Repetition-aware compression and query of colored de Bruijn graphs

Giulio Ermanno Pibiri

Ca' Foscari University of Venice

RIKEN-AIP Workshop: Compressed Data Structures for Advanced Data Analysis Tokyo, Japan, 4 July 2025

The colored k-mer indexing problem

- We are given a collection $\mathscr{R} = \{R_1, \ldots, R_N\}$ of reference sequences. Each R_c is a (long) sequence over the DNA alphabet {A,C,G,T}.
- **Problem.** We want to build an *index* for \mathscr{R} so that we can retrieve the set

ColorSet(x) = { $c | x \in R_c$ } efficiently for any k-mer x. Note that ColorSet(x) = \emptyset if $x \notin \mathcal{R}$.

The colored k-mer indexing problem

- We are given a collection $\mathscr{R} = \{R_1, ..., R_N\}$ of reference sequences. Each R_c is a (long) sequence over the DNA alphabet {A,C,G,T}.
- **Problem.** We want to build an *index* for \mathscr{R} so that we can retrieve the set $ColorSet(x) = \{c \mid x \in R_c\}$ efficiently for any k-mer x. Note that $ColorSet(x) = \emptyset$ if $x \notin \mathscr{R}$.

- A lot of hype in the indexing community for the case where \mathscr{R} is a pangenome, i.e., a collection of related genomes.
- Applications. This problem is relevant for applications where sequences are first matched against known references (i.e., mapping/alignment algorithms): single-cell RNA-seq, metagenomics, etc.

- Goal. What we want is the map $x \to \text{ColorSet}(x) = \{c \mid x \in R_c\}$.
- **Two** data structures:

- Goal. What we want is the map $x \to \text{ColorSet}(x) = \{c \mid x \in R_c\}$.
- **Two** data structures:
 - 1. All the distinct k-mers in $\mathscr{R} = \{R_1, \dots, R_N\}$ are stored in the **dictionary** \mathscr{D} .

returns a unique integer $1 \le h \le n$ if $x \in \mathcal{D}$, and \perp otherwise.

 \mathscr{D} stores *n* distinct k-mers and supports a Lookup(x) operation which, given a k-mer x,

- Goal. What we want is the map $x \to \text{ColorSet}(x) = \{c \mid x \in R_c\}$.
- **Two** data structures:
 - 1. All the distinct k-mers in $\mathscr{R} = \{R_1, \ldots, R_N\}$ are stored in the **dictionary** \mathscr{D} .

returns a unique integer $1 \le h \le n$ if $x \in \mathcal{D}$, and \perp otherwise.

- 2. The sets $\{ColorSet(x)\}_x$ are stored in order of Lookup(x) in the **inverted index** \mathscr{L} .
- \mathscr{D} stores *n* distinct k-mers and supports a Lookup(x) operation which, given a k-mer x,

- Many k-mer based indexes (all of them?) are incarnations/adaptations of this \bullet modular indexing layout, $\mathcal{D} + \mathcal{L}$:
 - deBGA [Liu et al. 2016]
 - Kallisto [Bray et al. 2016]
 - BIGSI [Bradley et al. 2017]
 - Rainbowfish [Almodaresi et al. 2017]
 - Mantis [Pandey et al. 2018]
 - Pufferfish [Almodaresi et al. 2018]
 - SeqOthello [Yu et al. 2018]
 - COBS [Bingmann et al. 2019]
 - Reindeer [Marchet et al. 2020]
 - Raptor [Seiler et al. 2021]
 - Metagraph [Karasikov et al. 2022]
 - NIQKI [Agret et al. 2022]
 - Pufferfish2 [Fan et al. 2022]
 - Themisto [Alanko et. al 2023]
 - Fulgor [Fan et. al 2023, 2024; P. et al. 2024; Campanelli et al., 2024, 2025]

- Our problem reduces to that of representing two data structures, ${\mathscr D}$ and ${\mathscr L}$.
- To do so at best, we must understand/exploit the properties of our problem.
- Q. What are these properties?

de Bruijn graphs

- The dictionary \mathscr{D} is a set of k-mers with (k-1)-symbol overlaps.
- One-to-one correspondence between \mathcal{D} and a dBG.
- Example for $\mathbf{k} = \mathbf{3}$.

