The anatomy of an order-preserving k-mer dictionary

Giulio Ermanno Pibiri

Ca' Foscari University of Venice

RIKEN-AIP Tutorial: Compressed Data Structures for Advanced Data Analysis Tokyo, Japan, 2 July 2025

- 1. Context, motivations, and problem definition
- 2. Tools:
 - Spectrum-preserving string sets
 - Minimizers
 - Minimal perfect hashing
- 3. Sparse and skew hashing of k-mers

1. Context, motivations, and problem definition

Massive DNA Collections

- **Peta bytes** of data available:
 - ENA (European Nucleotide Archive)
 - SRA (Sequence Read Archive)
 - RefSeq (Reference Sequence Database)
 - Ensembl
- For example: as of June 2025, ENA has 5.7 billions of assembled sequences, for 30 trillion bases. https://www.ebi.ac.uk/ena/browser/about/statistics
- These collections are paving the way to answer fundamental questions regarding biology and evolution.

- Q. But how do we exploit such potential? We need efficient methods to index and search data at this scale.
- of fixed length k the so-called *k-mers*.

. . .

ACGGTAGAACCGATTCAAATTCGACGTAGC... ACGGTAGAACCGA **CGGTAGAACCGAT** GGTAGAACCGATT Example for k=13. GTAGAACCGATTC TAGAACCGATTCA AGAACCGATTCAA GAACCGATTCAAA AACCGATTCAAAT

• One popular strategy: "reduce" a DNA sequence to a set of short substrings

k-mer applications

- Software tools based on k-mers are predominant in bioinformatics.
- Many applications:
 - genome assembly
 - variant calling
 - pan-genome analysis
 - meta-genomics

. . .

- sequence comparison/alignment

A world of k-mer indexes

- Huge research effort produced many types of indexes based on k-mers, with different:
 - representations (hashing, BWT-based, exact vs. approximate),
 - features (e.g., static vs. dynamic),
 - space/time trade-offs,
 - types of supported queries, etc.
- Recent surveys on this topic:
 - Marchet et al., Genome Research, 2020.
 - Data Structures to Represent a Set of k-long DNA Sequences Chikhi et al., ACM Computing Surveys, 2021.

• Data Structures based on k-mers for Querying Large Collections of Sequencing Data Sets

The k-mer dictionary problem

• We are given a large DNA string S (e.g., a genome or a pan-genome) and let K be the set of all its *n* distinct k-mers.

Example: The human genome (GRCh38) has >2.5B distinct k-mers for k=31.

- **Problem.** We want to build a dictionary for K so that the following operations are efficient:
 - Lookup(x) returns $1 \le i \le n$ if the k-mer $x \in K$ or \perp otherwise; - return the k-mer x = Access(i) if $1 \le i \le n$.
- Other operations of interest are streaming queries, iteration, navigational queries.

Do we need an ad-hoc solution?

- But they are relevant for "generic strings":
 - variable-length,

. . .

- larger alphabets (e.g., ASCII),
- (usually) no particular properties of the strings to aid compression.
- k-1 bases (very low entropy).

ACGGTAGAACCGATTCAAATTCGACGTAGC... ACGGTAGAACCGA CGGTAGAACCGAT **GGTAGAACCGAT** GTAGAACCGATTC TAGAACCGATTCA

• The algorithmic literature about (compressed) string dictionaries is rich of solutions [Martínez-Prieto et al., 2016] (e.g., Front-Coding, path-decomposed tries, double-array tries, etc.).

• Since k-mers are extracted *consecutively* from DNA, a k-mer following another one shares

Example for k=13.

- from x to y if x[2..k] = y[1..k 1].
- Fact. Equivalence between a set of k-mers and a de Bruijn graph.

