
The anatomy of an order-preserving 
k-mer dictionary

RIKEN-AIP Tutorial: Compressed Data Structures for Advanced Data Analysis
Tokyo, Japan, 2 July 2025

Giulio Ermanno Pibiri
Ca’ Foscari University of Venice

@giulio_pibiri

@jermp

1. Context, motivations, and problem definition

2. Tools:

• Spectrum-preserving string sets

• Minimizers

• Minimal perfect hashing

3. Sparse and skew hashing of k-mers

Agenda

1. Context, motivations, and problem definition

• Peta bytes of data available: 
- ENA (European Nucleotide Archive) 
- SRA (Sequence Read Archive) 
- RefSeq (Reference Sequence Database) 
- Ensembl

• For example: as of June 2025, ENA has 5.7 billions of assembled
sequences, for 30 trillion bases. 

• These collections are paving the way to answer fundamental questions
regarding biology and evolution.

https://www.ebi.ac.uk/ena/browser/about/statistics

Massive DNA Collections

https://www.ebi.ac.uk/ena/browser/about/statistics

• Q. But how do we exploit such potential? 
 
We need efficient methods to index and search data at this scale.

• One popular strategy: “reduce” a DNA sequence to a set of short substrings
of fixed length k — the so-called k-mers.

 
ACGGTAGAACCGATTCAAATTCGACGTAGC… 
ACGGTAGAACCGA 
 CGGTAGAACCGAT
 GGTAGAACCGATT
 GTAGAACCGATTC
 TAGAACCGATTCA
 AGAACCGATTCAA
 GAACCGATTCAAA
 AACCGATTCAAAT
 …

Example for k=13.

k-mers

• Software tools based on k-mers are predominant in bioinformatics.

• Many applications: 
- genome assembly 
- variant calling 
- pan-genome analysis 
- meta-genomics 
- sequence comparison/alignment 
…

k-mer applications

• Huge research effort produced many types of indexes based on k-mers,
with different: 
 
- representations (hashing, BWT-based, exact vs. approximate), 
- features (e.g., static vs. dynamic), 
- space/time trade-offs, 
- types of supported queries, etc.

• Recent surveys on this topic:

• Data Structures based on k-mers for Querying Large Collections of Sequencing Data Sets 
Marchet et al., Genome Research, 2020.

• Data Structures to Represent a Set of k-long DNA Sequences 
Chikhi et al., ACM Computing Surveys, 2021.

A world of k-mer indexes

• We are given a large DNA string (e.g., a genome or a pan-genome) and let be
the set of all its distinct k-mers. 

• Problem. We want to build a dictionary for so that the following operations are
efficient: 
- returns if the k-mer or otherwise; 
- return the k-mer if .

• Other operations of interest are streaming queries, iteration, navigational queries.

S K
n

K

Lookup(x) 1 ≤ i ≤ n x ∈ K ⊥
x = Access(i) 1 ≤ i ≤ n

Example: The human genome (GRCh38) has >2.5B distinct k-mers for k=31.

The k-mer dictionary problem

Do we need an ad-hoc solution?

• The algorithmic literature about (compressed) string dictionaries is rich of solutions [Martínez-
Prieto et al., 2016] (e.g., Front-Coding, path-decomposed tries, double-array tries, etc.).

• But they are relevant for “generic strings”: 
 - variable-length, 
 - larger alphabets (e.g., ASCII), 
 - (usually) no particular properties of the strings to aid compression.

• Since k-mers are extracted consecutively from DNA, a k-mer following another one shares
k-1 bases (very low entropy).

 
ACGGTAGAACCGATTCAAATTCGACGTAGC… 
ACGGTAGAACCGA 
 CGGTAGAACCGAT
 GGTAGAACCGATT
 GTAGAACCGATTC
 TAGAACCGATTCA
 …

Example for k=13.

2. Tools

de Bruijn graphs

• de Bruijn graph. A (node centric) de Bruijn graph (dBG) of order k for a sequence is a
directed graph where nodes are the distinct k-mers of and there exists a directed edge 
from to if .

• Fact. Equivalence between a set of k-mers and a de Bruijn graph.