(k-1)-symbol overlaps. and a dBG.

Colored de Bruijn graphs

 \bullet

Example for k = 3 and N = 6 references. References in \mathscr{R} are spelled by paths in the graph.

Colored de Bruijn graphs

 \bullet

Example for k = 3 and N = 6 references. References in \mathscr{R} are spelled by paths in the graph.

Colored de Bruijn graphs

 \bullet

Example for k = 3 and N = 6 references. References in \mathscr{R} are spelled by paths in the graph.

Colored compacted de Bruijn graphs

- Example for k = 3 and N = 6 references.
- Nodes having the same color set along non-branching paths are collapsed into monochromatic unitigs.

Let's now index this object!

- 1. Unitigs spell references in \mathscr{R} .
 - Better space effectiveness and cache locality (seen on Wed 2 July).

 \rightarrow We can **represent the set of unitigs** instead of the set of k-mers: represent \mathcal{D} with **SSHash**.

- 2. Unitigs are monochromatic.
 - if k-mers x and y are part of the same unitig. Thus, we need an efficient map from k-mers to unitigs: $x \rightarrow \text{Unitig}(x)$.

- For SSHash, it is easy to compute the **unitig identifier** Unitig(x) given the k-mer x.
- Now \mathscr{L} stores ColorSet(x) for each unitig in the order given by Unitig(x).

 \rightarrow We store the color set of each unitig, rather than for each k-mer because ColorSet(x) = ColorSet(y)

- 2. Unitigs are monochromatic.
 - if k-mers x and y are part of the same unitig. Thus, we need an efficient map from k-mers to unitigs: $x \rightarrow \text{Unitig}(x)$.

- For SSHash, it is easy to compute the **unitig identifier** Unitig(x) given the k-mer x.
- Now \mathscr{L} stores ColorSet(x) for each unitig in the order given by Unitig(x).

 \rightarrow We store the color set of each unitig, rather than for each k-mer because ColorSet(x) = ColorSet(y)

subset of references. We have way less distinct color sets than unitigs.

3. Unitigs co-occur. \rightarrow Distinct unitigs often have the same color se, i.e., they co-occur in the same

We need an efficient map from unitigs to distinct color sets: Unitig(x) \rightarrow ColorSet(x).

- subset of references. We have way less distinct color sets than unitigs.
 - Remember from Wed 2 July: SSHash stores a set of unitigs in any wanted order (order-preserving).
 - We can thus **permute** the unitigs in \mathcal{D} so that consecutive unitigs have the same color set.
 - Then, mapping a unitig to its color is as simple as a rank query over a bitmap (see next).

3. Unitigs co-occur. \rightarrow Distinct unitigs often have the same color se, i.e., they co-occur in the same

We need an efficient map from unitigs to distinct color sets: Unitig(x) \rightarrow ColorSet(x).

- subset of references. We have way less distinct color sets than unitigs. We need an efficient map from unitigs to distinct color sets: Unitig(x) \rightarrow ColorSet(x).
 - Remember from Wed 2 July: SSHash stores a set of unitigs in any wanted order (order-preserving).
 - We can thus **permute** the unitigs in \mathcal{D} so that consecutive unitigs have the same color set.
 - Then, mapping a unitig to \bullet its color is as simple as a rank query over a bitmap (see next).

3. Unitigs co-occur. \rightarrow Distinct unitigs often have the same color se, i.e., they co-occur in the same

Mapping unitigs to color sets in succinct space

Compression of color sets

Any method to compress integer sequences would work.

Techniques for inverted index compression P. and Venturini, 2020, ACM Computing Surveys

- Here, we used three simple encodings based on the density of a set (ratio |C|/N):
 - If |C|/N < 1/4, the set is **sparse** and we compress the gaps with Elias' δ .
 - If $|C|/N \ge 3/4$, the set is **very dense** and we compress the gaps of C (complementary set) with Elias' δ .
 - Otherwise, the set is **dense** and we code it with a bitmap of N bits.
 - (The thresholds 1/4 and 3/4 are optimal.)