• de Bruijn graph. A (node centric) de Bruijn graph (dBG) of order k for a sequence S is a directed graph where nodes are the distinct k-mers of S and there exists a directed edge

(c) set of "stitched" unitigs

(see next)

Spectrum-preserving string sets

• k-mer spectrum. The spectrum of S, say spect(S), is the set of all the distinct k-mers of S.

• Spectrum-preserving string set (SPSS). A SPSS for S is a set of strings $\mathcal{U} = \{U_1, \dots, U_m\}$ such that $spect(S) = spect(U_1) \cup \cdots \cup spect(U_m)$. Usually $spect(U_i) \cap spect(U_j) = \emptyset$ for any $i \neq j$.

• For example, the set of unitigs or "stitched" unitigs of the dBG of S are possible SPSS for S.

Spectrum-preserving string sets

- k-mer spectrum. The spectrum of S, say spect(S), is the set of all the distinct k-mers of S.
- Spectrum-preserving string set (SPSS). A SPSS for S is a set of strings $\mathcal{U} = \{U_1, ..., U_m\}$ such that $spect(S) = spect(U_1) \cup \cdots \cup spect(U_m)$. Usually $spect(U_i) \cap spect(U_i) = \emptyset$ for any $i \neq j$.
- For example, the set of unitigs or "stitched" unitigs of the dBG of S are possible SPSS for S.
- In general, we want to **minimise** the cumulative length of \mathcal{U} , i.e., the number of characters in the strings of \mathcal{U} .
- A general framework: compute a minimum-size path cover for the (compacted) dBG of S. Usually the cover is **disjoint-node**, so that each k-mer of S appears exactly once in \mathcal{U} .

Spectrum-preserving string sets

- Many SPSS available in the literature:
 - unitigs (folklore);
 - stitched unitigs [Rahman and Medvedev, 2020] (almost optimal);
 - simplifigs [Brinda et al., 2020];
 - eulertigs [Schmidt and Alanko, 2022, 2023] (optimal: smallest num. of characters); - matchtigs [Schmidt, Khan, Alanko, P., Tomescu, 2023]; - masked super strings [Brinda et al., 2025].
- Some of them have slightly different properties.
- For example: unitigs, stitched unitigs, simplitigs, and eulertigs do not allow repetitions of k-mers, whereas matchtigs and masked super strings do.

de Bruijn graphs and spectrum-preserving string sets

sequence

- BCALM2 [Chikhi et al., 2016]
- TwoPaCo [Minkin et al., 2017]
- Cuttlefish1 [Khan and Patro, 2021]
- Cuttlefish2 [Khan et al., 2022]
- GGCAT [Cracco and Tomescu, 2023]
- Cuttlefish3 [Khan, Dhulipala and Patro, 2025]

de Bruijn graphs and spectrum-preserving string sets

sequence

- BCALM2 [Chikhi et al., 2016]
- TwoPaCo [Minkin et al., 2017]
- Cuttlefish1 [Khan and Patro, 2021]
- Cuttlefish2 [Khan et al., 2022]
- GGCAT [Cracco and Tomescu, 2023]
- Cuttlefish3 [Khan, Dhulipala and Patro, 2025]

A collection of DNA strings with no duplicate k-mers: this is a natural basis for a space-efficient k-mer dictionary

Indexing SPSS

Q. How do we index it so that Lookup is efficient?

• Now that we have an SPSS where each k-mer of S appears once, the question is:

Indexing SPSS

- Q. How do we index it so that Lookup is efficient?
- Possible answers:
 - Compute the **BWT** of the strings in the SPSS.
 - We are going to see a solution based on hashing. (We need two more tools.)

• Now that we have an SPSS where each k-mer of S appears once, the question is:

the "representative" of x — or its *minimizer*.

• Consider each k-mer x of S: sample one m-mer of x out of its k - m + 1 m-mers and call it

Example for k = 10 and m = 7.

ACGGTAGAACCGATTCAAATTCGAT...

