
Fast pseudoalignment queries on compressed
colored de Bruijn graphs
Alessio Campanelli # Ñ

Ca’ Foscari University of Venice, Italy

Giulio Ermanno Pibiri # Ñ

Ca’ Foscari University of Venice, Italy
ISTI-CNR, Pisa, Italy

Rob Patro #

University of Maryland, College Park, USA

Abstract

Motivation. Indexes for the colored de Bruijn graph (c-dBG) play a crucial role in computational
biology by facilitating complex tasks such as read mapping and assembly. These indexes map k-mers
(substrings of length k) appearing in a large collection of reference strings to the set of identifiers
of the strings where they appear. These sets, colloquially referred to as color sets, tend to occupy
large quantities of memory, especially for large pangenomes. Our previous work thus focused on
leveraging the repetitiveness of the color sets to improve the space effectiveness of the resulting
index. As a matter of fact, repetition-aware indexes can be up to one order of magnitude smaller on
large pangenomes compared to indexes that do not exploit such repetitiveness. Such improved space
effectiveness, on the other hand, imposes an overhead at query time when performing tasks such as
pseudoalignment that require the collection and processing of multiple related color sets.

Methods. In this paper, we show how to avoid this overhead. We devise novel query algorithms
tailored for the specific repetition-aware representations adopted by the Fulgor index, a state-of-the-
art c-dBG index, to significantly improve its pseudoalignment efficiency and without consuming
additional space.

Results. Our results indicate that with increasing redundancy in the pangenomes, the compression
factor provided by the Fulgor index increases, while the relative query time actually reduces. For
example, while the space of the Fulgor index improves by 2.5× with repetition-aware compression
and its query time improves by 1.6× on a collection of 5,000 Salmonella Enterica genomes, these
factors become (6.1×, 2.8×) and (11.2×, 3.2×) for 50,000 and 150,000 genomes respectively. For an
even larger collection of 300,000 genomes, we obtained an index that is 22.3× smaller and 2.2×
faster.
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1 Introduction

Consider a collection of strings, R = {R1, . . . , RN }, over the DNA alphabet {A, C, G, T}. A
k-mer of Rc is a substring of length k of Rc and, for ease of notation, we consider each Rc

as the set of its distinct k-mers. The order-k colored de Bruijn graph (c-dBG) of R is a
directed graph where: (i) nodes are the distinct k-mers of the strings in R; (ii) there is an
edge (x, y) if the last k − 1 characters of x are equal to the first k − 1 characters of y; (iii)
each k-mer x is annotated with its color set — the set of the (identifiers of the) strings where
x appears. Formally, we define the color set of the k-mer x as ColorSet(x) = {c : x ∈ Rc}.
In equivalent terms, we say that a k-mer x “has colors” c ∈ ColorSet(x). We then regard
an index for the c-dBG as the exact map x → ColorSet(x).

Intuitively, a c-dBG index arises as the composition of a k-mer dictionary that stores all
the distinct k-mers of R and a collection of compressed color sets [20, 2, 13, 8]. Each color
set is actually sorted to allow good compression and fast decoding. This indexing framework
is particularly powerful for handling large-scale genomic data, where the identification of
k-mers across diverse reference genomes is essential [19, 25, 33, 26, 21, 24].

However, the color sets in c-dBG indexes tend to occupy large quantities of memory [13,
30, 8, 2, 5], especially for large pangenomes. This poses a severe limitation on the size
of the collections that can be indexed in internal memory. Our previous research efforts
focused on addressing this challenge by leveraging the repetitiveness inherent in the color
sets. Specifically, we developed the Fulgor index [13, 30, 8] — a compressed c-dBG index
that identifies repetitive patterns across color sets and encodes them only once. By adopting
this repetition-aware paradigm for compression, Fulgor can achieve reductions in memory
utilization of up to one order of magnitude when applied to large pangenomes (e.g., including
hundreds of thousands of genomes), compared to other indexing approaches that do not
remove such redundancy. Fulgor currently offers the best overall trade-off for in-memory
indexing of c-dBGs, being both highly space-efficient and the fastest to query [13, 30, 8].

In this paper, we make Fulgor even faster. In fact, while the repetition-aware compressed
representations permit the indexing of larger datasets, they also impose some overhead during
query execution, particularly when performing pseudoalignment [7] — a query modality
tailored for c-dBGs that, essentially, performs intersections or unions of color sets. A user,
therefore, has to trade off query efficiency for improved space. For example, our fastest variant
of Fulgor can index 150,000 Salmonella Enterica genomes in 71 GB of RAM and execute
6.6 × 106 pseudoalignment queries in 37 minutes. This is the fastest query time reported in
the literature for this benchmark (using 16 processing threads and under the full-intersection
query modality; see Section 2.1). The smallest Fulgor variant, instead, indexes the same
collection in just 6.3 GB (11× less space) but also takes 1 hour and 50 minutes to process
the same query workload (3× slower). We show that this does not have to be the case.

Contributions. We study the problem of accelerating pseudoalignment queries directly
over the compressed, repetition-aware representations developed for the Fulgor index. More
precisely, we devise new query algorithms that exploit the repetitiveness of the color sets to
actually perform less work, for both intersection and union of color sets. Our experimental
results across large pangenomes show that such repetition-aware pseudoalignment queries
can be generally performed 2 − 3× faster. To make a concrete example, the smallest Fulgor
index mentioned above now processes the same workload (6.6 × 106 pseudoalignment queries)
in 34 minutes, rather than the previous 1 hour and 50 minutes, and without consuming more
space than 6.3 GB of RAM.
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6:2 Fast pseudoalignment queries on compressed colored de Bruijn graphs

2 Background and notation

In this section, we give necessary background information and fix the notation. More precisely,
we first give a general introduction to pseudoalignment and define the two query algorithms
we focus on. We then review the Fulgor index [13, 30, 8], with particular attention to its
compressed representations for color sets because our goal is to support pseudoalignment
directly over them, without decompression.

2.1 Pseudoalignment
Pseudoalignment is a specific algorithm for computing an approximate form of sequence
mapping originally introduced by Bray et al. [7]. While exact alignment methods [22,
23, 16, 32, 3, 15, 14] report the positions (if any) where a query sequence Q appear in
the references of R and the edits required to transform it into the matched substring of
the reference, pseudoalignment only returns the identifiers of the references that might
contain Q. Intuitively, Q is likely to be present in reference Rc if Q and Rc have many
k-mers in common [34]. This consideration makes c-dBG indexes particularly well suited for
pseudoalignment because, as they implement the map x → ColorSet(x) and color sets are
represented explicitly in some compressed form, it is efficient to retrieve all the color sets
of the k-mers of Q to combine them into a result set X ⊆ {1, . . . , N}. The two commonly
used algorithms to compute X are full-intersection and threshold-union. These modalities
are those supported by all recent c-dBG indexes [2, 13, 8, 5, 20].

In the following, since we are only interested in the k-mers of a query sequence Q that
have a non-empty color set (sometimes, called “positive” k-mers), we refer to Q as the set of
such k-mers with a little abuse of notation.