S
S

x y x[2..k] = y[1..k − 1]

TCA CAT ATT TTG

TGG GGT GTA TAA

TGC GCG CGA GAA

AAC ACC CCG

an example de Bruijn
graph for k=3

de Bruijn graphs

TCA CAT ATT TTG

TGG GGT GTA TAA

TGC GCG CGA GAA

AAC ACC CCG

(a) an example de Bruijn
graph for k=3

de Bruijn graphs

TCA CAT ATT TTG

TGG GGT GTA TAA

TGC GCG CGA GAA

AAC ACC CCG

(a) an example de Bruijn
graph for k=3

TCATTG

TGGTAA

TGCGAA

AACCG

(b) compacted de Bruijn graph

de Bruijn graphs

TCA CAT ATT TTG

TGG GGT GTA TAA

TGC GCG CGA GAA

AAC ACC CCG

(a) an example de Bruijn
graph for k=3

TCATTG

TGGTAA

TGCGAA

AACCG

(b) compacted de Bruijn graph

TCATTGGTAACCG

TGCGAA

(c) set of “stitched” unitigs

this is an example of a 
spectrum-preserving string set  

(see next)

de Bruijn graphs

TCA CAT ATT TTG

TGG GGT GTA TAA

TGC GCG CGA GAA

AAC ACC CCG

(a) an example de Bruijn
graph for k=3

TCATTG

TGGTAA

TGCGAA

AACCG

(b) compacted de Bruijn graph

TCATTGGTAACCG

TGCGAA

(c) set of “stitched” unitigs

Spectrum-preserving string sets

• k-mer spectrum. The spectrum of , say , is the set of all the distinct k-mers of .

• Spectrum-preserving string set (SPSS). A SPSS for is a set of strings such
that . Usually for any .

• For example, the set of unitigs or “stitched” unitigs of the dBG of are possible SPSS for .

S spect(S) S

S 𝒰 = {U1, …, Um}
spect(S) = spect(U1) ∪ ⋯ ∪ spect(Um) spect(Ui) ∩ spect(Uj) = Ø i ≠ j

S S

Spectrum-preserving string sets

• k-mer spectrum. The spectrum of , say , is the set of all the distinct k-mers of .

• Spectrum-preserving string set (SPSS). A SPSS for is a set of strings such
that . Usually for any .

• For example, the set of unitigs or “stitched” unitigs of the dBG of are possible SPSS for .

S spect(S) S

S 𝒰 = {U1, …, Um}
spect(S) = spect(U1) ∪ ⋯ ∪ spect(Um) spect(Ui) ∩ spect(Uj) = Ø i ≠ j

S S

• In general, we want to minimise the cumulative length of , i.e., the number of characters
in the strings of .

• A general framework: compute a minimum-size path cover for the (compacted) dBG of . 
Usually the cover is disjoint-node, so that each k-mer of appears exactly once in .

𝒰
𝒰

S
S 𝒰

• Many SPSS available in the literature: 
 
- unitigs (folklore); 
- stitched unitigs [Rahman and Medvedev, 2020] (almost optimal); 
- simplitigs [Brinda et al., 2020]; 
- eulertigs [Schmidt and Alanko, 2022, 2023] (optimal: smallest num. of characters); 
- matchtigs [Schmidt, Khan, Alanko, P., Tomescu, 2023]; 
- masked super strings [Brinda et al., 2025].

• Some of them have slightly different properties.

• For example: unitigs, stitched unitigs, simplitigs, and eulertigs do not allow
repetitions of k-mers, whereas matchtigs and masked super strings do.

Spectrum-preserving string sets

de Bruijn graphs and spectrum-preserving string sets

dBG(S)
compacted

dBG(S) SPSS(S)

compaction
path covering
in linear time

S

- BCALM2 [Chikhi et al., 2016] 
- TwoPaCo [Minkin et al., 2017] 
- Cuttlefish1 [Khan and Patro, 2021]

- Cuttlefish2 [Khan et al., 2022]

- GGCAT [Cracco and Tomescu, 2023]