ACGGTAGAAC **CGGTAGA**ACC GGTAGAACCG GTAGAACCGA TAG**AACCGAT** AGAACCGATT GAACCGATTC AACCGATTCA

• Consider each k-mer x of S: sample one m-mer of x out of its k - m + 1 m-mers and call it the "representative" of x — or its *minimizer*.

- We would like to sample the **same minimizer** from consecutive k-mers so that the **set of distinct minimizers** forms a succinct sketch for S.
- This reduces the memory footprint and computational time of countless applications in **Bioinformatics**.

Example for k = 10 and m = 7. ACGGTAGAACCGATTCAAATTCGAT... ACGGTAGAAC CGGTAGAACC GGTAGAACCG **GTAGAACCG**A TAG**AACCGAT** AGAACCGAT GAACCGAT **AACCGAT**TCA

Q. How do we compare different sampling algorithms? \bullet

(distinct) minimizers and the total number of m-mers of S (i.e., |S| - m + 1).

The lower the density, the better!

A. We define the *density* of a sampling algorithm as the fraction between the number of

Q. How do we compare different sampling algorithms?

(distinct) minimizers and the total number of m-mers of S (i.e., |S| - m + 1).

The lower the density, the better!

• Call w = k - m + 1. Since the same m-mer cannot be a minimizer for more than w consecutive k-mers, we immediately have a **lower bound** of 1/w on the density of any sampling algorithm.

TAGAACCGAT AGAACCGATT GAACCGATTC **AACCGAT**TCA

A. We define the *density* of a sampling algorithm as the fraction between the number of

Example for w = 4 and m = 7.

The "folklore" minimizer

- Example. Given x = ACGGTAGAACCGA (k = 13) and m = 4:

h(ACGG) = 9842978325ACGG h(CGGT) = 817612312CGGT GGTA h(GTAG) = 478491248GTAG h(TAGA) = 17491411TAGA h(AGAA) = 17148914AGAA GAAC AACC ACCG CCGA

 \mathcal{O} is the *lexicographic* order.

 \mathcal{O} is defined by a random hash function h.

• Minimizer. [Schleimer et al. 2003, Roberts et al., 2004] Given a k-mer x and an order \mathcal{O} over all m-mers, the minimizer of length $m \leq k$ is the (leftmost) smallest m-mer of x according to \mathcal{O} .

```
h(GGTA) = 8265731 \leftarrow smallest hash code
                                    In this case, the density is
h(GAAC) = 91815379
                                    2/(w+1): almost a factor
 h(AACC) = 645793914
                                    of 2 away from the lower
  h(ACCG) = 918417644
                                    bound for large w.
   h(CCGA) = 814188124
```


Density by varying m

- Example for w = 24, so k = 24 + m 1. ullet
- Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4. lacksquare
- https://github.com/jermp/minimizers \bullet

- lower bound (improved, 2024)
- minimizer (2004)
- miniception (2020)
- double-decyclying (2023)

Density by varying *m*

- Example for w = 24, so k = 24 + m 1. ullet
- Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4. ullet
- https://github.com/jermp/minimizers \bullet

Density by varying *m*

- Example for w = 24, so k = 24 + m 1. ullet
- Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4. ullet
- https://github.com/jermp/minimizers \bullet

- lower bound (improved, 2024)
- minimizer (2004)
- miniception (2020)
- double-decyclying (2023)
- mod-minimizer (2024)
- open-closed mod-minimizer (2025)

[Groot Koerkamp and P., 2024] [Groot Koerkamp, Liu, and P., 2025]

Minimal perfect hashing

MPHF. Given a set *X* of *n* distinct keys, a function *f* that *bijectively* maps the keys of *X* into the range $\{1, ..., n\}$ is called a *minimal perfect hash function* (MPHF) for *X*.

Minimal perfect hashing

MPHF. Given a set X of n distinct keys, a function f that *bijectively* maps the keys of X into the range $\{1, ..., n\}$ is called a *minimal perfect hash function* (MPHF) for X.