Full-intersection. The color c belongs to the result X if Rc contains all the k-mers of Q,
that is X =

⋂
x∈Q ColorSet(x).

Threshold-union. Given a parameter τ ∈ (0, 1], the color c belongs to the result X if Rc

contains a least T = ⌊τ · |Q|⌋ of the k-mers of Q. Let U = U(Q) be the multi-set union of
the color sets of all k-mers of Q, that is U = U(Q) =

⊎
x∈Q ColorSet(x). where

⊎
is the

multi-set union operator. We indicate with µc(U) the multiplicity of color c in U — the
score of c. The result is then X = {c ∈ U : µc(U) ≥ T}.

A customary value for τ is 0.8, as to require that at least 80% of the k-mers of Q are
present in the references whose identifiers are in X . This is the value we are going to use for
our experimental analysis (Section 5).

Note that the result of threshold-union is equal to that of full-intersection for τ = 1, that
is, threshold-union is a relaxation of full-intersection. Intuitively, since threshold-union is
less strict than full-intersection for τ < 1, we trade off precision, allowing some sequencing
errors and variations, for an increased mapping rate.

2.2 State of the art on indexing c-dBGs: the Fulgor index
Fulgor [13, 30, 8] is a c-dBG index based, at its core, on two different data structures: the
SSHash [28, 29] k-mer dictionary, and a compressed inverted index [31] to represent the color
sets. More precisely, Fulgor considers a compacted c-dBG where non-branching paths of
nodes having the same color set are collapsed into strings called unitigs, exploiting the fact
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that consecutive k-mers are very likely to have the same color set. In other words, we have
ColorSet(x) = ColorSet(u) for all k-mers x appearing in the unitig u. It is therefore
profitable to store color sets for unitigs only, rather than for every distinct k-mer. Based on
this observation, Fulgor implements the map x → ColorSet(x) as the composition of two
maps: x

(1)−−→ u(x) (2)−−→ ColorSet(u(x)), where u(x) is the unitig comprising k-mer x. The
first map is represented with the SSHash dictionary that explicitly stores the collection of
unitigs of the compacted c-dBG. For the second map, instead, Fulgor exploits the property of
SSHash of being order-preserving: the unitigs can be stored in any order without impacting
the correctness or the efficiency of the dictionary. Fulgor thus sorts the unitigs in SSHash by
their color sets, so that unitigs having the same color set are placed consecutively. This order
makes it computationally efficient, both in time and space, to implement the second map,
i.e., the map from u(x) to its color set identifier i, assuming that ColorSet(u(x)) = Ci.
Lastly, the compressed representation of the color set Ci is accessed from an inverted index,
representing the collection of all the distinct color sets.

Queries. Answering a pseudoalignment query for a string Q comprises a three-step process
over the Fulgor index.

1. Lookup. The set U(Q) = {u(x) : x ∈ Q} is computed using SSHash. Note that
|U(Q)| ≤ |Q|, since consecutive k-mers are likely to be part of the same unitig and all
unitigs include at least one k-mer.

2. Deduplication. Different unitigs can have the same color set. It is therefore useful to
deduplicate the color sets of the unitigs. This is done by computing the set C(Q) =
{i : u ∈ U(Q) ∧ ColorSet(u) = Ci}. Similarly to the previous step, we have that
|C(Q)| ≤ |U(Q)|, further reducing the number of color sets to process in the next step.

3. Color set processing. Apply either the full-intersection or the threshold-union algorithm
on the color sets {Ci : i ∈ C(Q)} to compute the result X .

In this paper, we focus entirely on the third step. This is the most resource-intensive step
when performing pseudoalignment over large collections (see also Figure 7 at page 19) and
for queries that have a non-trivial result set (e.g., non-empty and with many colors). Our
problem reduces to that of computing the intersection and the (threshold-)union of color
sets over some specific compressed representations that we review below. For the rest of
the paper, we therefore assume to work with a set of z > 1 color sets which, without loss of
generality, we indicate with C1, . . . , Cz.

Compressed representations. Fulgor supports three main representations for the color
sets, each having different tradeoffs between space effectiveness and (until the current work)
query efficiency [8]. These representations can be combined to achieve even further space
reductions.

Density-aware representation (DA). Each color set Ci is compressed using one of three
different encodings based on its density, i.e., the ratio |Ci|/N . The set Ci is considered
sparse when |Ci|/N < 1/4. In this case, Ci is coded as a stream of gaps between
consecutive integers, where each gap is compressed using Elias’ δ code [12]. The set Ci

is considered dense, instead, when 1/4 ≤ |Ci|/N < 3/4. In this case, it is coded as a
bitvector of N bits, say B[1..N ], where B[c] = 1 if c ∈ Ci, and B[c] = 0 otherwise. Lastly,
when |Ci|/N ≥ 3/4 the set Ci is very dense and it is more economical to represent the
complement set Ci = {1, . . . , N} \ Ci, which can be encoded as a sparse set.

WABI 2025



6:4 Fast pseudoalignment queries on compressed colored de Bruijn graphs

M1 = {(1, 1), (2, 1), (3, 2), (4, 1)}
M2 = {(1, 3), (2, 3), (4, 1)}
M3 = {(1, 2), (2, 1), (3, 1), (4, 1)}

...

P1,1 = {1, 2, 4}
P1,2 = {1, 3}
P1,3 = {4}

...

P2,1 = {5, 6}
P2,2 = {5}
P2,3 = {6}

P3,1 = {7, 8, 9}
P3,2 = {9, 10}

...

P4,1 = {11, 13}
...

...

C1 = {1, 2, 4|5, 6|9, 10|11, 13}; C2 = {4|6|11, 13}; C3 = {1, 3|5, 6|7, 8, 9|11, 13}

Figure 1 An example of the MP representation. Meta color sets are drawn on the left; on the
right, some partial color sets (vertical dots indicate that there are other partial color sets in the
groups). At the bottom, the color sets C1, C2, and C3 are obtained by concatenating the partial
color sets as indicated by the meta color sets. Vertical bars highlight the start of a new partial color.

The density thresholds (1/4 and 3/4) are optimal for the three encodings used, allowing
to represent every color set using at most N bits.
Repetition-aware representation: Differential and Representative color sets (DR). This
representation leverages the inherent similarity of the color sets by partitioning them
into groups {N1, . . . , Nr}, where each group Nj is a collection of “similar” color set, e.g.,
sharing many colors. Thus, for each Nj , a representative color set Aj is computed by
finding the most repetitive colors between the sets in the group. Then, each color set
Ci ∈ Nj is represented as a differential color set Di = Ci∆Aj , where ∆ is the symmetric
set difference between two sets, defined as X∆Y := (X ∪ Y )\(X ∩ Y ). To decode a color
set, it is sufficient to compute Ci = Di∆Aj .
The rationale behind this representation is that, since the color sets in each group Nj are
similar, we expect to have |Di| ≪ |Ci|.
Repetition-aware representation: Meta and Partial color sets (MP). This variant exploits
the fact that genomes from the same species are very similar, thereby inducing very
similar color sets. Hence, the set of N strings R is partitioned into groups {N1, . . . , Nr}
of similar strings. Since each group comprehends |Nj | strings, a set of partial color sets
{Pj,1, Pj,2, . . .} is derived. It follows that the original color set Ci can be expressed as a
sequence Mi of pointers to partial color sets, each of them belonging to a different group.
Each of these pointers, called meta colors, is a pair (j, p), indicating that the p-th partial
color set Pj,p from group Nj is used. Importantly, the pointers in each meta color set Mi

are sorted on the first component, i.e., the set {j : (j, p) ∈ Mi} is sorted.
This results in a two-layer representation where the first layer is composed by the meta
color sets Mi and the second layer by the partial color sets that they point to. Refer to
Figure 1 for a schematic illustration.