Fulgor (v1) https://github.com/jermp/fulgor/releases/tag/v1.0.0 (2023, 2024)

Genomes Rate		Fulgor		Themisto		MetaGB		MetaGNB		COBS		
		mm:ss	GB	h:mm:ss	GB	mm:ss	GB	h:mm:ss	GB	h:mm:ss	GE	
EC	$3,\!682$	98.99	2:10	1.68	0:03:40	2.46	22:00	30.44	1:05:41	0.40	0:45:11	34.93
	5,000	89.49	1:16	0.82	0:03:50	1.82	14:14	36.54	0:20:32	0.33	0:38:34	41.93
	10,000	89.71	2:26	2.11	0:07:35	4.16	28:15	92.18	0:43:40	0.61	1:01:14	84.20
SE	50,000	91.25	19:15	18.53	0:42:02	33.14			4:30:03	2.72	3:54:18	408.82
	100,000	91.41	27:30	42.78	1:22:00	75.93			9:40:06	4.82	8:07:29	522.56
	150,000	91.52	42:30	70.55	2:00:13	124.27					7:47:14	522.63
GB	$30,\!691$	92.91	01:10	30.02	0:01:20	48.47	28:55	15.86	0:22:05	9.91	0:34:45	225.57

Yet another property!

- 1. Unitigs spell references in \mathcal{R} .
- 2. Unitigs are monochromatic.
- 3. Unitigs co-occur.

 Color sets are similar when indexing pangenomes. → Opportunity to achieve much better compression if color sets are not compressed individually (each set independently of the others) but common patterns are factored out and compressed once.

Color sets are similar when indexing pangenomes

- $C_1 = [3, 4, 5, 9, 10, 11, 13, 15]$
- $C_2 = [2,3,15]$
- $C_3 = [1, 3, 5, 7, 9, 10, 11]$
- $C_4 = [1, 3, 5, 7, 9, 11, 13]$
- $C_5 = [1,3,6,7,9,11,12,13,14,16]$
- $C_6 = [6,8]$
- $C_7 = [1,3,8,11,12,13,14,16]$
- $C_8 = [12, 16]$

- The pattern $\{3, 5, 9, 11\}$ is currently represented three times.
- The pattern $\{1,11,12,13,14,16\}$ is represented twice.

Color sets are similar when indexing pangenomes

- $C_1 = [3, 4, 5, 9, 10, 11, 13, 15]$
- $C_2 = [2,3,15]$
- $C_3 = [1,3,5,7,9,10,11]$
- $C_4 = [1,3,5,7,9,11,13]$
- $C_5 = [1,3,6,7,9,11,12,13,14,16]$
- $C_6 = [6,8]$
- $C_7 = [1,3,8,11,12,13,14,16]$
- $C_8 = [12, 16]$

- The pattern $\{3, 5, 9, 11\}$ is currently represented three times.
- The pattern $\{1,11,12,13,14,16\}$ is represented twice.
- C_3 and C_4 are very similar.

Color sets are similar when indexing pangenomes

- $C_1 = [3, 4, 5, 9, 10, 11, 13, 15]$
- $C_2 = [2,3,15]$
- $C_3 = [1,3,5,7,9,10,11]$
- $C_4 = [1,3,5,7,9,11,13]$
- $C_5 = [1,3,6,7,9,11,12,13,14,16]$
- $C_6 = [6,8]$
- $C_7 = [1,3,8,11,12,13,14,16]$
- $C_8 = [12, 16]$

- The pattern $\{3, 5, 9, 11\}$ is currently represented three times.
- The pattern $\{1,11,12,13,14,16\}$ is represented twice.
- C_3 and C_4 are very similar.
- Q. How to factor out this redundancy?

