
Verifiable Boosted Tree Ensembles

Stefano Calzavara∗, Lorenzo Cazzaro∗, Claudio Lucchese∗ and Giulio Ermanno Pibiri∗
∗Università Ca’ Foscari Venezia, Italy

Email: {name.surname}@unive.it

Abstract—Verifiable learning advocates for training machine
learning models amenable to efficient security verification.
Prior research demonstrated that a specific class of decision
tree ensembles – called large-spread ensembles – allow for
robustness verification in polynomial time against any norm-
based attacker. This study expands prior work on verifiable
learning from basic ensemble methods based on hard majority
voting to state-of-the-art boosted tree ensembles, such as those
trained using XGBoost or LightGBM. Our formal results
indicate that robustness verification is achievable in polynomial
time for large-spread boosted ensembles when considering
attackers based on the L∞-norm, but remains NP-hard for
other norm-based attackers. Nevertheless, we present a pseudo-
polynomial time algorithm to verify robustness against attack-
ers based on the Lp-norm for any p ∈ N ∪ {0}, which in
practice grants excellent performance and enables verification
methods outperforming the state of the art in terms of analysis
times. Our experimental evaluation on public datasets shows
that large-spread boosted ensembles are accurate enough for
practical adoption, while being amenable to efficient security
verification. Moreover, our techniques scale to challenging
security datasets and their associated security properties pro-
posed in prior work.

1. Introduction

Security of Machine Learning (ML) is a hot topic
nowadays, because models trained using classic supervised
learning algorithms are vulnerable to evasion attacks, i.e.,
malicious perturbations of inputs designed to force mispre-
dictions at test time [1], [2], [3]. When ML models are
deployed in adversarial settings, standard performance mea-
sures such as accuracy, precision and recall do not provide
appropriate guarantees, because they do not take adversarial
perturbations into account. This motivated a long research
line on adversarial ML and the definition of new measures
such as robustness, which explicitly quantifies resistance to
evasion attacks [4].

Unfortunately, verifying the security of ML models
against evasion attacks is computationally hard, because
verification must consider all the possible adversarial per-
turbations that the attacker may perform. In this work, we
focus on the security of tree ensembles [5], a popular class
of ML models particularly effective for non-perceptual clas-
sification tasks. Kantchelian et al. [6] were the first to prove
that the robustness verification problem for tree ensembles

is NP-complete when malicious perturbations are modeled
by norm-based constraints. Follow-up work [7] extended this
negative result to stump ensembles, i.e., ensembles including
just trees of depth one, and proposed approximate verifica-
tion approaches, which can formally prove the absence of
evasion attacks, but may incorrectly report evasion attacks
also for secure inputs. Exact verification approaches against
specific attackers, e.g., modeled in terms of the L∞-norm,
have also been proposed [8], [9]. Yet, such approaches have
to deal with the NP-hardness of robustness verification and,
while effective in many practical cases, they fail when the
size of the tree ensemble is large.

To improve over this bleak picture, recent work proposed
verifiable learning for tree ensembles [10]. The key idea
of verifiable learning is the development of new training
algorithms that learn restricted classes of models amenable
to efficient security verification, e.g., in polynomial time.
Although promising, this paradigm is still limited in scope
because it assumes the adoption of simple ensemble methods
based on hard majority voting, i.e., each tree in the ensemble
makes a class prediction and the most frequent class is re-
turned by the ensemble. This approach suffers from limited
predictive power, because each tree has the same weight
upon prediction, while different trees are normally trained to
overfit a subset of the training data. State-of-the-art ensem-
ble methods such as gradient boosting [11] operate rather
differently, because each tree in the ensemble is a regressor
predicting a real-valued score, which intuitively models the
confidence of their prediction. The ensemble prediction is
then performed by summing together the individual scores
and translating the result into the final class prediction. This
paradigm shift makes it difficult to generalize existing work
on verifiable learning to boosted tree ensembles. In simple
ensemble methods based on hard majority voting, all the
trees provide the same contribution to the prediction, hence
the best strategy for the attacker is always targeting the
trees where it is easier to mispredict. In boosted ensembles,
instead, the attacker faces a dilemma: is it better to target
trees with higher scores, but that are difficult to subvert, or
trees with lower scores, that are instead easy to manipulate?