- Space lower bound of $\log_2(e) \approx 1.443$ bits/key [Mehlhorn, 1982].
- Many approaches available (see next).
- Most of them have:
 - Constant-time evaluation.
 - Expected linear-time construction.
 - Take 1.8 3 bits/key.

Modern Minimal Perfect Hashing: A Survey Lehmann, Mueller, P., Sanders, Vigna, Walzer, 2025 https://arxiv.org/pdf/2506.06536

Minimal perfect hashing

The PTHash "family"

- The **fastest** functions for lookup time: 30-50 ns/key.
- Also very fast to build and space-efficient: they take from 1.7 to 3.0 bits/key.
 - [P. and Trani, 2021, 2023]

- PHOBIC [Hermann et al., 2024]
- PtrHash [Groot Koerkamp, 2025]
- PHast [Beling and Sanders, 2025]

3. Sparse and skew hashing of k-mers

Super-k-mers

Property. Consecutive k-mers are likely to have the same minimizer.

Example for k=13 and m=4: ACGGTAGAACCGATTCAAATTCGATCGATTAATTAGAGCGATAAC... ACGGTAGAACCGA **CGGTAGAACCGAT** GGTAGAACCGATT super-k-mer **GTAGAACCGATTC** TAGAACCGATTCA AGAACCGATTCAA GAACCGATTCAAA AACCGATTCAAAT

k-mers having the same minimizer.

. . .

• Super-k-mer. Given a string, a super-k-mer is a maximal sequence of consecutive
Sparse hashing

- built on the set of minimizers.
- (i.e., we expect to see (k m + 2)/2 times less random minimizers than k-mers).
- Upon Lookup(x): 1. Compute the the minimizer of x, say μ ; 2. Locate and scan the "bucket" of μ — the set of super-k-mers that have minimizer μ .

Locate super-k-mers with an array of offsets into the strings, indexed by a **minimal perfect hash function**

• The space of this index is then proportional to the number of minimizers, that are sparse in the sequence

TTTTCAGGTTCATCATCTCCCTTCTTTGCAGGATAGTAGATAAGATCGCTCATCAACGGATGTTGTGTAATTCTGGTAAGATGTTCTTCTAGATCATCCCAA TATTTGTCAAGCACTTCCCCTTTTAATTGAGCGTTATCCCCGG.AGATGATGAAGACCTGAAAACATCCTGAAAAATTGTCAAAGAATGGCGGCGTTCACAGGGG

Sparse hashing – Example

A collection of **4** stitched unitigs: 285 k-mers for k=31, N = 408 bases in total

AGATGATGAACCTGAAAACATCCTGAAAATCGTCAAAGAATGGCGG TTTCAGGATGTTTTCAGGTTCATCATCTCCCTTCTTTGCAGGATAG TAGATAAGATCGCTCATCAACGGATGTTGTGTAATTCTGGTAAGAT GTTCTTCTAGATCATCCCAATATTTGTCAAGCACTTCCCCTTTTAA TTGAGCGTTATCCCCGG.AGATGATGAACCTGAAAACATCCTGAAA ATTGTCAAAGAATGGCGGCGTTCACAGGGGCTA.ATTGTCAAAGAA **GTAGATAATAAAACTATATATGGAACATCATCGCATCTGG**

TCGTCAAA: 29 CATCCCAA: 172 ATCGTCAA: 20 GACTCTAA: 50 329 AACCTGAA: 0 246 ATCCTGAA: 9 255 GAACATCA: 364 GCAGGATA: 105 AGGGGCTA: 30 CTTGTTTA: 319 GAGCGTTA: 208 TTTAAAGA: 323 CTTCTAGA: 169 GGCTACCC: 33 CGTTATCC: 211 AGCACTTC: 189 AAGATCGC: 119 AACTATAT: 353 CCTTCTTT: 97 TTCAGGTT: 89 ACGGATGT: 143 ACAGGGGT: 310 TGTCAAAG: 266 307 TAATTCTG: 157

offsets

Data structure

	N		F														
J	f																act vect
14	15	16	17	18	19	20	21	22	23	24	25	27	28		OI		$_2N$ -bit
11	12	13	14	15	16	17	18	19	20	21	22	23	24				_
30	319	208	323	169	33	211	189	119	353	97	89	143	310	266	307	157	
11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	-