Two ways of partitioning the color sets

- $C_1 = [3, 4, 5, 9, 10, 11, 13, 15]$
- $C_2 = [2,3,15]$
- $C_3 = [1,3,5,7,9,10,11]$
- $C_4 = [1, 3, 5, 7, 9, 11, 13]$
- $C_5 = [1,3,6,7,9,11,12,13,14,16]$
- $C_6 = [6,8]$
- $C_7 = [1,3,8,11,12,13,14,16]$
- $C_8 = [12, 16]$

(a) Three horizontal partitions

- $C_1 = [3, 4, 5, 9, 10, 11, 13, 15]$
- $C_2 = [2,3,15]$
- $C_3 = [1,3,5,7,9,10,11]$
- $C_4 = [1,3,5,7,9,11,13]$
- $C_5 = [1,3,6,7,9,11,12,13,14,16]$
- $C_6 = [6,8]$
- $C_7 = [1, 3, 8, 11, 12, 13, 14, 16]$
- $C_8 = [12, 16]$

(b) Four vertical partitions

Horizontal partitioning: diff. and repr. color sets

• Example for **N** = **16** references and **4** partitions.

this defines a permutation π

$$\begin{split} C_1 &= [3|6,7,8|10|12,15,16]\\ C_2 &= [6|11,16]\\ C_3 &= [1|6,7,8|9,10|15]\\ C_4 &= [1,3|6,7,8|9,10]\\ C_5 &= [1,2,3,4,5|6,8|9,10|13]\\ C_6 &= [13,14]\\ C_7 &= [1,2,3,4,5|6|10|14]\\ C_8 &= [2,5] \end{split}$$

• Example for **N** = **16** references and **4** partitions.

$$\{ \begin{array}{c} 1 \ 12 \ 13 \ 14 \ 16 \end{array} \} \{ \begin{array}{c} 3 \ 5 \ 9 \end{array} \} \{ \\ new \ identifiers \rightarrow 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \end{array} \}$$
 partition 2

$$\mathcal{L}$$

$$C_{1} = [3,4,5,9,10,11,13,15]$$

$$C_{2} = [2,3,15]$$

$$C_{3} = [1,3,5,7,9,10,11]$$

$$C_{4} = [1,3,5,7,9,11,13]$$

$$C_{5} = [1,3,6,7,9,11,12,13,14,16]$$

$$C_{6} = [6,8]$$

$$C_{7} = [1,3,8,11,12,13,14,16]$$

$$C_{8} = [12,16]$$

this defines a permutation π

$$\begin{split} C_1 &= [3|6,7,8|10|12,15,16]\\ C_2 &= [6|11,16]\\ C_3 &= [1|6,7,8|9,10|15]\\ C_4 &= [1,3|6,7,8|9,10]\\ C_5 &= [1,2,3,4,5|6,8|9,10|13]\\ C_6 &= [13,14]\\ C_7 &= [1,2,3,4,5|6|10|14]\\ C_8 &= [2,5] \end{split}$$

• Example for **N** = **16** references and **4** partitions.

$$\{ \begin{array}{c} 1 \ 12 \ 13 \ 14 \ 16 \end{array} \} \{ \begin{array}{c} 3 \ 5 \ 9 \end{array} \} \{ \\ new \ identifiers \rightarrow 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \end{array} \}$$
 partition 2

$$\mathcal{L}$$

$$C_{1} = [3,4,5,9,10,11,13,15]$$

$$C_{2} = [2,3,15]$$

$$C_{3} = [1,3,5,7,9,10,11]$$

$$C_{4} = [1,3,5,7,9,11,13]$$

$$C_{5} = [1,3,6,7,9,11,12,13,14,16]$$

$$C_{6} = [6,8]$$

$$C_{7} = [1,3,8,11,12,13,14,16]$$

$$C_{8} = [12,16]$$

this defines a permutation π

$$\begin{split} C_1 &= [3|6,7,8|10|12,15,16]\\ C_2 &= [6|11,16]\\ C_3 &= [1|6,7,8|9,10|15]\\ C_4 &= [1,3|6,7,8|9,10]\\ C_5 &= [1,2,3,4,5|6,8|9,10|13]\\ C_6 &= [13,14]\\ C_7 &= [1,2,3,4,5|6|10|14]\\ C_8 &= [2,5] \end{split}$$

 π

• Example for **N** = **16** references and **4** partitions.

