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1. Context, motivations, and problem definition 



• Peta bytes of data available: 
- ENA (European Nucleotide Archive) 
- SRA (Sequence Read Archive) 
- RefSeq (Reference Sequence Database) 
- Ensembl


• For example: as of June 2025, ENA has 5.7 billions of assembled 
sequences, for 30 trillion bases. 

• These collections are paving the way to answer fundamental questions 
regarding biology and evolution.

https://www.ebi.ac.uk/ena/browser/about/statistics

Massive DNA Collections

https://www.ebi.ac.uk/ena/browser/about/statistics


• Q. But how do we exploit such potential? 
 
We need efficient methods to index and search data at this scale.


• One popular strategy: “reduce” a DNA sequence to a set of short substrings 
of fixed length k — the so-called k-mers.

 
ACGGTAGAACCGATTCAAATTCGACGTAGC… 
ACGGTAGAACCGA 
  CGGTAGAACCGAT 
  GGTAGAACCGATT 
   GTAGAACCGATTC 
    TAGAACCGATTCA 
     AGAACCGATTCAA 
      GAACCGATTCAAA 
       AACCGATTCAAAT 
        …

Example for k=13.

k-mers



• Software tools based on k-mers are predominant in bioinformatics.


• Many applications: 
- genome assembly 
- variant calling 
- pan-genome analysis 
- meta-genomics 
- sequence comparison/alignment 
…

k-mer applications



• Huge research effort produced many types of indexes based on k-mers, 
with different: 
 
- representations (hashing, BWT-based, exact vs. approximate), 
- features (e.g., static vs. dynamic), 
- space/time trade-offs, 
- types of supported queries, etc.


• Recent surveys on this topic:

• Data Structures based on k-mers for Querying Large Collections of Sequencing Data Sets 
Marchet et al., Genome Research, 2020.


• Data Structures to Represent a Set of k-long DNA Sequences 
Chikhi et al., ACM Computing Surveys, 2021.

A world of k-mer indexes



• We are given a large DNA string  (e.g., a genome or a pan-genome) and let  be 
the set of all its  distinct k-mers. 

• Problem. We want to build a dictionary for  so that the following operations are 
efficient: 
-  returns  if the k-mer  or  otherwise; 
- return the k-mer  if .


• Other operations of interest are streaming queries, iteration, navigational queries.

S K
n

K

Lookup(x) 1 ≤ i ≤ n x ∈ K ⊥
x = Access(i) 1 ≤ i ≤ n

Example: The human genome (GRCh38) has >2.5B distinct k-mers for k=31.

The k-mer dictionary problem



Do we need an ad-hoc solution?

• The algorithmic literature about (compressed) string dictionaries is rich of solutions [Martínez-
Prieto et al., 2016] (e.g., Front-Coding, path-decomposed tries, double-array tries, etc.).


• But they are relevant for “generic strings”: 
    - variable-length, 
    - larger alphabets (e.g., ASCII), 
    - (usually) no particular properties of the strings to aid compression.


• Since k-mers are extracted consecutively from DNA, a k-mer following another one shares 
k-1 bases (very low entropy).

 
ACGGTAGAACCGATTCAAATTCGACGTAGC… 
ACGGTAGAACCGA 
  CGGTAGAACCGAT 
  GGTAGAACCGATT 
   GTAGAACCGATTC 
    TAGAACCGATTCA 
     …

Example for k=13.



2. Tools 



de Bruijn graphs

• de Bruijn graph. A (node centric) de Bruijn graph (dBG) of order k for a sequence  is a 
directed graph where nodes are the distinct k-mers of  and there exists a directed edge 
from  to  if .


• Fact. Equivalence between a set of k-mers and a de Bruijn graph.

S
S

x y x[2..k] = y[1..k − 1]