Contributions.

We here summarize our contributions:

1) We extend existing research on verifiable learn-
ing [10] from simple ensemble methods based

on hard majority voting to state-of-the-art boosted
tree ensembles, e.g., those trained using Light-
GBM [12]. Our analysis shows that a restricted
class of tree-based models, called large-spread
boosted ensembles, admit exact security verification
in polynomial time when considering attacks based
on the L∞-norm. We then prove that security verifi-
cation remains NP-hard even for our restricted class
of models when considering other norm-based at-
tackers. Still, we present a pseudo-polynomial time
algorithm to verify robustness against attackers
based on the Lp-norm for any p ∈ N ∪ {0}, which
in practice grants excellent performance (Sections 3
and 4).

2) We implement our efficient verification algorithms
for large-spread boosted ensembles and we propose
a new training algorithm for such models, deployed
as a simple extension of the popular LightGBM
library. To support reproducible research, we make
our software available on GitHub1 (Section 5).

3) We perform an extensive experimental evaluation
on public datasets to show the accuracy and robust-
ness of large-spread boosted ensembles with respect
to traditional boosted ensembles. The net result is
that our models are accurate and robust enough for
practical adoption, while being amenable to effi-
cient security verification. Moreover, we show that
our algorithms can be up to 100× faster than exist-
ing verification algorithms for boosted ensembles,
which struggle to assess verification even when
provided with significant computational resources
(Section 6).

4) We also compare our large-spread boosted ensem-
bles with the tree ensembles proposed in [10]
in terms of accuracy and robustness. The results
clearly show the significant gain in predictive power
and robustness obtained by the large-spread boosted
ensembles over the previous proposal (Section 7).

5) Finally, we show that our techniques scale to chal-
lenging security datasets and their associated se-
curity properties proposed in prior work [13]. In
particular, we discuss how to encode recent security
properties like Stability, Maximum Score Decrease
and Small Neighborhood in our framework and we
show that our verification method is able to effi-
ciently prove them on the Twitter Spam Accounts
and Twitter Spam URLs datasets (Section 8).

2. Background

We here introduce preliminary notions and some tech-
nical ingredients used throughout the paper. For readability,
Table 1 summarizes the main notation.

1. https://github.com/LorenzoCazzaro/verifiable-boosted-tree-ensembles

x⃗ Instance drawn from the feature space X
xi i-th component of the vector x⃗
y Class label drawn from the set of labels Y
d Number of features of x⃗ (i.e., dimensionality of X)
t Regression tree
T Boosted tree ensemble
N Number of nodes of a boosted tree ensemble
m Number of trees of a boosted tree ensemble
δ⃗ Adversarial perturbation

Ap,k Attacker based on Lp-norm (max perturbation k)

TABLE 1: Summary of notation.

2.1. Supervised Learning

Let X ⊆ Rd be a d-dimensional vector space of real-
valued features. An instance x⃗ ∈ X is a d-dimensional
feature vector ⟨x1, x2, . . . , xd⟩ representing an object in the
vector space X . Each instance is assigned a class label
y ∈ Y by an unknown target function f : X → Y . In
this work, we focus on binary classification, i.e., we let
Y = {+1,−1} include just a positive and a negative class.
Multi-class classification problems can be encoded in terms
of binary classification by using standard techniques like
one-versus-rest [14].

Supervised learning algorithms automatically learn a
classifier g : X → Y from a training set of correctly labeled
instances Dtrain = {(x⃗i, f(x⃗i))}i, with the goal of approxi-
mating the target function f as accurately as possible. The
performance of classifiers is normally estimated on a test
set of correctly labeled instances Dtest = {(z⃗i, f(z⃗i))}i,
disjoint from the training set, yet drawn from the same data
distribution. For example, the standard accuracy measure
a(g,Dtest) counts the percentage of test instances where the
classifier g returns a correct prediction.