The order of the k-mers in the SPSS is preserved

- Order-Preserving Property. If x[2..k] = y[1..k 1], i.e., y is the "successor" of x, then: Lookup(y) = Lookup(x) + 1.
- So the hash code i = Lookup(x) can be directly used to associate some satellite information to the k-mer x, e.g., its abundance, color set, etc.
- Any order on the strings of SPSS(S) uniquely determines an order i = 1, ..., n for the k-mers $x_i \in SPSS(S)$, thus: Lookup $(x_i) = i$.

The order of the k-mers in the SPSS is preserved

- Order-Preserving Property. If x[2..k] = y[1..k 1], i.e., y is the "successor" of x, then: Lookup(y) = Lookup(x) + 1.
- So the hash code i = Lookup(x) can be directly used to associate some satellite information to the k-mer x, e.g., its abundance, color set, etc.
- Any order on the strings of SPSS(S) uniquely determines an order i = 1, ..., n for the k-mers $x_i \in SPSS(S)$, thus: Lookup $(x_i) = i$.

• This property makes **compression of satellite information** easy and effective. We will see another example on **4th July**.

Skew hashing

- **Problem.** Some buckets can be very large.

Bucket size distribution (%) for k = 31 and the first $n = 10^9 k$ -mers of the human genome, by varying minimizer length *m*.

size / m								
1	13.7	19.8	29.7	42.4	61.5	79.5 13.6	89.8	94.4
2	7.5	10.6	14.4	17.7	19.4	13.6	7.3	3.9
3	5.2	7.3	8.8	10.4	8.4	3.7	1.4	0.8
4	4.0	5.5	6.0	7.0	4.1	1.3	0.5	0.3
5	3.2	4.4	4.5	5.0	2.2	3.7 1.3 0.6	0.3	0.2

For example on the human genome (GRCh38), for k = 31 and m = 20: largest bucket size can be as large as 3.6×10^4 .

• Property. Minimizers have a (very) skew distribution for sufficiently-long length m.

19	20	21
96.3	97.1	97.5
2.4	1.7	1.4
0.5	0.4	0.4
0.2	0.2	0.2
0.1	0.1	0.1

On the full human genome (GRCh38), for k = 31 and m = 20: 2,505,445,761 k-mers 421,845,806 minimizers 388,018,280 (91.98%) only appear once!

Skew hashing

- We fix an integer ℓ : by virtue of the skew distribution, the fraction of buckets having more than 2^{ℓ} super-k-mers is small.
- Upon Lookup, we will scan **one** super-k-mer only.

Bucket size distribution (%) for k = 31 and the first $n = 10^9 k$ -mers of the human genome, by varying minimizer length *m*.

size / m	11	12	13	14	15	16	17	18	19	20	21
1 2	13.7	19.8	29.7	42.4	61.5	79.5	89.8	94.4	96.3	97.1	97.5
2	7.5	10.6	14.4	17.7	19.4	13.6	7.3	3.9	2.4	1.7	1.4
3	5.2	7.3	8.8	10.4	8.4	3.7	1.4	0.8	0.5	0.4	0.4
4	4.0	5.5	6.0	7.0	4.1	1.3	0.5	0.3	0.2	0.2	0.2
2 3 4 5	3.2	4.4	4.5	5.0	2.2	0.6	0.3	0.2	0.1	0.1	0.1

• So, we can afford a MPHF over the set of k-mers that belong to such super-k-mers. The output of the MPHF for a k-mer x is the **identifier** of the super-k-mer where x is present.