TCA CAT ATT TTG

TGG GGT GTA TAA

TGC GCG CGA GAA

AAC ACC CCG

an example de Bruijn 
graph for k=3



de Bruijn graphs

TCA CAT ATT TTG

TGG GGT GTA TAA

TGC GCG CGA GAA

AAC ACC CCG

(a) an example de Bruijn 
graph for k=3



de Bruijn graphs

TCA CAT ATT TTG

TGG GGT GTA TAA

TGC GCG CGA GAA

AAC ACC CCG

(a) an example de Bruijn 
graph for k=3

TCATTG

TGGTAA

TGCGAA

AACCG

(b) compacted de Bruijn graph



de Bruijn graphs

TCA CAT ATT TTG

TGG GGT GTA TAA

TGC GCG CGA GAA

AAC ACC CCG

(a) an example de Bruijn 
graph for k=3

TCATTG

TGGTAA

TGCGAA

AACCG

(b) compacted de Bruijn graph

TCATTGGTAACCG

TGCGAA

(c) set of “stitched” unitigs



this is an example of a 
spectrum-preserving string set  

(see next)

de Bruijn graphs

TCA CAT ATT TTG

TGG GGT GTA TAA

TGC GCG CGA GAA

AAC ACC CCG

(a) an example de Bruijn 
graph for k=3

TCATTG

TGGTAA

TGCGAA

AACCG

(b) compacted de Bruijn graph

TCATTGGTAACCG

TGCGAA

(c) set of “stitched” unitigs



Spectrum-preserving string sets

• k-mer spectrum. The spectrum of , say , is the set of all the distinct k-mers of .


• Spectrum-preserving string set (SPSS). A SPSS for  is a set of strings  such 
that . Usually  for any .


• For example, the set of unitigs or “stitched” unitigs of the dBG of  are possible SPSS for .

S spect(S) S

S 𝒰 = {U1, …, Um}
spect(S) = spect(U1) ∪ ⋯ ∪ spect(Um) spect(Ui) ∩ spect(Uj) = Ø i ≠ j

S S



Spectrum-preserving string sets

• k-mer spectrum. The spectrum of , say , is the set of all the distinct k-mers of .


• Spectrum-preserving string set (SPSS). A SPSS for  is a set of strings  such 
that . Usually  for any .


• For example, the set of unitigs or “stitched” unitigs of the dBG of  are possible SPSS for .

S spect(S) S

S 𝒰 = {U1, …, Um}
spect(S) = spect(U1) ∪ ⋯ ∪ spect(Um) spect(Ui) ∩ spect(Uj) = Ø i ≠ j

S S

• In general, we want to minimise the cumulative length of , i.e., the number of characters 
in the strings of .


• A general framework: compute a minimum-size path cover for the (compacted) dBG of . 
Usually the cover is disjoint-node, so that each k-mer of  appears exactly once in .

𝒰
𝒰

S
S 𝒰



• Many SPSS available in the literature: 
 
- unitigs (folklore); 
- stitched unitigs [Rahman and Medvedev, 2020] (almost optimal); 
- simplitigs [Brinda et al., 2020]; 
- eulertigs [Schmidt and Alanko, 2022, 2023] (optimal: smallest num. of characters); 
- matchtigs [Schmidt, Khan, Alanko, P., Tomescu, 2023]; 
- masked super strings [Brinda et al., 2025].


• Some of them have slightly different properties.


• For example: unitigs, stitched unitigs, simplitigs, and eulertigs do not allow 
repetitions of k-mers, whereas matchtigs and masked super strings do.

Spectrum-preserving string sets



de Bruijn graphs and spectrum-preserving string sets

dBG(S)
compacted 

dBG(S) SPSS(S)

compaction
path covering 
in linear time

S

- BCALM2 [Chikhi et al., 2016] 
- TwoPaCo [Minkin et al., 2017] 
- Cuttlefish1 [Khan and Patro, 2021]

- Cuttlefish2 [Khan et al., 2022]

- GGCAT [Cracco and Tomescu, 2023]

- Cuttlefish3 [Khan, Dhulipala and Patro, 2025]

build

A long DNA 
sequence



de Bruijn graphs and spectrum-preserving string sets

dBG(S)
compacted 

dBG(S) SPSS(S)

compaction
path covering 
in linear time

S

- BCALM2 [Chikhi et al., 2016] 
- TwoPaCo [Minkin et al., 2017] 
- Cuttlefish1 [Khan and Patro, 2021]

- Cuttlefish2 [Khan et al., 2022]

- GGCAT [Cracco and Tomescu, 2023]

- Cuttlefish3 [Khan, Dhulipala and Patro, 2025]

build

A collection of DNA strings with 
no duplicate k-mers: 

this is a natural basis for a 
space-efficient k-mer dictionary

A long DNA 
sequence



Indexing SPSS

• Now that we have an SPSS where each k-mer of  appears once, the question is: 
 
Q. How do we index it so that Lookup is efficient?

S



Indexing SPSS

• Now that we have an SPSS where each k-mer of  appears once, the question is: 
 
Q. How do we index it so that Lookup is efficient?

S

• Possible answers: 
 
- Compute the BWT of the strings in the SPSS. 
 