2.3 Set notation and iteration
Recall that the sets we deal with in this paper (the color sets of a c-dBG) are ordered sets of
integers. Throughout the paper, we assume that we can perform iteration and search queries
over an ordered set in a stateful manner, hence providing an “iterator-like” abstract interface
for a set. More precisely, this interface exposes the following primitives for a set X:

X.Value() returns the value currently pointed to by the iterator.
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X.Next() updates the value pointed to by the iterator to the one immediately after and
returns such value.
X.NextGEQ(ℓ) updates the value pointed to by the iterator to the smallest value of X

that is greater-than or equal-to ℓ and returns the corresponding value. Note that if one
performs a sequence of queries for ℓ0 < ℓ1 < · · · < ℓm, the logical pointer of the iterator
never moves backwards. (This is the query pattern of interest that we are going to issue
in our pseudocodes.)

If there is no element after the one currently pointed to by the iterator or if ℓ is larger
than the largest element in X, both Next and NextGEQ return the sentinel value ∞.

When discussing asymptotic complexities, we assume that Value and Next take O(1),
and that NextGEQ takes O(s) to skip to s positions ahead, even when the set X is
compressed, as it is in our implementations in practice. (Note that, while X.NextGEQ(ℓ)
can be executed in time O(log |X|) by binary searching ℓ, in practice it is more cache-friendly,
and therefore faster, to just scan forward, especially for short skip lengths s.)

Now, let M be a meta color set, that is, a set of pairs (j, p) as described in Section 2.2.
We define the primitive M.First() that returns the set of the first components from each
pair, that is the set {j : (j, p) ∈ M}. As already observed, this is also a sorted set. Lastly, we
define M.PartialSet(j) that moves the iterator to the smallest pair (t, p) such that t ≥ j

and returns Pt,p. Formally: t = M.First().NextGEQ(j) if t ̸= ∞, otherwise (when t = ∞,
that is, j is larger than the largest group identifier in M), it returns ∅.

▶ Example 1. Let M = {(1, 9), (5, 2), (6, 33), (11, 3)} be a meta color set. Then, F =
M.First() = {1, 5, 6, 11}, regardless of the element currently pointed to by the iterator.
Assuming the iterator is pointing to the first pair (1, 9), then M.PartialSet(3) returns the
partial color set P5,2 because F.NextGEQ(3) = 5. Similarly, M.PartialSet(8) returns
P11,3. We instead have M.PartialSet(j) = ∅ for any j > 11.

3 Full-intersection

As described in Section 2.1, performing a full-intersection pseudoalignment consists of
computing the intersection of z color sets, C1, . . . , Cz. Fulgor supports the intersection of
color sets using the few primitives introduced in Section 2.3 and as shown in Algorithm 1
(this algorithm is also called “adaptive” in the literature [10, 11, 4]). In addition, we assume
the color sets are sorted by size in non-decreasing order. While this order does not affect the
complexity of the algorithm, which is O (

∑z
i=1 |Ci|), it is beneficial in practice: the elements

of the smallest set help in filtering out elements that are not part of the intersection.
In the following, we show how to improve over this approach by exploiting the specific

compressed representations reviewed in Section 2.2.

DA representation. This representation compresses a color set using one of three different
strategies, each tailored to the density of the set. Among the three density classes — sparse,
dense, and very dense — the last one presents the most significant opportunities for efficiency
gains. Remember that very dense color sets are compressed by storing their complement
set, denoted with C, which is sparse by definition. So, rather than iterating through a large
set, we can directly leverage the complement set for faster processing: given z very dense
sets, represented as C1, . . . , Cz, we can use de Morgan’s laws to compute the intersection of
their original sets, that is

⋂z
i=1 Ci =

(⋃z
i=1 Ci

)
. In other words, the intersection of z sets is

WABI 2025
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Algorithm 1 Intersection algorithm for color sets {C1, . . . , Cz}.

1: function Intersect({C1, . . . , Cz})
2: X = ∅
3: c = C1.Value(); i = 2
4: while c < ∞ do
5: for i ≤ z; i = i + 1 do
6: v = Ci.NextGEQ(c)
7: if v ̸= c then
8: c = v, i = 1
9: break

10: if i = z + 1 then
11: X = X ∪ {c}
12: c = C1.Next(); i = 2
13: return X

equivalent to the complement of the union of the complement sets. The refined intersection
algorithm is therefore:
1. Compute the union of the complements of all very dense color sets.
2. Compute the intersection of all other color sets.
3. Return the intersection between the sets computed at steps 1. and 2.

DR representation. We recall that in this variant the color sets are stored as the symmetric
differences Di = Ci∆Aj between the original color set Ci and the representative set Aj of the
group Nj , such that Ci ∈ Nj and |Di| ≪ |Aj |. Note that simply using Algorithm 1 over this
representation is inefficient. In fact, to decode Ci, it is necessary to read its whole differential
set Di and representative set Aj , for which we have that |Di| + |Aj | ≥ |Ci|. Furthermore,
Algorithm 1 does not exploit the fact that multiple color sets can be part of the same group
Nj , and thus have the same representative set Aj . Consequently, each Aj could be processed
redundantly, leading to a significant performance bottleneck.

Consider the case where all color sets belong to the same group Nj . For ease of notation,
throughout the rest of this section, we will simply write A and N , instead of Aj and Nj . Then,
the time complexity of the intersection is O (z|A| +

∑z
i=1(|Di| + |Ci|)) . This complexity is

not ideal because we would like to scan each Di only rather than Di plus Ci, and A only
once rather than z times. To do so, we give the following lemma (the proof can be found in
Appendix A).

▶ Lemma 2. (DR intersection) Given z sets, C1, . . . , Cz, represented differentially as Di =
Ci∆A with respect to the representative set A, for i = 1, . . . , z, their intersection can be
computed as

z⋂
i=1

Ci =
(
A ∩ D1 ∩ · · · ∩ Dz

)
∪

(
A ∩ D1 ∩ · · · ∩ Dz

)
.

In other words, Lemma 2 says that a color is part of the intersection if it appears only
in the representative set or, exclusively, in all differential sets. Note that this alternative
formulation does not involve the original Ci but only their symmetric differences Di and the
representative set A.

The intersection of z differential color sets, belonging to the same group, can be implemen-
ted as in Algorithm 2. The algorithm has a time complexity of Θ (N + |A| +

∑z
i=1 |Di|), since
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Algorithm 2 Intersection algorithm for differentially-coded color sets {D1, . . . , Dz}. These sets
all belong to the same group, hence are relative to the same representative set A.