2.2. Boosted Tree Ensembles

A regression tree t : X → R can be recursively
defined as follows: t is either a leaf λ(s) for some real-
valued score s ∈ R or an internal node σ(f, v, tl, tr), where
f ∈ {1, . . . , d} identifies a feature, v ∈ R is a threshold
for the feature, and tl, tr are regression trees (left and right
child) themselves. At test time, the instance x⃗ traverses the
regression tree t as follows: starting from the root of t, for
each traversed tree node σ(f, v, tl, tr), x⃗ falls into the left
sub-tree tl if xf ≤ v and into the right sub-tree tr otherwise,
until it eventually reaches a leaf λ(s). We write t(x⃗) = s
when x⃗ reaches a leaf λ(s) of the tree t upon prediction
and we refer to the score s as the raw prediction of t
on x⃗. Raw predictions might have multiple interpretations,
representing, e.g., the probability of belonging to the positive
class or the predicted value in case of a regression task. For
example, Figure 1 represents a regression tree t of depth
2 where scores range in the interval [0,1] to represent the
probability of belonging to the positive class. In this case
t(⟨8, 6⟩) = 0.8 and t(⟨12, 7⟩) = 0.3.

A boosted tree ensemble T : X → Y is a classifier
built on top of a set of regression trees {t1, . . . , tm}, which

https://github.com/LorenzoCazzaro/verifiable-boosted-tree-ensembles

x1 ≤ 10

x2 ≤ 5

λ1(0.2) λ2(0.8)

x2 ≤ 8

λ3(0.3) λ4(0.6)

Figure 1: Example of regression tree.

aggregates individual raw predictions to produce a single
class prediction T (x⃗). We use the term boosted to stress
that these ensembles are assumed to have been trained us-
ing state-of-the-art boosting algorithms like AdaBoost [15],
Gradient Boosting [11], and its popular variants such as
LightGBM [12] and XGBoost [16]; for readability, we often
use the terms “tree ensembles” or even just “ensembles” in
the following.

Given an instance x⃗, the ensemble T computes the class
prediction T (x⃗) as follows. First, the ensemble computes
the raw prediction T̂ (x⃗) =

∑m
i=1 ti(x⃗). The raw prediction

T̂ (x⃗) is then transformed by an inverse link function ι : R →
R, and compared against a threshold τ ∈ R: if ι(T̂ (x⃗)) ≥ τ
then T (x⃗) = +1, otherwise T (x⃗) = −1. We do not assume
any specific choice of ι, but we require ι to be monotonically
increasing, i.e., higher scores of the raw prediction push the
prediction towards the positive class.

2.3. Classifier Robustness

Robustness is a popular measure used to estimate the
performance of classifiers deployed in an adversarial setting.
It requires the classifier to perform a correct prediction on
a test instance x⃗ and stick to the same prediction for any
possible evasion attack attempt crafted from x⃗, e.g., by
adding some maliciously crafted perturbation δ⃗ ∈ Rd to
it. We model the attacker A : X → 2X as a function
from instances to sets of instances, defining the possible
evasion attacks against them. We assume that x⃗ ∈ A(x⃗) for
all instances x⃗ ∈ X , i.e., the attacker can always leave the
original instances unchanged.

Definition 1 (Robustness). The classifier g is robust against
the attacker A on the instance x⃗ with true label y if and
only if ∀z⃗ ∈ A(x⃗) : g(z⃗) = y.

Based on the definition of robustness, for a given at-
tacker A, we can define the robustness measure rA(g,Dtest)
by computing the percentage of test instances where the
classifier g is robust. In the following, we focus on attackers
represented in terms of an arbitrary norm, i.e., the attacker’s
capabilities are defined by some norm function and a max-
imum perturbation k. Concretely, we consider the attacker
defined as Ap,k(x⃗) = {z⃗ ∈ X | ||z⃗ − x⃗||p ≤ k} for some
budget k and some p ∈ N ∪ {0,∞}.

