/fulgor/releases/tag/v3.0.0 (2024)

Dataset Fulgor d-Fulgor m-Fulgor md-Fulgor
dBG Color sets Total Color sets Total Color sets Total Color sets Total
EC 0.29 1.36 (83%) 1.65 0.45 (61%) 0.74 0.40 (58%) 0.69 0.24 (45%) 0.52
SE-5K 0.16 0.59 (79%) 0.75 0.20 (56%) 0.36 0.16 (50%) 0.32 0.11 (40%) 0.27
SE-10K 0.35 1.66 (83%) 2.01 0.48 (58%) 0.83 0.34 (49%) 0.70 0.22 (39%) 0.57
SE-50K 1.25 17.03 (93%) 18.29 4.31 (77%) 5.57 2.08 (62%) 3.34 1.38 (52%) 2.64
SE-100K 1.71 40.71 (96%) 42.43  9.37 (84%) 11.10 3.75 (68%) 5.47 2.26 (57%) 3.98
SE-150K  2.02 68.61 (97%) 70.65 15.73 (89%) 17.77 5.27 (72%) 7.31 3.22 (61%) 5.26
GB 21.29 15.54 (42%) 36.83  7.51 (26%) 28.81 9.16 (30%) 30.46 6.19 (23%) 27.48


https://github.com/jermp/fulgor/releases/tag/v3.0.0

Save money!

Amazon EC2 instances pricing:
md-Fulgor: 5.3 GB

m-Fulgor: 7.3 GB

* https.//instances.vantage.sh/aws/ec2/x2gd.medium
16 GiB of RAM — 73 $ per month

* https://instances.vantage.sh/aws/ec2/x2gd.xlarge p d-Fulgor: 18 GB
64 GiB of RAM — 292 $ per month

* https.//instances.vantage.sh/aws/ec?2/x2gd.2xlarge
128 GiB of RAM — 584 $ per month

* https://instances.vantage.sh/aws/ec?2/x2gd.4xlargé =~ g Original data: 225 GB
256 GiB of RAM — 1168 $ per month

(150,000 S. En’gerica genomes,
Numbers taken on 25/06/2025. compressed with gz1p)


https://instances.vantage.sh/aws/ec2/x2gd.medium
https://instances.vantage.sh/aws/ec2/x2gd.xlarge
https://instances.vantage.sh/aws/ec2/x2gd.2xlarge
https://instances.vantage.sh/aws/ec2/x2gd.4xlarge

Results — Query time

F U 1 g O r (V3) https://github.com/jermp/fulgor/releases/tag/v3.0.0 (2024)

Dataset Mapfmg h-Fulgor d-Fulgor m-Fulgor md-Fulgor

T GB GB GB GB
EC 98.99 2:12 1.67  4:52 0.78  3:08 0.73  6:07 0.57
SE-5K 89.49 1:14 0.80 1:54 0.41 1:25 0.37  2:10 0.32
SE-10K  89.71 2:29 2.06 4:14 0.90 2:56 0.77  4:55 0.65
SE-50K  91.25  14:05 18.24 27:25 5.82 17:00 3.64 33:25 2.95
SE-100K 91.41  29:00 42.40 58:10 11.58 34:40 6.08 1:09:00 4.63
SE-150K 91.52  44:30 70.55 1:31:00 18.55 53:00 8.29 1:50:00 6.29
GB 92.91 1:10 36.01 1:00 28.25 1:09 29.79  1:03 26.88

Full-intersection query mode; 16 processing threads; Max RSS in GB; output of /usr/bin/time.


https://github.com/jermp/fulgor/releases/tag/v3.0.0

Faster query times!