1: function D-Intersect({D1, . . . , Dz}, A)
2: X = ∅
3: counts[1..N ] = [0..0]
4: for all i ∈ [1..z] do
5: c = Di.Value()
6: while c < ∞ do
7: counts[c] = counts[c] + 1
8: c = Di.Next()
9: for all c ∈ [1..N ] do

10: v = A.NextGEQ(c)
11: if (counts[c] = 0 ∧ c = v) ∨ (counts[c] = z ∧ c ̸= v) then
12: X = X ∪ {c}
13: return X

D1 1 2 4 8 14 15 C1 = {2, 3, 4, 6, 7, 9, 11, 13, 15}

D2 2 5 10 13 14 C2 = {1, 2, 3, 5, 6, 7, 8, 9, 10, 11}

D3 2 8 10 14 C3 = {1, 2, 3, 6, 7, 9, 10, 11, 13}

A 1 3 6 7 8 9 11 13 14

counts 1 3 0 1 1 0 0 2 0 2 0 0 1 3 1 0

X 2 3 6 7 9 11

Figure 2 Full-intersection for z = 3 color sets stored using DR representation, with N = 16
colors. All color sets belong to the same group. The values forming the differential color sets (D1,
D2, D3) and the representative set (A) are vertically aligned to better visualize the intersection. To
the right of each differential set Di, the original color set Ci is reported so that it is easy to see that
X = C1 ∩ C2 ∩ C3. The values 0s and 3s in the array counts are highlighted in bold font as they are
the candidates to be inserted in the intersection.

we have to read only once the representative and differential sets, plus the array counts[1..N ].
For c = 1, . . . , N , we define counts[c] := |{1 ≤ i ≤ z : c ∈ Di}|, i.e., the number of differential
sets that include c. We use this array to compute the intersection between the A and every
Di, and the intersection between A and every Di, as follows. For any c = 1, . . . , N , if c ∈ A

and counts[c] = 0 (c appears in all Di), or c /∈ A and counts[c] = z (c appears in all Di),
then c is part of the result. Note that while one can simply rely on Algorithm 1 to intersect
the color sets without the additional Θ(N) cost, this algorithm should be executed twice:
once for each operand in the union of Lemma 2. Given that |A| + |A| = |Di| + |Di| = N , this
results in a time complexity of O(zN), which is worse than that of Algorithm 2, especially
considering that |Di| ≪ |A| ≤ N .

It is also important to consider that accessing the sets sequentially to build the counts

array leads to better cache locality and further improves performance in practice.

▶ Example 3. Figure 2 shows how the full-intersection is performed on z = 3 color sets
stored using the DR representation. Assume that the number of colors is N = 16, and all
color sets belong to the same group. (The group may obviously contain other color sets,
more than the z we consider.)

WABI 2025
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Algorithm 3 Intersection algorithm for meta color sets {M1, . . . , Mz} that, as explained in
Section 2.2, are pointers to partial color sets.

1: function M-Intersect({M1, . . . , Mz})
2: X = ∅
3: G = {Mi.First( ) : i ∈ [1..z]} ▷ Set of group identifiers
4: F = Intersect(G)
5: for all j ∈ F do
6: Pj = ∅ ▷ Collection of partial color sets from group j

7: for all i ∈ [1..z] do
8: Pj = Pj ∪ {Mi.PartialSet(j)}
9: Deduplicate(Pj)

10: Xj = Intersect(Pj)
11: X = X ∪ Xj

12: return X

We start by counting the number of occurrences of each differential color c ∈ Di, for
i = 1, 2, 3, and storing that value inside the array counts. Then, the intersection step follows:
if counts[c] = 0 and c ∈ A, or counts[c] = 3 and c /∈ A, then c ∈ X . Consequently, all colors
whose count is not 0 or 3 — {1, 4, 5, 8, 10, 13, 15} in Figure 2 — are surely not part of the
intersection. The colors 3, 6, 7, 9, and 11 are all part of the representative set, but do not
appear in any differential set (counts[c] = 0), therefore, they are part of the intersection. On
the contrary, 2 is in all differential sets (counts[2] = 3) but is missing from the representative,
making the second case for the inclusion true, and thus it appears in the intersection. Lastly,
while also color 14 is present in all differential sets (counts[14] = 3), it is present in the
representative set as well, so it is not part of the intersection.

In the general case, when not all color sets belong to the same group, we first apply
Algorithm 2 to every group and then apply Algorithm 1 to the intermediate results.

MP representation. This representation organizes color sets in two layers: the first layer is
composed of meta colors, which are pointers to groups of partial color sets that form the
second layer. Meta colors pairs of integers (j, p), with j being the group identifier, and p the
identifier of the partial color set inside the group.

Since groups form a partition, we can perform the intersection independently on each
group and then join the results. Consequently, if group j does not appear in a meta color set,
it can be discarded directly, as this will lead to an empty group intersection. This means we
can devise a two-layer intersection algorithm, where the first pass filters out groups that do
not appear in all meta color sets, and the second one performs the intersection on the partial
colors within each group. Moreover, instead of computing the intersection of all partial color
sets, we can compute the intersection between the distinct partial color sets.

These ideas lead to Algorithm 3. If F represents the first-layer intersection (i.e., among
the group identifiers, only), its time complexity is O

(∑z
i=1 |Mi| +

∑
(j,p)∈Mi : j∈F |Pj,p|

)
.

Although this complexity is higher than that of Intersect (Algorithm 1) in the worst case
— due to the additional need to intersect meta color sets alongside the partial color sets that
constitute the original color sets — it is always beneficial in practice on repetitive collections
as we are going to see in our experimental analysis in Section 5.

▶ Example 4. Figure 3 shows all possible scenarios occurring when intersecting color sets
stored using the MP representation. After identifying the common groups, we obtain the
filtered set F = {1, 2, 4}, since some meta color sets are missing meta colors from groups 3,
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M1 (1, 1) (2, 1) (3, 5) (4, 1)

M2 (1, 3) (2, 3) (3, 2) (4, 1) (5, 3) (6, 2)

M3 (1, 2) (2, 1) (4, 1) (6, 2)

M4 (1, 6) (2, 3) (3, 4) (4, 1)

X1 = P1,1 ∩ P1,3 ∩ P1,2 ∩ P1,6

X2 = P2,1 ∩ P2,3

∅ X4 = P4,1 ∅ ∅

Filter and Deduplicate

Figure 3 Full-intersection for four color sets stored using the MP representation, assuming 6
groups. Meta colors are vertically aligned based on their group identifier, i.e., the first value of
each pair. The dashed line represents the filtering (intersection of the groups) and meta color
deduplication steps. For each group, a vertical arrow points to the operation performed to compute
the final result. Groups ignored after the filtering step point to an empty set ∅.