- We are going to see a solution based on hashing. 
  (We need two more tools.)



Example for  and . 
 
ACGGTAGAACCGATTCAAATTCGAT… 
 
ACGGTAGAAC 
 CGGTAGAACC 
  GGTAGAACCG 
   GTAGAACCGA 
    TAGAACCGAT 
     AGAACCGATT 
      GAACCGATTC 
       AACCGATTCA 
        …

k = 10 m = 7

• Consider each k-mer  of : sample one m-mer of  out of its  m-mers and call it 
the “representative” of  — or its minimizer.

x S x k − m + 1
x

Sketching with minimizers



• We would like to sample the same minimizer from 
consecutive k-mers so that the set of distinct 
minimizers forms a succinct sketch for .


• This reduces the memory footprint and 
computational time of countless applications in 
Bioinformatics.

S

Example for  and . 
 
ACGGTAGAACCGATTCAAATTCGAT… 
 
ACGGTAGAAC 
 CGGTAGAACC 
  GGTAGAACCG 
   GTAGAACCGA 
    TAGAACCGAT 
     AGAACCGATT 
      GAACCGATTC 
       AACCGATTCA 
        …

k = 10 m = 7

• Consider each k-mer  of : sample one m-mer of  out of its  m-mers and call it 
the “representative” of  — or its minimizer.

x S x k − m + 1
x

Sketching with minimizers



Sketching with minimizers

• Q. How do we compare different sampling algorithms? 
 
A. We define the density of a sampling algorithm as the fraction between the number of   
(distinct) minimizers and the total number of m-mers of  (i.e., ). 
 
The lower the density, the better!

S |S | − m + 1



Sketching with minimizers

• Q. How do we compare different sampling algorithms? 
 
A. We define the density of a sampling algorithm as the fraction between the number of   
(distinct) minimizers and the total number of m-mers of  (i.e., ). 
 
The lower the density, the better!

S |S | − m + 1

• Call . Since the same m-mer cannot be a minimizer for more than  
consecutive k-mers, we immediately have a lower bound of  on the density of any 
sampling algorithm.

w = k − m + 1 w
1/w

Example for  and .w = 4 m = 7



The “folklore” minimizer

• Minimizer. [Schleimer et al. 2003, Roberts et al., 2004] Given a k-mer  and an order  over all 
m-mers, the minimizer of length  is the (leftmost) smallest -mer of  according to .


• Example. Given ACGGTAGAACCGA  and : 
 

x 𝒪
m ≤ k m x 𝒪

x = (k = 13) m = 4

 is the lexicographic order.𝒪

(ACGG) = 9842978325 
 (CGGT) = 817612312 
  (GGTA) = 8265731 
   (GTAG) = 478491248 
    (TAGA) = 17491411 
     (AGAA) = 17148914 
      (GAAC) = 91815379 
       (AACC) = 645793914 
        (ACCG) = 918417644 
         (CCGA) = 814188124

h
h

h
h

h
h

h
h

h
h

smallest hash code

 is defined by a random hash function .𝒪 h

ACGG 
 CGGT 
  GGTA 
   GTAG 
    TAGA 
     AGAA 
      GAAC 
       AACC 
        ACCG 
         CCGA

In this case, the density is 
: almost a factor 

of  away from the lower 
bound for large .

2/(w + 1)
2

w
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Density by varying m

• Example for , so .

• Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

• https://github.com/jermp/minimizers

w = 24 k = 24 + m − 1

https://github.com/jermp/minimizers
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• Example for , so .

• Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

• https://github.com/jermp/minimizers
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Density by varying m

• Example for , so .

• Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

• https://github.com/jermp/minimizers

w = 24 k = 24 + m − 1

https://github.com/jermp/minimizers


MPHF. Given a set  of  distinct keys, a function  that bijectively maps the keys of  into 
the range  is called a minimal perfect hash function (MPHF) for . 
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Minimal perfect hashing
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MPHF. Given a set  of  distinct keys, a function  that bijectively maps the keys of  into 
the range  is called a minimal perfect hash function (MPHF) for . 

X n f X
{1,…, n} X

Minimal perfect hashing

sigir

tkde

tois
spe

wsdm
csur

icde

S 0
1
2
3
4
5
6

f

X • Space lower bound of  
bits/key [Mehlhorn, 1982].