2.4. Robustness Verification of Tree Ensembles

We here review large-spread ensembles from recent prior
work [10] since the main objective of this paper is to
generalize them to work over boosted tree ensembles.

The robustness verification problem for tree ensembles is
NP-hard for any norm-based attacker [6]. Although different
heuristics have been proposed to tame this computational
complexity [6], [7], [8], NP-hardness still constitutes a
roadblock to verification when the model size grows.

To cope with this complexity, recent work identified a
restricted class of tree ensembles – known as large-spread
ensembles – admitting robustness verification in polynomial
time [10]. This positive result assumes ensembles based on
hard majority voting, where each tree makes its own class
prediction and the ensemble returns the most frequently pre-
dicted class. As we explained in Section 2.2, the boosted tree
ensembles considered in this paper operate rather differently,
because they add together raw predictions (scores) and use
an inverse link function ι to determine the class prediction
through thresholding. Hence, it is not easy to generalize
them to work for boosted tree ensembles.

The key characteristic of large-spread ensembles is that
the thresholds chosen for different trees are sufficiently far
away that each feature can be successfully attacked in at
most one tree, hence the attacks against a large-spread
ensemble can be decomposed into a sum of orthogonal
attacks against the individual trees [10]. This permits to
compose the security analysis of the individual trees to draw
conclusions about the robustness of the entire ensemble, thus
enabling efficient verification. The formal definition of large-
spread ensemble is given below.

Definition 2 (Large-Spread Ensemble [10]). Given the en-
semble T = {t1, . . . , tm}, its p-spread ψp(T) is the mini-
mum value ||v−v′||p computed for any v, v′ such that there
exists two different trees t, t′ ∈ T such that σ(f, v, tl, tr) ∈ t
and σ(f, v′, t′l, t

′
r) ∈ t′ for some f, tl, tr, t′l, t

′
r. We say that

T is large-spread for the attacker Ap,k iff ψp(T) > 2k.

The existing verification algorithm for large-spread en-
sembles is based on a tree annotation procedure, which
we also leverage in this paper. The annotation procedure
associates each node of the individual trees with a symbolic
representation of the set of instances that may traverse it
in presence of adversarial manipulations. The procedure
first annotates the root of the tree with the d-dimensional

hyper-rectangle (−∞,+∞]d, meaning that every instance
will traverse the root. Children are then annotated by means
of a recursive tree traversal: concretely, if the parent node
σ(f, v, t1, t2) is annotated with (li, ri]

d, then the annotations
of the roots of t1 and t2 are defined as (l1i , r

1
i]

d and (l2i , r
2
i]

d

respectively:

(l1i , r
1
i] =

{
(li, ri] ∩ (−∞, v] = (li,min{ri, v}] if i = f

(li, ri] otherwise,

and:

(l2i , r
2
i] =

{
(li, ri] ∩ (v,+∞) = (max{li, v}, ri] if i = f

(li, ri] otherwise.

Given an annotated tree and an instance x⃗, it is possible
to identify the minimal adversarial perturbation required to
push x⃗ into any given leaf λ(s). In particular, let H =
(l1, r1]×. . .×(ld, rd] be the hyper-rectangle annotating λ(s),
then we define dist(x⃗, λ(s)) = δ⃗ ∈ Rd, where:2

∀i ∈ [1, d] : δi =

0 if xi ∈ Hi = (li, ri]

li − xi + ε if xi ≤ li
ri − xi if xi > ri.

The value ||δ⃗||p is the norm of the minimal perturbation
required to push x⃗ into the leaf λ(s). Let then L(t, x⃗) be the
set of the leaves of t that are reachable by x⃗ as the result
of adversarial manipulations, that is:

L(t, x⃗) = {λ(s) ∈ t | ||dist(x⃗, λ(s))||p ≤ k}.

Note that we are only interested in the norms of the
adversarial manipulations, and not in the hyper-rectangles
needed to compute them. By exploiting this fact, it is possi-
ble to compute the set L(t, x⃗) and {||dist(x⃗, λ(s))||p | λ(s) ∈
L(t, x⃗)} in O(N), i.e., in linear time with respect to the
number of nodes of the tree ensemble [10]. We assume this
complexity for subsequent analyses.