5, and 6. Then we process partial color sets. For group 1, all meta colors are different, so a
full-intersection must be computed between all partial sets Pj,p with j = 1. In contrast, group
2 includes repeated meta colors: both (2, 1) and (2, 3) appear twice. After the deduplication
step, the intersection has to be performed only on the two distinct partial sets, cutting the
computation by half compared to the previous approach, which would otherwise process four
sets rather than two. Finally, group 4 presents an ideal case: all meta color sets include (4, 1),
thus no intersection is needed and P4,1 can be directly decoded and included in the result.

4 Threshold-union

As explained in Section 2.1, the threshold-union is a relaxation of the full-intersection strategy
that includes in the result all colors c such that their score µc ≥ T . To be able to determine
such score for each color, the first two steps of the pseudoalignment pipeline — Lookup and
Deduplication — must also account for the frequency of k-mers associated with the same
color set. We define the score γi of the color set Ci as γi := |{x ∈ Q : ColorSet(x) = Ci}|,
i.e., the number of k-mers of Q having color set Ci. It is straightforward to see that µc

can be expressed as µc =
∑z

i : c∈Ci
γi. Algorithm 4 uses these concepts to implement the

threshold-union strategy. The algorithm has a time complexity of Θ (z |
⋃z

i=1 Ci|) since it has
to compute the score of each color present in at least one color set.

As done for full-intersection, we now present faster algorithms for threshold-union tailored
for our compressed representations.

DA representation. The main drawback of Algorithm 4 is that, besides not being cache-
friendly, it has to perform a membership query to every color set for each color encountered.
In this way, all color sets are queried the same number of times, with potentially many
negative results in the case of short color sets.

A better approach, which we call counting union, is to scan the color sets to build the score
of each color incrementally. To do so, the scores are maintained in an array scores[1..N ], so
that scores[c] = µc at the end of the scan. Then, it is sufficient to scan this array and return
all colors whose score is ≥ T . This algorithm has a time complexity of Θ (N +

∑z
i=1 |Ci|). It
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Algorithm 4 Union algorithm for color sets {C1, . . . , Cz} having scores {γ1, . . . , γz} respectively,
and a minimum score threshold T .

1: function Union({C1, . . . , Cz}, {γ1, . . . , γz}, T )
2: X = ∅
3: c = min{C1.Value(), . . . , Cz.Value()}
4: while c < ∞ do
5: min = ∞
6: µc = 0
7: for all i ∈ [1..z] do
8: v = Ci.Value()
9: if v = c then

10: µc = µc + γi

11: v = Ci.Next()
12: if v < min then min = v

13: if µc ≥ T then X = X ∪ {c}
14: c = min

15: return X

is worth noting that this complexity, despite being better then Θ (z |
⋃z

i=1 Ci|) in the worst
case (all sets are disjoint), may still be worse when z is small and the sets Ci share many
integers (i.e., their union is small). Nevertheless, our experiments in Section 5 show that this
new algorithm is more efficient overall than Algorithm 4, especially thanks to the improved
cache locality, as color sets are scanned linearly Yet, we can improve even more as follows.

As explained in Section 2.2, color sets with a density higher than 3/4 are stored using
their complement set. Therefore, reading the complement set is at least 3× faster than
reading the set directly. We can exploit this fact by noting that we are not interested in the
actual score of a color, but in the difference between the score and the threshold. In fact,
either adding γi to the score of every color c ∈ Ci, or subtracting γi from the threshold T and
from µc for all c ∈ Ci, yields the same result. We call this technique dynamic thresholding,
since we adjust the threshold in the presence of very dense sets, making T a dynamic value
instead of fixed. The following lemma formalizes this technique, and Algorithm 5 shows how
to use it for threshold-union, together with the counting-union technique described above.
(In the statement of the lemma and its proof in Appendix A, “v.d.” stands for “very dense”.)

▶ Lemma 5. (Dynamic Thresholding) For any c ∈ [1..N ], µc ≥ T if and only if

z∑
i: c∈Ci∧

Ci not v.d.

γi −
z∑

i: c∈Ci∧
Ci v.d.

γi ≥ T −
z∑

i: Ci v.d.
γi.

This lemma implies that we can directly process the complement sets of the very dense
color sets, which are sparse by definition, thus avoiding iterating over very large sets.

▶ Example 6. Let us consider an example of dynamic thresholding. Let N = 10 be the
number of references, T = 8 the threshold, and z = 4, with C1 = {1, 7, 10}, C2 = {2, 3, 7, 9},
C3 = {1, 2, 3, 4, 5, 6, 9, 10}, C4 = {1, 3, 4, 5, 6, 7, 8, 10}, and γ1 = 3, γ2 = 2, γ3 = 2, γ4 = 4.
Note that, since C3 and C4 are very dense, they are stored as C3 = {7, 8} and C4 = {2, 9}.

The following table reports, for each row, the score of each color after processing the
color set in the first column. The second column shows the score γi of the color set, while
the third column shows the current threshold, in this case, constant. Bold numbers represent
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Algorithm 5 Union algorithm with counting-union and dynamic-thresholding (see Lemma 5) for
color sets {C1, . . . , Cz} having scores {γ1, . . . , γz} respectively, and a minimum score threshold T .

1: function Counting-Union-Dynamic-Thresholding({C1, . . . , Cz}, {γ1, . . . , γz}, T )
2: X = ∅
3: scores[1..N ] = [0..0]
4: for all i ∈ [1..z] do
5: if IsVeryDense(Ci) then
6: T = T − γi

7: c = Ci.Value()
8: while c < ∞ do
9: scores[c] = scores[c] − γi

10: c = Ci.Next()
11: else
12: c = Ci.Value()
13: while c < ∞ do
14: scores[c] = scores[c] + γi

15: c = Ci.Next()
16: for all c ∈ [1..N ] do
17: if scores[c] ≥ T then X = X ∪ {c}
18: return X

the elements the algorithm updated, while the underlined ones in the last row are the ones
for which µc ≥ T .

γi T µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

C1 3 8 3 0 0 0 0 0 3 0 0 3
C2 2 8 3 2 2 0 0 0 5 0 2 3
C3 2 8 5 4 4 2 2 2 5 0 4 5
C4 4 8 9 4 8 6 6 6 9 4 4 9

In total, the static threshold algorithm iterates over 3 + 4 + 8 + 8 = 23 colors (total
number of bold values in the table). Now, we compare the table above with the following
one, showing the scores at each step of the dynamic threshold algorithm.

γi T µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

C1 3 8 3 0 0 0 0 0 3 0 0 3
C2 2 8 3 2 2 0 0 0 5 0 2 3
C3 2 6 3 2 2 0 0 0 3 -2 2 3
C4 4 2 3 -2 2 0 0 0 3 -2 -2 3

It is easy to see that the number of updated scores — and therefore colors considered —
is much smaller, as there are only 3 + 4 + 2 + 2 = 11 of them, less than half compared to the
previous method.

DR representation. As similarly done for intersection, consider the case where the z differ-
ential color sets belong to the same group and hence are relative to the same representative
set A. Let the score of the group be γ =

∑z
i=1 γi. To perform the union, in this case,

we leverage a variant of Lemma 2, as formalized in the following lemma (and proven in
Appendix A).