- Cuttlefish3 [Khan, Dhulipala and Patro, 2025]

build

A long DNA
sequence

de Bruijn graphs and spectrum-preserving string sets

dBG(S)
compacted

dBG(S) SPSS(S)

compaction
path covering
in linear time

S

- BCALM2 [Chikhi et al., 2016] 
- TwoPaCo [Minkin et al., 2017] 
- Cuttlefish1 [Khan and Patro, 2021]

- Cuttlefish2 [Khan et al., 2022]

- GGCAT [Cracco and Tomescu, 2023]

- Cuttlefish3 [Khan, Dhulipala and Patro, 2025]

build

A collection of DNA strings with
no duplicate k-mers: 

this is a natural basis for a 
space-efficient k-mer dictionary

A long DNA
sequence

Indexing SPSS

• Now that we have an SPSS where each k-mer of appears once, the question is: 
 
Q. How do we index it so that Lookup is efficient?

S

Indexing SPSS

• Now that we have an SPSS where each k-mer of appears once, the question is: 
 
Q. How do we index it so that Lookup is efficient?

S

• Possible answers: 
 
- Compute the BWT of the strings in the SPSS. 
 
- We are going to see a solution based on hashing. 
 (We need two more tools.)

Example for and . 
 
ACGGTAGAACCGATTCAAATTCGAT… 
 
ACGGTAGAAC
 CGGTAGAACC
 GGTAGAACCG
 GTAGAACCGA
 TAGAACCGAT
 AGAACCGATT
 GAACCGATTC
 AACCGATTCA
 …

k = 10 m = 7

• Consider each k-mer of : sample one m-mer of out of its m-mers and call it
the “representative” of — or its minimizer.

x S x k − m + 1
x

Sketching with minimizers

• We would like to sample the same minimizer from
consecutive k-mers so that the set of distinct
minimizers forms a succinct sketch for .

• This reduces the memory footprint and
computational time of countless applications in
Bioinformatics.

S

Example for and . 
 
ACGGTAGAACCGATTCAAATTCGAT… 
 
ACGGTAGAAC
 CGGTAGAACC
 GGTAGAACCG
 GTAGAACCGA
 TAGAACCGAT
 AGAACCGATT
 GAACCGATTC
 AACCGATTCA
 …

k = 10 m = 7

• Consider each k-mer of : sample one m-mer of out of its m-mers and call it
the “representative” of — or its minimizer.

x S x k − m + 1
x

Sketching with minimizers

Sketching with minimizers

• Q. How do we compare different sampling algorithms? 
 
A. We define the density of a sampling algorithm as the fraction between the number of
(distinct) minimizers and the total number of m-mers of (i.e.,). 
 
The lower the density, the better!

S |S | − m + 1

Sketching with minimizers

• Q. How do we compare different sampling algorithms? 
 
A. We define the density of a sampling algorithm as the fraction between the number of
(distinct) minimizers and the total number of m-mers of (i.e.,). 
 
The lower the density, the better!

S |S | − m + 1

• Call . Since the same m-mer cannot be a minimizer for more than
consecutive k-mers, we immediately have a lower bound of on the density of any
sampling algorithm.

w = k − m + 1 w
1/w

Example for and .w = 4 m = 7

The “folklore” minimizer

• Minimizer. [Schleimer et al. 2003, Roberts et al., 2004] Given a k-mer and an order over all 
m-mers, the minimizer of length is the (leftmost) smallest -mer of according to .

• Example. Given ACGGTAGAACCGA and : 

x 𝒪
m ≤ k m x 𝒪

x = (k = 13) m = 4

 is the lexicographic order.𝒪

(ACGG) = 9842978325
 (CGGT) = 817612312
 (GGTA) = 8265731
 (GTAG) = 478491248
 (TAGA) = 17491411
 (AGAA) = 17148914
 (GAAC) = 91815379
 (AACC) = 645793914
 (ACCG) = 918417644
 (CCGA) = 814188124

h
h

h
h

h
h

h
h

h
h

smallest hash code

 is defined by a random hash function .𝒪 h

ACGG
 CGGT
 GGTA
 GTAG
 TAGA
 AGAA
 GAAC
 AACC
 ACCG
 CCGA

In this case, the density is
: almost a factor

of away from the lower
bound for large .