3. Robustness Verification of Large-Spread
Boosted Ensembles

Large-spread ensembles drive away from the negative
NP-hardness result of robustness verification [10]. However,
this prior work just considers a simple ensemble method
based on hard majority voting and does not apply to state-
of-the-art boosting schemes based on regression trees, such
as GBDTs. Here, we generalize prior work by investigating
the robustness verification problem for large-spread boosted
tree ensembles. To this aim, we first identify the new chal-
lenges to deal with these models and then propose suitable
verification algorithms.

2. We write li −xi + ε to stand for the minimum floating point number
which is greater than li − xi. We also assume here that H is not empty,
i.e., there does not exist any (lj , rj] in H such that lj ≥ rj .

3.1. Optimization Problem

The first key insight of this work is that, given a large-
spread boosted ensemble T and an instance x⃗ ∈ X with
true label y, we can identify the optimal evasion attack
strategy for the attacker Ap,k by solving an optimization
problem. In particular, the optimization problem allows one
to identify the least adversarial manipulation δ⃗ such that
T (x⃗+δ⃗) ̸= y, if any exists. In our formalization, we leverage
the insight that any attack against a large-spread ensemble
can be decomposed into a sum of orthogonal adversarial
perturbations operating against the individual trees ti ∈ T ,
hence the optimal evasion attack can be identified by finding
the sub-ensemble T ′ ⊆ T including the best trees to target
and adding up their corresponding perturbations.

Our focus on boosting significantly complicates the for-
mulation with respect to prior work on large-spread en-
sembles. In particular, the existing robustness verification
algorithm from [10] assumes ensembles based on hard ma-
jority voting of the class predictions, hence all the trees
equally contribute to the ensemble prediction and the best
sub-ensemble T ′ to target just includes those trees requiring
the least amount of adversarial perturbation to predict the
wrong class. In the case of boosting, each tree outputs
a real-valued raw prediction and different attacks lead to
different changes to such predictions, making the optimal
evasion attack strategy harder to identify. More specifically,
the challenge is that attacks cannot be totally ordered in
general, because some attacks require a small perturbation
(good for the attacker) but have just a limited impact on the
raw prediction (bad for the attacker), while other attacks
require a large perturbation (bad for the attacker) but have a
large impact on the raw prediction (good for the attacker).
For example, consider the regression tree in Figure 1 and
the instance ⟨9.1, 0.1⟩ with label −1. This instance would
normally fall in the leaf λ1(0.2) upon prediction, however
assume it might be corrupted by the attacker so as to reach
any of the other three leaves.3 To significantly affect the
raw prediction, the best choice of the attacker would be
pushing the instance into the leaf λ2(0.8), which returns a
rather different score; however this requires adding 5 to the
second feature. Pushing the instance into the leaf λ3(0.3) has
a much lower impact on the original raw prediction, however
it just requires adding 1 to the first feature. Although this
second attack is less impactful than the first one, it is cheaper
and might still be enough to force a prediction error when
the tree is used within a boosted ensemble.

The best way to combine different attacks is thus for-
malized as an optimization problem. For each tree ti ∈ T
and leaf λ(sij) ∈ L(ti, x⃗), we define the adversarial gain
of λ(sij) as the advantage that the attacker gets when the
instance x⃗ is forced into λ(sij) rather than in the original
leaf that is reached in ti.

3. To make the example more readable, we assume that adversarial
perturbations are discrete with a tick ε = 0.1. Our formalization works
for real-valued perturbations as required by the considered norms.

Definition 3 (Adversarial Gain). Consider an instance x⃗
with true label y and assume that x⃗ reaches the leaf λ(so)
when traversing the tree ti upon prediction. For any leaf
λ(sij) ∈ L(ti, x⃗), we define the adversarial gain as follows:

G(ti, x⃗, y, λ(sij)) =

{
so − sij if y = +1

sij − so if y = −1
.