• Many approaches available (see next).

• Most of them have: 

- Constant-time evaluation. 
- Expected linear-time construction. 
- Take 1.8 — 3 bits/key.

log2(e) ≈ 1.443

Modern Minimal Perfect Hashing: A Survey 
Lehmann, Mueller, P., Sanders, Vigna, Walzer, 2025 
https://arxiv.org/pdf/2506.06536

1
2
3
4
5
6
7

tokyo
sushi

riken
shinjuku

meiji

haneda

ramen

https://arxiv.org/pdf/2506.06536


Minimal perfect hashing



The PTHash “family”

• The fastest functions for lookup time: 30-50 ns/key.


• Also very fast to build and space-efficient: they take from 1.7 to 3.0 bits/key.


• [P. and Trani, 2021, 2023] 
 
 
 
 

• PHOBIC [Hermann et al., 2024]


• PtrHash [Groot Koerkamp, 2025]


• PHast [Beling and Sanders, 2025] 

https://github.com/jermp/pthash

https://github.com/jermp/pthash


3. Sparse and skew hashing of k-mers 



• Property. Consecutive k-mers are likely to have the same minimizer. 
 
Example for k=13 and m=4: 
ACGGTAGAACCGATTCAAATTCGATCGATTAATTAGAGCGATAAC… 
ACGGTAGAACCGA  
 CGGTAGAACCGAT 
  GGTAGAACCGATT 
   GTAGAACCGATTC 
    TAGAACCGATTCA 
     AGAACCGATTCAA 
      GAACCGATTCAAA 
       AACCGATTCAAAT 
        …


• Super-k-mer. Given a string, a super-k-mer is a maximal sequence of consecutive 
k-mers having the same minimizer.

super-k-mer

Super-k-mers



AGATGATGAACCTGAAAACATCCTGAAAATCGTCAAAGAATGGCGGCGTTCACAGGGGCTACCCTTGTTTAAAGACTCTAAATAAAGTA.ATTTTCAGGATG
TTTTCAGGTTCATCATCTCCCTTCTTTGCAGGATAGTAGATAAGATCGCTCATCAACGGATGTTGTGTAATTCTGGTAAGATGTTCTTCTAGATCATCCCAA
TATTTGTCAAGCACTTCCCCTTTTAATTGAGCGTTATCCCCGG.AGATGATGAACCTGAAAACATCCTGAAAATTGTCAAAGAATGGCGGCGTTCACAGGGG
CTA.ATTGTCAAAGAATGGCGGCGTTCACAGGGGTTACCCTTGTTTAAAGACTCTAAATAAAGTAGATAATAAAACTATATATGGAACATCATCGCATCTGG

ATCCTGAAμ =

Sparse hashing
• Locate super-k-mers with an array of offsets into the strings, indexed by a minimal perfect hash function 

built on the set of minimizers.


• The space of this index is then proportional to the number of minimizers, that are sparse in the sequence 
(i.e., we expect to see  times less random minimizers than k-mers).


• Upon : 
1. Compute the the minimizer of , say ; 
2. Locate and scan the “bucket” of  — the set of super-k-mers that have minimizer .

(k − m + 2)/2

Lookup(x)
x μ

μ μ



TCGTCAAA: 29  
CATCCCAA: 172  
ATCGTCAA: 20  
GACTCTAA: 50 329  
AACCTGAA: 0 246  
ATCCTGAA: 9 255  
GAACATCA: 364  
GCAGGATA: 105  
AGGGGCTA: 30  
CTTGTTTA: 319  
GAGCGTTA: 208  
TTTAAAGA: 323  
CTTCTAGA: 169  
GGCTACCC: 33  
CGTTATCC: 211  
AGCACTTC: 189  
AAGATCGC: 119  
AACTATAT: 353  
CCTTCTTT: 97  
TTCAGGTT: 89  
ACGGATGT: 143  
ACAGGGGT: 310  
TGTCAAAG: 266 307  
TAATTCTG: 157 