2/(w + 1)
2

w

de
ns

ity

0.050

0.054

0.057

0.061

0.064

0.068

0.072

0.075

0.079

0.082

0.086

m
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

lower bound (improved, 2024)
minimizer (2004)
miniception (2020)
double-decyclying (2023)

Density by varying m

• Example for , so .

• Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

• https://github.com/jermp/minimizers

w = 24 k = 24 + m − 1

https://github.com/jermp/minimizers

de
ns

ity

0.050

0.054

0.057

0.061

0.064

0.068

0.072

0.075

0.079

0.082

0.086

m
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

lower bound (improved, 2024)
minimizer (2004)
miniception (2020)
double-decyclying (2023)

de
ns

ity

0.050

0.054

0.057

0.061

0.064

0.068

0.072

0.075

0.079

0.082

0.086

m
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

lower bound (improved, 2024)
minimizer (2004)
miniception (2020)
double-decyclying (2023)
mod-minimizer (2024)

[Groot Koerkamp and P., 2024]

Density by varying m

• Example for , so .

• Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

• https://github.com/jermp/minimizers

w = 24 k = 24 + m − 1

https://github.com/jermp/minimizers

de
ns

ity

0.050

0.054

0.057

0.061

0.064

0.068

0.072

0.075

0.079

0.082

0.086

m
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

lower bound (improved, 2024)
minimizer (2004)
miniception (2020)
double-decyclying (2023)

de
ns

ity

0.050

0.054

0.057

0.061

0.064

0.068

0.072

0.075

0.079

0.082

0.086

m
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

lower bound (improved, 2024)
minimizer (2004)
miniception (2020)
double-decyclying (2023)
mod-minimizer (2024)

[Groot Koerkamp and P., 2024]

de
ns

ity

0.050

0.054

0.057

0.061

0.064

0.068

0.072

0.075

0.079

0.082

0.086

m
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

lower bound (improved, 2024)
minimizer (2004)
miniception (2020)
double-decyclying (2023)
mod-minimizer (2024)
open-closed mod-minimizer (2025)

[Groot Koerkamp and P., 2024]

[Groot Koerkamp, Liu, and P., 2025]

Density by varying m

• Example for , so .

• Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

• https://github.com/jermp/minimizers

w = 24 k = 24 + m − 1

https://github.com/jermp/minimizers

MPHF. Given a set of distinct keys, a function that bijectively maps the keys of into
the range is called a minimal perfect hash function (MPHF) for .

X n f X
{1,…, n} X

Minimal perfect hashing

sigir

tkde

tois
spe

wsdm
csur

icde

S 0
1
2
3
4
5
6

f

X 1
2
3
4
5
6
7

tokyo
sushi

riken
shinjuku

meiji

haneda

ramen

MPHF. Given a set of distinct keys, a function that bijectively maps the keys of into
the range is called a minimal perfect hash function (MPHF) for .

X n f X
{1,…, n} X

Minimal perfect hashing

sigir

tkde

tois
spe

wsdm
csur

icde

S 0
1
2
3
4
5
6

f

X • Space lower bound of
bits/key [Mehlhorn, 1982].

• Many approaches available (see next).

• Most of them have: 

- Constant-time evaluation. 
- Expected linear-time construction. 
- Take 1.8 — 3 bits/key.

log2(e) ≈ 1.443

Modern Minimal Perfect Hashing: A Survey 
Lehmann, Mueller, P., Sanders, Vigna, Walzer, 2025 
https://arxiv.org/pdf/2506.06536

1
2
3
4
5
6
7

tokyo
sushi

riken
shinjuku

meiji

haneda

ramen

https://arxiv.org/pdf/2506.06536

Minimal perfect hashing

The PTHash “family”

• The fastest functions for lookup time: 30-50 ns/key.

• Also very fast to build and space-efficient: they take from 1.7 to 3.0 bits/key.

• [P. and Trani, 2021, 2023] 
 
 
 
 

• PHOBIC [Hermann et al., 2024]

• PtrHash [Groot Koerkamp, 2025]

• PHast [Beling and Sanders, 2025] 

https://github.com/jermp/pthash

https://github.com/jermp/pthash

3. Sparse and skew hashing of k-mers

• Property. Consecutive k-mers are likely to have the same minimizer. 
 