$$\{ \begin{array}{c} 1 \ 12 \ 13 \ 14 \ 16 \end{array} \} \{ \begin{array}{c} 3 \ 5 \ 9 \end{array} \} \{ \\ new \ identifiers \rightarrow 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \end{array} \}$$
 partition 2

$$\mathcal{L}$$

$$C_{1} = [3,4,5,9,10,11,13,15]$$

$$C_{2} = [2,3,15]$$

$$C_{3} = [1,3,5,7,9,10,11]$$

$$C_{4} = [1,3,5,7,9,11,13]$$

$$C_{5} = [1,3,6,7,9,11,12,13,14,16]$$

$$C_{6} = [6,8]$$

$$C_{7} = [1,3,8,11,12,13,14,16]$$

$$C_{8} = [12,16]$$

this defines a permutation π

$$\begin{split} C_1 &= [3|6,7,8|10|12,15,16]\\ C_2 &= [6|11,16]\\ C_3 &= [1|6,7,8|9,10|15]\\ C_4 &= [1,3|6,7,8|9,10]\\ C_5 &= [1,2,3,4,5|6,8|9,10|13]\\ C_6 &= [13,14]\\ C_7 &= [1,2,3,4,5|6|10|14]\\ C_8 &= [2,5] \end{split}$$

[6, 7, 8][6] [6,8]

• Example for **N** = **16** references and **4** partitions.

$$\{ \begin{array}{c} 1 \ 12 \ 13 \ 14 \ 16 \end{array} \} \{ \begin{array}{c} 3 \ 5 \ 9 \end{array} \} \{ \\ new \ identifiers \rightarrow 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \end{array} \}$$
 partition 2

$$\mathcal{L}$$

$$C_{1} = [3,4,5,9,10,11,13,15]$$

$$C_{2} = [2,3,15]$$

$$C_{3} = [1,3,5,7,9,10,11]$$

$$C_{4} = [1,3,5,7,9,11,13]$$

$$C_{5} = [1,3,6,7,9,11,12,13,14,16]$$

$$C_{6} = [6,8]$$

$$C_{7} = [1,3,8,11,12,13,14,16]$$

$$C_{8} = [12,16]$$

this defines a permutation π

$$C_{1} = [3|6,7,8|10|12,15,16]$$

$$C_{2} = [6|11,16]$$

$$C_{3} = [1|6,7,8|9,10|15]$$

$$C_{4} = [1,3|6,7,8|9,10]$$

$$C_{5} = [1,2,3,4,5|6,8|9,10|13]$$

$$C_{6} = [13,14]$$

$$C_{7} = [1,2,3,4,5|6|10|14]$$

$$C_{8} = [2,5]$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,8)$$

$$(6,7,8)$$

$$(6,7,8)$$

$$(6,8)$$

$$(6,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

$$(7,8)$$

-5

	$\mathcal{P}_{-}($ partial color se	ts)
1),(4,1)]	$P_{1,1} = [3]$	$P_{3,1} = [2]$
	$P_{1,2} = [1]$	$P_{3,2} = [1,2]$
2),(4,3)]	$ P_{1,3} = [1,3]$	
2)]	$ P_{1,4} = [1,2,3,4,5] $	$P_{4,1} = [2,5,6]$
2) (1 1)	$ P_{1,5} = [2,5]$	$ P_{4,2} = [1,6]$
2),(4,4)]		$P_{4,3} = [5]$
	$P_{2,1} = [1,2,3]$	P _{4,4} = [3]
1),(4,6)]	$ P_{2,2} = [1] $	$P_{4,5} = [3,4]$
	$P_{2,2} = [1]$ $P_{2,3} = [1,3]$	$P_{4,6} = [4]$