For $\ell = 2$, just 100.0 - (97.1 + 1.7 + 0.4 + 0.2)% = 0.6% of buckets with more than $2^{\ell=2} = 4$ super-k-mers.

Skew hashing — Example

Example for $\ell = 3$.

Implementation and results

• These ideas have been implemented in a software tool (C++17):

https://github.com/jermp/sshash

New benchmarks

Whole genome	Space		Building time (8 threads, 16 GB of RAM)	Positive random Lookup	Negative random Lookup	Streaming Lookup high-hit			
	bits/kmer	total GB	m:ss	ns/kmer	ns/kmer	ns/kmer	hit-rate (%)	extension-rate (%)	
k = 31									
Cod, regular, m = 20	7.79	0.49	0:28	1124	1078	87	64	~ ~ ~	
Cod, canonical, m = 19	8.76	0.55	0:40	899	631	69	81	94	
Kestrel, regular, m = 20	7.44	1.07	0:50	1099	1220	130	70	98	
Kestrel, canonical, m = 19	8.43	1.21	1:06	873	701	97	76		
Human, regular, m = 21	8.65	2.71	2:12	1584	1365	208		92	
Human, canonical, m = 20	9.70	3.04	2:50	1204	764	143	92		
k = 63									
Cod, regular, m = 24	4.24	0.29	0:25	1311	1058	344		10	
Cod, canonical, m = 23	4.84	0.34	0:30	1140	730	280	69	49	
Kestrel, regular, m = 24	3.73	0.54	0:27	1135	1233	244		40	
Kestrel, canonical, m = 23	4.23	0.61	0:40	1008	811	230	64	49	
Human, regular, m = 25	4.63	1.60	1:40	1658	1372	491	05	40	
Human, canonical, m = 24	5.31	1.84	2:24	1357	875	387	85	46	

https://github.com/jermp/sshash/tree/master/benchmarks

Ubuntu 18.04.6; gcc 9.4; Intel Xeon W-2245 CPU @ 3.90GHz; Results taken on 18/06/2025

To sum up

- SSHash is an order-preserving k-mer dictionary.
- Three important tools:
 - 1. spectrum-preserving string sets;
 - 2. minimizers;
 - 3. minimal perfect hashing.
- Ingredients:
 - **Sparse indexing** to obtain good space effectiveness;
 - Skew hashing to guarantee fast lookup for "heavy" buckets.
- Code in C++17 is available at: <u>https://github.com/jermp/sshash</u>.

Extensions

- k-mer abundances [P. 2022, 2023]
- sequence membership: a sequence S is considered as present in the dictionary if at least a given fraction of its k-mers is found in the dictionary [Schmidt, Khan, Alanko, P., Tomescu, 2023]
- reference indexing: store also positional information for each k-mer [Fan, Khan, P., Patro, 2023]
- colored de Bruijn graphs: annotate each k-mer with the set of its "colors" (i.e., the references where it appears) [Fan, Khan, Singh, P., Patro, 2023, 2024; Fan, P., Patro, 2024; Campanelli, P., Fan, Patro, 2024; Campanelli, P., Patro, 2025]

Extensions

- k-mer abundances [P. 2022, 2023]
- sequence membership: a sequence S is considered as present in the dictionary if at least a given fraction of its k-mers is found in the dictionary [Schmidt, Khan, Alanko, P., Tomescu, 2023]
- reference indexing: store also positional information for each k-mer [Fan, Khan, P., Patro, 2023]

 colored de Bruijn graphs: annotate each k-mer with the set of its "colors" (i.e., the references where it appears) [Fan, Khan, Singh, P., Patro, 2023, 2024; Fan, P., Patro, 2024; Campanelli, P., Fan, Patro, 2024; Campanelli, P., Patro, 2025]

4th July, at 13:50