Example for k=13 and m=4: 
ACGGTAGAACCGATTCAAATTCGATCGATTAATTAGAGCGATAAC… 
ACGGTAGAACCGA
 CGGTAGAACCGAT
 GGTAGAACCGATT
 GTAGAACCGATTC
 TAGAACCGATTCA
 AGAACCGATTCAA
 GAACCGATTCAAA
 AACCGATTCAAAT
 …

• Super-k-mer. Given a string, a super-k-mer is a maximal sequence of consecutive
k-mers having the same minimizer.

super-k-mer

Super-k-mers

AGATGATGAACCTGAAAACATCCTGAAAATCGTCAAAGAATGGCGGCGTTCACAGGGGCTACCCTTGTTTAAAGACTCTAAATAAAGTA.ATTTTCAGGATG
TTTTCAGGTTCATCATCTCCCTTCTTTGCAGGATAGTAGATAAGATCGCTCATCAACGGATGTTGTGTAATTCTGGTAAGATGTTCTTCTAGATCATCCCAA
TATTTGTCAAGCACTTCCCCTTTTAATTGAGCGTTATCCCCGG.AGATGATGAACCTGAAAACATCCTGAAAATTGTCAAAGAATGGCGGCGTTCACAGGGG
CTA.ATTGTCAAAGAATGGCGGCGTTCACAGGGGTTACCCTTGTTTAAAGACTCTAAATAAAGTAGATAATAAAACTATATATGGAACATCATCGCATCTGG

ATCCTGAAμ =

Sparse hashing
• Locate super-k-mers with an array of offsets into the strings, indexed by a minimal perfect hash function

built on the set of minimizers.

• The space of this index is then proportional to the number of minimizers, that are sparse in the sequence
(i.e., we expect to see times less random minimizers than k-mers).

• Upon : 
1. Compute the the minimizer of , say ; 
2. Locate and scan the “bucket” of — the set of super-k-mers that have minimizer .

(k − m + 2)/2

Lookup(x)
x μ

μ μ

TCGTCAAA: 29
CATCCCAA: 172
ATCGTCAA: 20
GACTCTAA: 50 329
AACCTGAA: 0 246
ATCCTGAA: 9 255
GAACATCA: 364
GCAGGATA: 105
AGGGGCTA: 30
CTTGTTTA: 319
GAGCGTTA: 208
TTTAAAGA: 323
CTTCTAGA: 169
GGCTACCC: 33
CGTTATCC: 211
AGCACTTC: 189
AAGATCGC: 119
AACTATAT: 353
CCTTCTTT: 97
TTCAGGTT: 89
ACGGATGT: 143
ACAGGGGT: 310
TGTCAAAG: 266 307
TAATTCTG: 157

Sparse hashing — Example

AGATGATGAACCTGAAAACATCCTGAAAATCGTCAAAGAATGGCGG
CGTTCACAGGGGCTACCCTTGTTTAAAGACTCTAAATAAAGTA.AT
TTTCAGGATGTTTTCAGGTTCATCATCTCCCTTCTTTGCAGGATAG
TAGATAAGATCGCTCATCAACGGATGTTGTGTAATTCTGGTAAGAT
GTTCTTCTAGATCATCCCAATATTTGTCAAGCACTTCCCCTTTTAA
TTGAGCGTTATCCCCGG.AGATGATGAACCTGAAAACATCCTGAAA
ATTGTCAAAGAATGGCGGCGTTCACAGGGGCTA.ATTGTCAAAGAA
TGGCGGCGTTCACAGGGGTTACCCTTGTTTAAAGACTCTAAATAAA
GTAGATAATAAAACTATATATGGAACATCATCGCATCTGG

A collection of 4 stitched unitigs: 
285 k-mers for k=31, bases in totalN = 408

24 minimizers, for m = 8

offsets

Data structure

Elias-Fano

MPHF

compact vector 
of -bit ints⌈log2 N⌉

x

The order of the k-mers in the SPSS is preserved

• Order-Preserving Property. If , i.e., is the “successor” of , then:
.