WABI 2025



6:12 Fast pseudoalignment queries on compressed colored de Bruijn graphs

▶ Lemma 7. (DR union) Given z sets, C1, . . . , Cz, represented differentially as Di = Ci∆A

with respect to the representative set A, for i = 1, . . . , z, their threshold-union can be computed
by including all c ∈ [1..N ] such that µc ≥ T where

µc =
{

µ′
c if c /∈ A

γ − µ′
c if c ∈ A

with µ′
c =

∑z
i:c∈Di

γi being the sum of the scores of the color sets Ci for which c ∈ Di.

In this way, it is sufficient to read the differential and representative sets once, plus the
array of scores to determine the colors c for which µc ≥ T , obtaining a total time complexity
of Θ

(
N +

∑z
i=1 |Di| +

∑r
j=1 |Aj |

)
, with r being the number of groups in the index.

MP representation. We can adapt the two-layer intersection algorithm described in Section 3
to also work for the threshold-union strategy, by considering the scores of the colors. In the
first layer, we compute the score of each group and filter out all groups whose score does not
reach the threshold, as it is impossible for their partial sets to gain a score ≥ T . Then, in
the second layer, for each group that “survives” the initial filtering, we deduplicate its meta
colors before performing the union of the distinct partial color sets.

The efficiency of this process, unlike the ones described previously, critically depends
on the value of T (remember that this value is controlled via a parameter 0 < τ ≤ 1): if T

is small, fewer groups are filtered away, increasing the computational load on the second
layer. If FT indicates the set of groups whose score is at least T , then the complexity of the
algorithm is O

(
N +

∑z
i=1 |Mi| +

∑
(j,p)∈Mi : j∈FT

|Pj,p|
)

.

5 Experimental results

In this section, we measure the practical impact of the proposed algorithms when performing
pseudoalignment over large pangenomes. An important remark is in order. Prior published
work [13, 30, 8] demonstrated the higher efficiency of all Fulgor variants when compared to
other indices, such as Themisto [2], MetaGraph [20], and COBS [5]. Consequently, we avoid
comparing against those indices again here, but we encourage interested readers to consult [8]
for more details1.

All experiments were conducted on a machine equipped with an Intel Xeon Platinum
8276L CPU (clocked at 2.20GHz), 500GB of RAM, and running Linux kernel version 4.15.0.
Our software is written in C++ and available under a MIT license at https://github.com/
jermp/fulgor. The software was compiled with gcc 11.1.0, for the experiments we here
discuss.

Methodology. For all experiments, we use a k-mer length of k = 31, which is common
throughout prior work. For the threshold-union queries, we set the threshold to the customary
value τ = 0.8. Reported times are relative to a second run of each experiment, where the
indexes are loaded from the disk cache, benefiting mostly the larger indexes than the smaller

1 To provide a reference point, we give an example for a collection of 100,000 Salmonella Enterica genomes.
Fulgor performs 6.6 × 106 full-intersection pseudoalignment queries in 29 minutes (43 GB of RAM; see
also Table 1), whereas Themisto takes 1 hour and 22 minutes (76 GB), MetaGraph takes almost 10 hours
(4.8 GB), and COBS takes 9 hours (> 500 GB). Our smallest variant of Fulgor, md-Fulgor (4.6 GB; see
next), is as small as MetaGraph in this benchmark.

https://github.com/jermp/fulgor
https://github.com/jermp/fulgor
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Table 1 Total query time (formatted as h:mm:ss) and memory used in GB (max. RSS) for
full-intersection as reported by /usr/bin/time, using 16 processing threads.

Dataset Mapping
rate

h-Fulgor d-Fulgor m-Fulgor md-Fulgor

before after GB before after GB before after GB before after GB

EC 98.99 2:12 2:10 1.67 4:52 2:29 0.78 3:08 1:32 0.73 6:07 1:41 0.57

SE-5K 89.49 1:14 1:10 0.80 1:54 1:44 0.41 1:25 1:09 0.37 2:10 1:21 0.32
SE-10K 89.71 2:29 2:20 2.06 4:14 2:54 0.90 2:56 2:07 0.77 4:55 2:30 0.65
SE-50K 91.25 14:05 12:00 18.24 27:25 14:50 5.82 17:00 10:10 3.64 33:25 11:50 2.95
SE-100K 91.41 29:00 24:00 42.40 58:10 29:50 11.58 34:40 20:30 6.08 1:09:00 22:50 4.63
SE-150K 91.52 44:30 37:00 70.55 1:31:00 44:20 18.55 53:00 30:20 8.29 1:50:00 33:50 6.29

GB 92.91 1:10 1:10 36.01 1:00 1:26 28.25 1:09 1:02 29.79 1:03 1:02 26.88
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Figure 4 Graphical comparison between previous (blue bars) and current full-intersection (yellow
bars) query times, as reported in Table 1.

ones. To avoid recording I/O overhead, the pseudoalignment output of all the experiments
was written to /dev/null.

To better measure the impact of our algorithms, we tested them under a high-hit query
workload, i.e., with a mapping rate (percentage of mapped reads over the total number of
queried reads) of about 90% or more, as it is more informative of the efficiency of the color
set processing step. A low-hit workload, on the other hand, stresses the speed of negative
k-mer lookups on the dictionary, and is therefore not relevant for the scope of this work.
Figure 7 in Appendix B shows how query time is distributed among the different steps of
pseudoalignment: as evident, processing the color sets is the most resource-intensive step for
these high-hit workload queries (with the exception of GB, where processing the color sets is
not the most time-consuming step because the sets are very short on average; see below).
Although not reported herein, similar results were observed for the threshold-union.

For the rest of the paper, we use the following naming convention to distinguish between
the different representations used: h-Fulgor employs the DA representation, while d-Fulgor
and m-Fulgor employ repetition-aware compression schemes, the DR and MP representations,
respectively. The md-Fulgor variant instead — our most succinct index to date — combines
the two repetition-aware representations: it first partitions the color sets using the MP
approach, then applies the DR scheme on the partial color sets of each group.

Datasets. The evaluations were performed using the following datasets, as also used in
prior work [13, 8]: 3,682 Escherichia Coli (EC) genomes from NCBI [1]; different collections
of Salmonella Enterica (SE), ranging from 5,000 to 150,000 genomes from the “661K” collec-
tion [6]; 30,691 genomes assembled from human gut-bacteria samples (GB), from [17]. More
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Table 2 Total query time (formatted as h:mm:ss) and memory used in GB (max. RSS) for
threshold-union with τ = 0.8 as reported by /usr/bin/time, using 16 processing threads.