F U 190 r (V4) https://github.com/jermp/fulgor/releases/tag/v4.0.0 (2025)

Dataset Marzf;ng h-Fulgor d-Fulgor m-Fulgor md-Fulgor
before after GB before after GB before after GB before after GB
EC 08.99 2:12 2:10 1.67 4:52 2:29 0.78 3:08 1:32 0.73 6:07 1:41 0.57
SE-5K 89.49 1:14 1:10 0.80 1:54 1:44 0.41 1:25 1:09 0.37 2:10 1:21 0.32
SE-10K 89.71 2:29 2:20 2.06 4:14 2:54 0.90 2:56 2:07 0.77 4:55 2:30 0.65
SE-50K 91.25 14:05 12:00 18.24 27:25 14:50 5.82 17:00 10:10 3.64 33:25 11:50 2.95
SE-100K 91.41 29:00 24:00 42.40 58:10 29:50 11.58 34:40 20:30 6.08 1:09:00 22:50 4.63
SE-150K 91.52  44:30 37:00 70.55 1:31:00 44:20 18.55 53:00 30:20 8.29 1:50:00 33:50 6.29
GB 92.91 1:10 1:10 36.01 1:00 1:26 28.25 1:09 1:02 29.79 1:03 1:02 26.88

Full-intersection query mode; 16 processing threads; Max RSS in GB; output of /usr/bin/time.


https://github.com/jermp/fulgor/releases/tag/v4.0.0
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Faster query times!
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Full-intersection query mode; 16 processing threads; Max RSS in GB; output of /usr/bin/time.


https://github.com/jermp/fulgor/releases/tag/v4.0.0

Faster query times

* |f most color sets being intersected are super-dense:. compute the union of complement
sets, say U, and iterate over the complement of U.

* |f color sets are relative to the same representative color set, their intersection can be
computed only using their symmetric set differences (that are much shorter).

* Meta and partial color sets yield a two-level index organisation:
we can first intersect meta color sets and only compute intersections of partial color sets for

the common partitions only.

e QOther tricks for (threshold-based) union of color sets apply.

 (Check our new paper https://[ermp.qgithub.io/assets/pdf/papers/\WWABI2025.pdf out!



https://jermp.github.io/assets/pdf/papers/WABI2025.pdf

Repetition-aware improvement factors

* Results obtained by indexing Salmonella Enterica genomes from the
“AllTheBacteria” collection [Hunt et al., 2024], https://allthebacteria.org

22.34 5 44

2.39
2.34

2.28
2.23

2.08

50,000 100,000 150,000 200,000 250,000 300,000 50,000 100,000 150,000 200,000 250,000 300,000

(a) Space improvement (b) Query time improvement

Full-intersection query mode; 16 processing threads


https://allthebacteria.org

Conclusions

« SSHash to obtain an efficient map from k-mers to unitigs (2022).

* Permute unitigs in color set order to enable a space-efficient mapping from unitigs
to color sets (2023).

* (Color sets can be factorized into “patterns” that capture their repetitiveness (2024):
two paradigms — horizontal and vertical partitioning — that can be combined.

* These patterns can also be exploited to achieve faster query times (2025).



Conclusions

« SSHash to obtain an efficient map from k-mers to unitigs (2022).

* Permute unitigs in color set order to enable a space-efficient mapping from unitigs
to color sets (2023).

* (Color sets can be factorized into “patterns” that capture their repetitiveness (2024):
two paradigms — horizontal and vertical partitioning — that can be combined.

* These patterns can also be exploited to achieve faster query times (2025).

A special thank to my co-authors!

Rob Patro Alessio Campanelli



Next goals

Taken from https://www.biorxiv.org/content/10.1101/2024.03.08.584059v3.full

e Index more and more and make
the Indexes available to the 600000 -
community, .e.g.

Bl 661k
B AllTheBacteria

§ 500000 -
 the entire “AllTheBacteria” =
https://allthebacteria.org & 400000 -
(O
* Logan, https://github.com/ S 300000 -
IndexThePlanet/Logan a
£ 200000 -
=

* All NCBI viruses
https://www.ncbi.nlm.nih.gov/ 100000 -
labs/virus/vssi
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seems inevitable in the future. &


https://allthebacteria.org
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https://github.com/IndexThePlanet/Logan
https://www.ncbi.nlm.nih.gov/labs/virus/vssi
https://www.ncbi.nlm.nih.gov/labs/virus/vssi
https://www.biorxiv.org/content/10.1101/2024.03.08.584059v3.full