Intuitively, a leaf has a positive adversarial gain when-
ever it moves the instance closer to the wrong class than
the original prediction. For example, consider again the de-
cision tree in Figure 1 and the instance ⟨9.1, 0.1⟩ with label
−1. This instance originally reaches the leaf λ1(0.2) upon
prediction; if the instance instead reaches the leaf λ4(0.6) as
the result of adversarial manipulations, the adversarial gain
is 0.6−0.2 = 0.4, because an attack moving from λ1(0.2) to
λ4(0.6) grants an advantage of 0.4 to the positive class over
the negative class in terms of raw predictions. Notice that
the definition of adversarial gain assumes that the inverse
link function ι is monotonically increasing, because the true
label determines whether the original raw prediction should
be increased or decreased to lead to a prediction error.

We are finally ready to formulate our optimization prob-
lem. For each tree ti ∈ T and leaf λ(sij) ∈ L(ti, x⃗), we
introduce a new variable zij ∈ {0, 1}. Then, determining
the optimal evasion attack strategy for the instance x⃗ with
true label y against the ensemble T can be done as follows.

Problem 1 (Optimal Attack Strategy for Large-Spread
Boosted Ensembles). Determine the value assignment of
the variables {zij}ij from the set {0, 1} which solves the
following optimization problem:

maximize
∑
i,j

zij ·G(ti, x⃗, y, λ(sij)) (1)

subject to ||
∑
i,j

zij · dist(x⃗, λ(sij))||p ≤ k, (2)

∀i :
∑
j

zij ≤ 1. (3)

In the following, we let Γ stand for the optimal value of
the objective function taken by the identified solution.

In words, the attacker wants to maximize the total ad-
versarial gain (1), which is the best strategy to force the
wrong prediction, under two constraints: (2) the Lp-norm of
the adversarial perturbation required to perform the attack is
bounded above by the maximum perturbation k, and (3) just
a single attack per tree is chosen, because a single leaf of
each tree is reached upon prediction. The formal correctness
of this intuition is proved in the next section.

Very importantly, note that constraint (2) leverages the
observation that the optimal evasion attack against a large-
spread ensemble can be decomposed into a sum of adversar-
ial perturbations operating against the individual trees [10].
Moreover, observe that the optimal attack strategy may not
be successful in flipping the ensemble prediction. Once a
solution to the optimization problem is found, it is possible
to verify robustness in two ways, illustrated below.

3.2. Basic Verification Algorithm

The first version of the verification algorithm explicitly
constructs the smallest perturbation δ⃗opt that might lead to
an attack and then checks whether it is successful or not.
In particular, given a large-spread boosted ensemble T and
an instance x⃗ with true label y, the basic algorithm (“BV ”,
henceforth) verifies robustness against Ap,k as follows:

1) Let T (x⃗) = y′. If y′ ̸= y, return False. Otherwise,
solve Problem 1 for the given input and initialize
δ⃗opt to the vector ⟨0, . . . , 0⟩.

2) For each zij = 1, add the vector dist(x⃗, λ(sij)) to
the adversarial perturbation δ⃗opt.

3) Check whether T (x⃗ + δ⃗opt) = y holds true and
return the outcome of this check.

The following theorem formalizes the correctness of
the basic verification algorithm. The proof is provided in
Appendix A.

Theorem 1. The basic verification algorithm
BV (T, x⃗, y, p, k) returns True if and only if T is robust on
the instance x⃗ with true label y against the attacker Ap,k.

Complexity. If R is the time for solving Problem 1,
the complexity of this algorithm is R + O(dN), because
O(dN) is the time to perform the additions in step (2) and
step (3) is done in O(N).

3.3. Efficient Verification Algorithm

A more efficient robustness verification algorithm does
not construct the optimal evasion attack δ⃗opt, but directly
leverages the semantics of the adversarial gain. In particular,
given a large-spread boosted ensemble T and an instance x⃗
with true label y, the efficient algorithm (“EV ”, henceforth)
verifies robustness against Ap,k as follows:

1) Let T (x⃗) = y′. If y′ ̸= y, return False. Otherwise,
solve Problem 1 for the given input to determine
the maximum value Γ taken by function (1).