	\mathcal{P}_{-} (partial color set	ts)
1),(4,1)]	$P_{1,1} = [3]$	$P_{3,1} = [2]$
	$P_{1,2} = [1]$	$P_{3,2} = [1,2]$
2),(4,3)]	$P_{1,3} = [1,3]$	
2)]	$P_{1,4} = [1,2,3,4,5]$	$P_{4,1} = [2,5,6]$
2),(4,4)]	$ P_{1,5} = [2,5]$	$P_{4,2} = [1,6]$
∠/, (4,4/]		$P_{4,3} = [5]$
	$P_{2,1} = [1,2,3]$	$P_{4,4} = [3]$
1),(4,6)]	$ P_{2,2} = [1]$	$P_{4,5} = [3,4]$
	$P_{2,2} = [1]$ $P_{2,3} = [1,3]$	$P_{4,6} = [4]$

$-\mathcal{P}$ (partial color se	ts)
$P_{1,1} = [3]$	$P_{3,1} = [2]$
$P_{1,2} = [1]$	$P_{3,2} = [1,2]$
$ P_{1,3} = [1,3]$	
$P_{1,4} = [1,2,3,4,5]$	$P_{4,1} = [2,5,6]$
$P_{1,5} = [2,5]$	$P_{4,2} = [1,6]$
	$P_{4,3} = [5]$
$P_{2,1} = [1,2,3]$	P _{4,4} = [3]
$ P_{2,2} = [1]$	$P_{4,5} = [3,4]$
$P_{2,3} = [1,3]$	$P_{4,6} = [4]$
	$P_{1,1} = [3]$ $P_{1,2} = [1]$ $P_{1,3} = [1,3]$ $P_{1,4} = [1,2,3,4,5]$ $P_{1,5} = [2,5]$

Results – Index size Fulgor (v3) https://github.com/jermp/fulgor/releases/tag/v3.0.0 (2024)

Dataset		Fulgor		d-Fulgo	or	m-Fulg	or	md-Fulgor		
Davasev	dBG Color sets		Total	Color sets	Total	Color sets	Total	Color sets	Total	
EC	0.29	1.36~(83%)	1.65	0.45~(61%)	0.74	0.40~(58%)	0.69	0.24~(45%)	0.52	
SE-5K	0.16	0.59~(79%)	0.75	0.20~(56%)	0.36	0.16~(50%)	0.32	0.11 (40%)	0.27	
SE- 10K	0.35	1.66(83%)	2.01	0.48(58%)	0.83	0.34~(49%)	0.70	0.22(39%)	0.57	
SE -50K	1.25	17.03(93%)	18.29	4.31~(77%)	5.57	2.08~(62%)	3.34	1.38(52%)	2.64	
SE -100K	1.71	40.71 (96%)	42.43	9.37~(84%)	11.10	3.75~(68%)	5.47	2.26~(57%)	3.98	
SE -150K	2.02	$68.61 \ (97\%)$	70.65	15.73~(89%)	17.77	5.27~(72%)	7.31	3.22~(61%)	5.26	
GB	21.29	15.54 (42%)	36.83	7.51 (26%)	28.81	9.16 (30%)	30.46	6.19 (23%)	27.48	

Save money!

Amazon EC2 instances pricing:

- <u>https://instances.vantage.sh/aws/ec2/x2gd.medium</u> 16 GiB of RAM – **73 \$** per month
- <u>https://instances.vantage.sh/aws/ec2/x2gd.xlarge</u> 64 GiB of RAM – **292 \$** per month
- <u>https://instances.vantage.sh/aws/ec2/x2gd.2xlarge</u> 128 GiB of RAM – **584 \$** per month
- <u>https://instances.vantage.sh/aws/ec2/x2gd.4xlarge</u> 256 GiB of RAM — **1168 \$** per month

Numbers taken on 25/06/2025.

Fulgor: **71** GB

(150,000 S. Enterica genomes, compressed with gzip)

Results – Query time

Fulgor (v3) https://github.com/jermp/fulgor/releases/tag/v3.0.0 (2024)

Dataset	Mapping	h-F	h-Fulgor		Fulgor	m	-Fulgor	md-Fulgor		
	rate		GB		GB	1	GB		GB	
EC	98.99	2:12	1.67	4:52	0.78	3:08	0.73	6:07	0.57	
SE-5K	89.49	1:14	0.80	1:54	0.41	1:25	0.37	$2{:}10$	0.32	
SE- 10K	89.71	2:29	2.06	4:14	0.90	2:56	0.77	4:55	0.65	
SE -50K	91.25	14:05	18.24	27:25	5.82	17:00	3.64	33:25	2.95	
SE -100K	91.41	29:00	42.40	58:10	11.58	$34{:}40$	6.08	1:09:00	4.63	
SE -150K	91.52	44:30	70.55	1:31:00	18.55	53:00	8.29	1:50:00	6.29	
GB	92.91	1:10	36.01	1:00	28.25	1:09	29.79	1:03	26.88	

Faster query times!