• So the hash code can be directly used to associate some satellite information
to the k-mer , e.g., its abundance, color set, etc.

• Any order on the strings of uniquely determines an order for the k-mers
, thus: .

x[2..k] = y[1..k − 1] y x
Lookup(y) = Lookup(x) + 1

i = Lookup(x)
x

SPSS(S) i = 1,…, n
xi ∈ SPSS(S) Lookup(xi) = i

The order of the k-mers in the SPSS is preserved

• Order-Preserving Property. If , i.e., is the “successor” of , then:
.

• So the hash code can be directly used to associate some satellite information
to the k-mer , e.g., its abundance, color set, etc.

• Any order on the strings of uniquely determines an order for the k-mers
, thus: .

x[2..k] = y[1..k − 1] y x
Lookup(y) = Lookup(x) + 1

i = Lookup(x)
x

SPSS(S) i = 1,…, n
xi ∈ SPSS(S) Lookup(xi) = i

• This property makes compression of satellite information easy and effective. 
We will see another example on 4th July.

Skew hashing

• Problem. Some buckets can be very large. 
 

• Property. Minimizers have a (very) skew distribution for sufficiently-long length m.

For example on the human genome (GRCh38), for and : largest bucket size can be as large as .k = 31 m = 20 3.6 × 104

On the full human genome (GRCh38), 
for and : 
 2,505,445,761 -mers 
 421,845,806 minimizers 
 388,018,280 (91.98%) only appear once!

k = 31 m = 20
k

• We fix an integer : by virtue of the skew distribution, the fraction of buckets having
more than super-k-mers is small.

• So, we can afford a MPHF over the set of k-mers that belong to such super-k-mers. The
output of the MPHF for a k-mer is the identifier of the super-k-mer where is present.

• Upon , we will scan one super-k-mer only.

ℓ
2ℓ

x x

Lookup

For , just 
100.0 − (97.1 + 1.7 + 0.4 + 0.2)% = 0.6% of
buckets with more than super- -mers.

ℓ = 2

2ℓ=2 = 4 k

Skew hashing

Skew hashing — Example

Example for .ℓ = 3

x

• These ideas have been implemented in a software tool (C++17):

https://github.com/jermp/sshash

Implementation and results

https://github.com/jermp/sshash

New benchmarks https://github.com/jermp/sshash/tree/master/benchmarks

https://github.com/jermp/sshash/tree/master/benchmarks

To sum up

• SSHash is an order-preserving k-mer dictionary.

• Three important tools: 
1. spectrum-preserving string sets; 
2. minimizers; 
3. minimal perfect hashing.

• Ingredients: 
- Sparse indexing to obtain good space effectiveness; 
- Skew hashing to guarantee fast lookup for “heavy” buckets.

• Code in C++17 is available at: https://github.com/jermp/sshash.

https://github.com/jermp/sshash

Extensions

• k-mer abundances [P. 2022, 2023]

• sequence membership: a sequence is considered as present in the
dictionary if at least a given fraction of its k-mers is found in the dictionary
[Schmidt, Khan, Alanko, P., Tomescu, 2023]

• reference indexing: store also positional information for each k-mer 
[Fan, Khan, P., Patro, 2023]

• colored de Bruijn graphs: annotate each k-mer with the set of its “colors” (i.e.,
the references where it appears) [Fan, Khan, Singh, P., Patro, 2023, 2024; Fan,
P., Patro, 2024; Campanelli, P., Fan, Patro, 2024; Campanelli, P., Patro, 2025]

S

4th July, at 13:50

Extensions

• k-mer abundances [P. 2022, 2023]

• sequence membership: a sequence is considered as present in the
dictionary if at least a given fraction of its k-mers is found in the dictionary
[Schmidt, Khan, Alanko, P., Tomescu, 2023]

• reference indexing: store also positional information for each k-mer 
[Fan, Khan, P., Patro, 2023]

• colored de Bruijn graphs: annotate each k-mer with the set of its “colors” (i.e.,
the references where it appears) [Fan, Khan, Singh, P., Patro, 2023, 2024; Fan,
P., Patro, 2024; Campanelli, P., Fan, Patro, 2024; Campanelli, P., Patro, 2025]

S