Sparse hashing — Example

AGATGATGAACCTGAAAACATCCTGAAAATCGTCAAAGAATGGCGG
CGTTCACAGGGGCTACCCTTGTTTAAAGACTCTAAATAAAGTA.AT
TTTCAGGATGTTTTCAGGTTCATCATCTCCCTTCTTTGCAGGATAG
TAGATAAGATCGCTCATCAACGGATGTTGTGTAATTCTGGTAAGAT
GTTCTTCTAGATCATCCCAATATTTGTCAAGCACTTCCCCTTTTAA
TTGAGCGTTATCCCCGG.AGATGATGAACCTGAAAACATCCTGAAA
ATTGTCAAAGAATGGCGGCGTTCACAGGGGCTA.ATTGTCAAAGAA
TGGCGGCGTTCACAGGGGTTACCCTTGTTTAAAGACTCTAAATAAA
GTAGATAATAAAACTATATATGGAACATCATCGCATCTGG

A collection of 4 stitched unitigs: 
285 k-mers for k=31,  bases in totalN = 408

24 minimizers, for m = 8

offsets



Data structure

Elias-Fano

MPHF

compact vector 
of -bit ints⌈log2 N⌉

x



The order of the k-mers in the SPSS is preserved

• Order-Preserving Property. If , i.e.,  is the “successor” of , then: 
.


• So the hash code  can be directly used to associate some satellite information 
to the k-mer , e.g., its abundance, color set, etc.


• Any order on the strings of  uniquely determines an order  for the k-mers
, thus: .

x[2..k] = y[1..k − 1] y x
Lookup(y) = Lookup(x) + 1

i = Lookup(x)
x

SPSS(S) i = 1,…, n
xi ∈ SPSS(S) Lookup(xi) = i



The order of the k-mers in the SPSS is preserved

• Order-Preserving Property. If , i.e.,  is the “successor” of , then: 
.


• So the hash code  can be directly used to associate some satellite information 
to the k-mer , e.g., its abundance, color set, etc.


• Any order on the strings of  uniquely determines an order  for the k-mers
, thus: .

x[2..k] = y[1..k − 1] y x
Lookup(y) = Lookup(x) + 1

i = Lookup(x)
x

SPSS(S) i = 1,…, n
xi ∈ SPSS(S) Lookup(xi) = i

• This property makes compression of satellite information easy and effective. 
We will see another example on 4th July.



Skew hashing

• Problem. Some buckets can be very large. 
 

• Property. Minimizers have a (very) skew distribution for sufficiently-long length m.

For example on the human genome (GRCh38), for  and : largest bucket size can be as large as .k = 31 m = 20 3.6 × 104

On the full human genome (GRCh38), 
for  and : 
  2,505,445,761 -mers 
    421,845,806 minimizers 
    388,018,280 (91.98%) only appear once!

k = 31 m = 20
k



• We fix an integer : by virtue of the skew distribution, the fraction of buckets having 
more than  super-k-mers is small.


• So, we can afford a MPHF over the set of k-mers that belong to such super-k-mers. The 
output of the MPHF for a k-mer  is the identifier of the super-k-mer where  is present.


• Upon , we will scan one super-k-mer only.

ℓ
2ℓ

x x

Lookup

For , just 
100.0 − (97.1 + 1.7 + 0.4 + 0.2)% = 0.6% of 
buckets with more than  super- -mers.

ℓ = 2

2ℓ=2 = 4 k

Skew hashing



Skew hashing — Example

Example for .ℓ = 3

x



• These ideas have been implemented in a software tool (C++17):

https://github.com/jermp/sshash

Implementation and results

https://github.com/jermp/sshash


New benchmarks https://github.com/jermp/sshash/tree/master/benchmarks

https://github.com/jermp/sshash/tree/master/benchmarks


To sum up

• SSHash is an order-preserving k-mer dictionary.


• Three important tools: 
1. spectrum-preserving string sets; 
2. minimizers; 
3. minimal perfect hashing.


• Ingredients: 
- Sparse indexing to obtain good space effectiveness; 
- Skew hashing to guarantee fast lookup for “heavy” buckets.


• Code in C++17 is available at: https://github.com/jermp/sshash.

https://github.com/jermp/sshash


Extensions

• k-mer abundances [P. 2022, 2023]


• sequence membership: a sequence  is considered as present in the 
dictionary if at least a given fraction of its k-mers is found in the dictionary 
[Schmidt, Khan, Alanko, P., Tomescu, 2023]


• reference indexing: store also positional information for each k-mer 
[Fan, Khan, P., Patro, 2023]


• colored de Bruijn graphs: annotate each k-mer with the set of its “colors” (i.e., 
the references where it appears) [Fan, Khan, Singh, P., Patro, 2023, 2024; Fan, 
P., Patro, 2024; Campanelli, P., Fan, Patro, 2024; Campanelli, P., Patro, 2025]

S
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