Dataset Mapping
rate

h-Fulgor d-Fulgor m-Fulgor md-Fulgor

before after GB before after GB before after GB before after GB

EC 99.71 3:34 1:55 1.67 5:07 2:06 0.78 3:32 1:37 0.73 6:15 1:39 0.57

SE-5K 89.60 1:30 1:08 0.79 1:53 1:21 0.41 1:31 1:14 0.37 2:14 1:19 0.32
SE-10K 89.87 3:12 2:15 2.06 4:15 2:40 0.91 3:09 2:14 0.77 5:03 2:30 0.65
SE-50K 91.56 19:57 12:08 18.25 27:23 13:42 5.84 18:58 10:48 3.64 33:32 12:12 2.96
SE-100K 91.79 42:07 25:07 42.19 58:16 27:26 11.61 39:32 22:09 6.11 1:11:10 23:33 4.66
SE-150K 91.93 1:06:11 37:32 70.20 1:31:16 41:05 18.54 1:02:02 32:16 8.33 1:52:19 35:15 6.33

GB 94.66 2:31 1:12 36.03 1:50 1:28 28.27 2:04 1:09 29.81 2:07 1:12 26.90
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Figure 5 Graphical comparison between previous (blue bars) and current threshold-union (yellow
bars) query times, as reported in Table 2.

details on these pangenomes can be found in [8, Table 1]. We remark that the GB dataset is
much more diverse than the others: it features very short color sets (44 integers on average)
but contains an order of magnitude more unitigs than the SE and EC datasets.

The queried reads consist of all FASTQ records in the first read file of the following
nucleotide runs: SRR1928200 for EC, SRR801268 for SE, and ERR321482 for GB. These files
contain around 6.5 − 7 million reads each. The lengths of each read in the FASTQ file are:
100 bases (70 k-mers) for EC, 53 bases (23 k-mers) for SE, and 90 bases (60 k-mers) for GB.

Experimental results. Table 1 reports the results of the full-intersection algorithm, while
Figure 4 provides a graphical comparison between the most significant improvements observed.
Similarly, Table 2 and Figure 5 report the results of the threshold-union algorithm. In both
tables, for each Fulgor variant, we show the query time before applying any optimization and
after using the optimizations described in the previous sections, together with the RAM used
while performing the queries. Importantly, the RAM usage does not change when using the
new algorithms, so we report it once.

The clear result of these experiments is that all indexes are now substantially faster, by
2 − 3× on average. More precisely:

h-Fulgor, while being the fastest (but also largest) variant without optimizations, is now
even faster thanks to the density-aware optimization, with speedup factors of 1.2× for
full-intersection, and 1.8× for threshold-union.
d-Fulgor is twice as fast for both pseudoalignment algorithms after the optimizations.
As a result, its performance is now comparable to that of h-Fulgor — while it remains
generally 20% slower, it also consumes 3× less space.
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Figure 6 Space and query time improvement factors thanks to repetition-aware compression,
on the various SE collections and for the full-intersection query mode. Specifically, plot (a) shows
the ratio between the space of h-Fulgor (not repetition-aware) and md-Fulgor (repetition-aware).
Likewise, plot (b) shows the ratio between the query time of md-Fulgor before (not repetition-aware)
and after (repetition-aware) the optimizations.

The tailored m-Fulgor intersection algorithm leads to a consistent 20% improvement
over h-Fulgor. This result is remarkable considering it comes with a large reduction
in memory usage, e.g., 8× less space on the largest SE-150K collection. Table 3 from
Appendix C motivates why this is the case: the number of meta colors is nearly three
orders of magnitude smaller than the number of colors. Furthermore, by applying filtering
and deduplication of the meta color sets, the number of colors intersected is reduced by
36 − 46%, significantly reducing the time spent in intersecting the partial color sets.
md-Fulgor, which combines the benefits of both the DR and MP representations, is the
representation that improves the most with the optimizations, reaching speedups of up
to 3.2× for both algorithms.

6 Conclusions and future work

We have introduced novel algorithms to process the compressed color sets of c-dBGs, tailored
to the repetition-aware representations used in the Fulgor index (although these techniques
can be applied to any index using the same color set representations). Our experiments
demonstrate that these algorithms significantly reduce query times with no additional space
usage. Notably, the md-Fulgor representation can now match (or even improve over) the
performance of the fastest Fulgor variant, while using one order of magnitude less memory.

An interesting trend emerges when examining how performance scales with dataset size.
As shown in Figure 6, space effectiveness and query efficiency increase with the number of
genomes in the dataset. In particular, looking at Figure 6a, the compression ratio between
the original h-Fulgor and md-Fulgor goes from 2.5× on the smallest SE dataset, to 11.22× for
the largest dataset. Similarly, we can see in Figure 6b that md-Fulgor achieves a 1.6× speedup
on the smallest dataset over the non-repetition-aware algorithm, which grows to a 3.25×
speedup on the largest dataset. We are therefore led to think that these factors can grow
more for larger collections (see Appendix D for further experiments on larger collections).
These considerations open several directions for future work.

We plan to investigate batch query strategies, which could further improve query through-
put because similar queries in a batch have similar results. As writing the output of
pseudoalignment is itself a very time-consuming task, future versions of Fulgor will explore
ways to write and compress the output efficiently. Lastly, a key goal is to build a Fulgor
index over massive databases such as RefSeq [27], AllTheBacteria [18], and Logan [9], for
which an external-memory based approach to compress and search the color sets is foreseen.
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A Omitted proofs from Sections 3 and 4

▶ Lemma 2. (DR intersection) Given z sets, C1, . . . , Cz, represented differentially as Di =
Ci∆A with respect to the representative set A, for i = 1, . . . , z, their intersection can be
computed as

z⋂
i=1

Ci =
(
A ∩ D1 ∩ · · · ∩ Dz

)
∪

(
A ∩ D1 ∩ · · · ∩ Dz

)
.

Proof. The symmetric difference between two sets A and D can be expressed as

A∆D = (A ∪ D)\(A ∩ D) = (A\D) ∪ (D\A) = (A ∩ D) ∪ (A ∩ D). (1)

Using the formulation of Equation 1, we can rewrite the intersection of 2 differentially stored
color sets, belonging to the same group, as

C1 ∩ C2 = (A∆D1) ∩ (A∆D2)
=

(
(A ∩ D1) ∪ (A ∩ D1)

)
∩

(
(A ∩ D2) ∪ (A ∩ D2)

)
and distributing the intersection over the union, we obtain

= (A ∩ D1 ∩ A ∩ D2) ∪ (A ∩ D1 ∩ A ∩ D2) ∪
(A ∩ D1 ∩ A ∩ D2) ∪ (A ∩ D1 ∩ A ∩ D2)

= (A ∩ D1 ∩ D2) ∪ (A ∩ D1 ∩ D2).

The same argument can be extended to z sets and the lemma follows. ◀

▶ Lemma 5. (Dynamic Thresholding) For any c ∈ [1..N ], µc ≥ T if and only if
z∑

i: c∈Ci∧
Ci not v.d.

γi −
z∑

i: c∈Ci∧
Ci v.d.

γi ≥ T −
z∑

i: Ci v.d.
γi.

Proof. In the following, we prove =⇒ only, given that ⇐= follows a symmetric argument.
We start by rewriting µc, by grouping the terms based on their density as follows

µc =
z∑

i: c∈Ci

γi =
z∑

i: c∈Ci∧
Ci not v.d.

γi +
z∑

i: c∈Ci∧
Ci v.d.