Fulgor (v4) https://github.com/jermp/fulgor/releases/tag/v4.0.0 (2025)

Dataset	Mapping rate	g h-Fulgor			d-Fulgor			m-Fulgor			md-Fulgor		
		before	after	GB	before	after	GB	before	after	GB	before	after	GB
EC	98.99	2:12	2:10	1.67	4:52	2:29	0.78	3:08	1:32	0.73	6:07	1:41	0.57
SE-5K	89.49	1:14	1:10	0.80	1:54	1:44	0.41	1:25	1:09	0.37	2:10	1:21	0.32
SE- 10K	89.71	2:29	2:20	2.06	4:14	2:54	0.90	2:56	2:07	0.77	4:55	2:30	0.65
SE-50K	91.25	14:05	12:00	18.24	27:25	14:50	5.82	17:00	10:10	3.64	33:25	11:50	2.95
SE-100K	91.41	29:00	24:00	42.40	58:10	29:50	11.58	$34{:}40$	20:30	6.08	1:09:00	22:50	4.63
SE -150K	91.52	44:30	37:00	70.55	1:31:00	44:20	18.55	53:00	30:20	8.29	1:50:00	33:50	6.29
GB	92.91	1:10	1:10	36.01	1:00	1:26	28.25	1:09	1:02	29.79	1:03	1:02	26.88

Faster query times! Fulgor (v4) https://github.com/jermp/fulgor/releases/tag/v4.0.0 (2025)

Faster query times — Intuition (for intersection)

- If most color sets being intersected are **super-dense**: compute the union of complement sets, say *U*, and iterate over the complement of *U*.
- If color sets are relative to the same representative color set, their intersection can be computed only using their symmetric set differences (that are much shorter).
- Meta and partial color sets yield a two-level index organisation: we can first intersect meta color sets and only compute intersections of partial color sets for the common partitions only.
- Other tricks for (threshold-based) union of color sets apply.
- Check our new paper <u>https://jermp.github.io/assets/pdf/papers/WABI2025.pdf</u> out!

Repetition-aware improvement factors

 Results obtained by indexing Salmonella Enterica genomes from the "AIITheBacteria" collection [Hunt et al., 2024], https://allthebacteria.org

Full-intersection query mode; 16 processing threads

Conclusions

- SSHash to obtain an efficient map from k-mers to unitigs (2022).
- to color sets (2023).
- two paradigms horizontal and vertical partitioning that can be combined.
- These patterns can also be exploited to achieve faster query times (2025).

Permute unitigs in color set order to enable a space-efficient mapping from unitigs

• Color sets can be factorized into "patterns" that capture their repetitiveness (2024):

Conclusions

- SSHash to obtain an efficient map from k-mers to unitigs (2022).
- to color sets (2023).
- two paradigms horizontal and vertical partitioning that can be combined.
- These patterns can also be exploited to achieve faster query times (2025).

A special thank to my co-authors!

Permute unitigs in color set order to enable a space-efficient mapping from unitigs

• Color sets can be factorized into "patterns" that capture their repetitiveness (2024):

Rob Patro

Alessio Campanelli

Next goals

- Index more and more and make the indexes available to the community, .e.g.
- the entire "AllTheBacteria" https://allthebacteria.org
- Logan, https://github.com/ IndexThePlanet/Logan
- All NCBI viruses https://www.ncbi.nlm.nih.gov/ labs/virus/vssi
- etc.
- Sharding to external memory seems inevitable in the future.

600000

assemblies 500000 400000 of 300000 Number 200000

100000

Taken from https://www.biorxiv.org/content/10.1101/2024.03.08.584059v3.full