γi . (2)

Since µc ≥ T ⇐⇒ µc − v ≥ T − v for any given value v, by setting v =
∑z

i: Ci v.d. γi and
writing µc as in Equation 2 we get

z∑
i: c∈Ci∧

Ci not v.d.

γi +
z∑

i: c∈Ci∧
Ci v.d.

γi −
z∑

i: Ci v.d.
γi ≥ T −

z∑
i: Ci v.d.

γi . (3)

Given that the inclusion of a color c in a set also creates a partition, we can write the sum of
the scores of all dense colors as

z∑
i: Ci v.d.

γi =
z∑

i: c∈Ci∧
Ci v.d.

γi +
z∑

i: c/∈Ci∧
Ci v.d.

γi =
z∑

i: c∈Ci∧
Ci v.d.

γi +
z∑

i: c∈Ci∧
Ci v.d.

γi . (4)

Substituting Equation 4 in Equation 3, the lemma follows. ◀
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▶ Lemma 7. (DR union) Given z sets, C1, . . . , Cz, represented differentially as Di = Ci∆A

with respect to the representative set A, for i = 1, . . . , z, their threshold-union can be computed
by including all c ∈ [1..N ] such that µc ≥ T where

µc =
{

µ′
c if c /∈ A

γ − µ′
c if c ∈ A

with µ′
c =

∑z
i:c∈Di

γi being the sum of the scores of the color sets Ci for which c ∈ Di.

Proof. Consider the first case, c /∈ A. Since c does not belong to the representative set,
if c ∈ Di, then c ∈ Ci. Consequently, γi contributes to the score µc. Now, consider the
second case, c ∈ A. For it to be in a color set Ci, it must hold that c /∈ Di. Therefore,
µc is the sum of the scores γi of all differential sets in which c does not appear. Since the
inclusion of c forms a partition on the color sets, γ =

∑z
i:c∈Di

γi +
∑z

i:c/∈Di
γi = µ′

c + µc, thus
µc = γ − µ′

c. ◀

B Query time breakdowns
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80%

(d) GB 

Figure 7 Pseudoalignment query time breakdown for some datasets, under full-intersection.

C Additional experimental data

Table 3 Total number of colors and meta colors after each step of Algorithm 3 (at page 8).
On the left, the number of meta colors at the start of the algorithm (Total), after intersecting the
partitions (Filtered), and after the deduplication (Dedup.). On the right, the number of colors
at the start of the algorithm (Total) and intersected with the Intersect algorithm (Intersected).
Percentages show the ratio between the step and the total.

Meta Colors (×106) Colors (×109)
Total Filtered Dedup. Total Intersected

SE-5K 287.30 176.87 (62%) 82.84 (29%) 103.88 66.49 (64%)
SE-10K 633.60 298.69 (47%) 117.32 (19%) 261.24 138.76 (53%)
SE-50K 4,552.91 2,059.82 (45%) 472.71 (10%) 2,015.63 1,129.44 (56%)
SE-100K 6,945.72 2,921.84 (42%) 589.45 (8%) 4,488.86 2,884.84 (64%)
SE-150K 10,141.07 3,800.93 (37%) 711.68 (7%) 7,192.40 4,390.90 (61%)
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Table 4 Total query time (formatted as h:mm:ss) and memory usd in GB (max. RSS) for
full-intersection as reported by /usr/bin/time, using 16 processing threads.

Dataset Mapping
rate

h-Fulgor d-Fulgor m-Fulgor md-Fulgor

before after GB before after GB before after GB before after GB

SE-50K 88.94% 9:14 6:43 20.29 16:06 9:13 6.02 9:22 6:47 2.62 16:25 7:54 1.89
SE-100K 89.41% 19:12 13:38 48.85 34:20 18:28 13.31 19:43 13:14 5.34 35:38 15:39 3.69
SE-150K 89.57% 29:00 20:37 78.93 52:02 27:22 20.57 29:32 19:04 7.21 55:29 23:43 5.25
SE-200K 90.81% 49:58 35:34 111.17 1:14:15 37:54 27.94 41:30 27:04 8.81 1:17:52 31:55 6.27
SE-250K 90.93% 1:07:00 52:06 144.98 1:33:36 48:50 35.31 54:11 34:09 11.07 1:38:58 41:21 7.52
SE-300K 90.99% 1:23:33 1:04:53 180.68 1:52:03 58:26 43.49 1:03:15 42:45 12.98 1:59:36 53:44 8.09

Table 5 Total query time (formatted as h:mm:ss) and memory usd in GB (max. RSS) for
threshold-union with τ = 0.8 as reported by /usr/bin/time, using 16 processing threads.

Dataset Mapping
rate

h-Fulgor d-Fulgor m-Fulgor md-Fulgor

before after GB before after GB before after GB before after GB

SE-50K 89.27% 18:04 8:03 20.31 19:00 8:19 6.02 11:29 7:13 2.62 18:31 7:24 1.91
SE-100K 89.85% 39:54 16:25 48.88 41:47 16:38 13.32 25:21 14:27 5.37 40:04 15:07 3.73
SE-150K 90.04% 1:01:08 24:53 79.05 1:04:40 25:02 20.61 38:36 20:38 7.25 1:02:23 22:18 5.20
SE-200K 91.32% 1:35:16 43:46 111.15 1:29:52 35:14 27.98 53:02 29:27 8.88 1:26:58 31:31 6.31
SE-250K 91.45% 2:05:26 59:38 145.00 1:56:29 44:59 35.27 1:06:23 36:45 11.07 1:53:14 39:38 7.47
SE-300K 91.54% 2:33:55 1:14:46 180.34 2:20:13 53:47 43.12 1:21:56 44:21 12.64 2:17:09 49:47 7.85

D Results on the “All-The-Bacteria” collection

The following experiments were conducted inside a Docker container running Linux kernel
version 6.8.0, on a machine equipped with an AMD Ryzen Threadripper PRO 7985WX CPU
(128 cores, each clocked at 5.4GHz) and 269GB of RAM.

The evaluations were performed on different collections of Salmonella Enterica (SE),
ranging from 50,000 to 300,000 genomes from the “AllTheBacteria” collection [18].

These experiments confirm the superiority of repetition-aware pseudoalignment algorithms
against traditional ones. Focusing our attention on md-Fulgor, our new methods improve
query times by more than 2× on average, while using more than an order of magnitude less
memory. As shown in Tables 4 and 5, for SE-300K — our largest tested collection to date —
query times are 2.23× faster, and require 22.23× less memory. Moreover, as highlighted by
Figure 8, space compression ratios keep increasing with even bigger datasets, confirming the
scalability of our indexes.
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50,000 100,000 150,000 200,000 250,000 300,000

22.34
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13.23
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(a) Space improvement
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2.28
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(b) Query time improvement

Figure 8 Space and query time improvement factors thanks to repetition-aware compression,
on the various SE collections and for the full-intersection query mode. Specifically, plot (a) shows
the ratio between the space of h-Fulgor (not repetition-aware) and md-Fulgor (repetition-aware).
Likewise, plot (b) shows the ratio between the query time of md-Fulgor before (not repetition-aware)
and after (repetition-aware) the optimizations.
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