2) Let T̂ (x⃗) = s. If y = +1, return True if ι(s−Γ) ≥
τ and False otherwise. If y = −1, return True if
ι(s+ Γ) < τ and False otherwise.

The following theorem formalizes the correctness of the
efficient verification algorithm. The proof is provided in
Appendix B.

Theorem 2. The efficient verification algorithm
EV (T, x⃗, y, p, k) returns True if and only if T is robust on
the instance x⃗ with true label y against the attacker Ap,k.

Complexity. If R is the time for solving Problem 1,
the complexity of this algorithm is R+O(N) because com-
puting T̂ (x⃗) takes O(N) time. Note that this complexity is
lower than the complexity of the previous basic verification
algorithm.

4. Solving the Optimization Problem

The robustness verification algorithms presented in Sec-
tion 3 build on a solution to Problem 1, so we now discuss
how this problem can be solved. In the following, we focus
on the efficient verification algorithm from Section 3.3 for
simplicity. Thus, we discuss how the maximum value Γ
of the objective function (1) can be computed for different
values of p, and omit how the actual value assignment of
the variables zij is determined.

4.1. Solution for L∞-Attackers

We start from the case L∞, which is the easiest and
most efficient to solve. Recall that ||x⃗||∞ = max{|xi| | 1 ≤
i ≤ d}. We observe that for any set of pairwise orthogonal
vectors {δ⃗i}i we have ||∑i δ⃗i||∞ = max{||δ⃗i||∞}. This
means that constraint (2) is satisfied as long as we just
consider leaves λ(sij) such that ||dist(x⃗, λ(sij))||∞ ≤ k,
i.e., the leaves in the set L(ti, x⃗). Since these are the only
leaves considered in our optimization problem, constraint
(2) is trivially satisfied by definition. Constraint (3) is also
straightforward to enforce, because it just states that we can
select at most one leaf per tree, hence the best attack strategy
amounts to picking the leaf with the highest adversarial gain
in each tree. In other words, to maximize function (1) we
can then use the following algorithm:

1) Initialize Γ = 0. For each tree ti ∈ T , compute
L(ti, x⃗).

2) For each ti ∈ T , find the leaf λ(sij) ∈ L(ti, x⃗)
with the largest adversarial gain G(ti, x⃗, y, λ(sij));
in case of ties, arbitrarily break them to select one
leaf. Then, sum G(ti, x⃗, y, λ(sij)) to Γ.

Complexity. We recall that computing the sets
L(ti, x⃗) for all trees ti ∈ T takes O(N) time. Since the
leaf with the largest adversarial gain in each ti can be
identified while computing L(ti, x⃗), the total complexity of
the algorithm is R = O(N). It follows that also the EV
algorithm runs in O(N) time, i.e., robustness verification
can be performed in linear time with respect to the number
of nodes of the ensemble.

4.2. Solution for L0-Attackers

The case L0 is more complicated. Again, recall that
||x⃗||0 = |{i |xi ̸= 0}|. We start from the observation
that, for any set of pairwise orthogonal vectors {δ⃗i}i, we
have ||∑i δ⃗i||0 =

∑
i ||δ⃗i||0. Hence, constraint (2) can be

rewritten as: ∑
i,j

zij · ||dist(x⃗, λ(sij))||0 ≤ k.

With this insight, we observe that our optimization prob-
lem is reminiscent of a variant of the classic 0-1 knapsack
problem [17], where the adversarial gain represents the value
of the items and the L0-norm of the adversarial perturba-
tions represents their weight. We first review the knapsack

problem and how it can be efficiently solved with dynamic
programming.

Given a set of items S, each with a value v and a weight
w, and a maximum capacity W , the goal of 0-1 knapsack
is to choose the best items to pick to maximize the overall
value without exceeding the capacity W . Formally, for each
item h ∈ S we introduce a new variable zh ∈ {0, 1}, and
we formulate 0-1 knapsack as the optimization problem:

maximize
∑
h

zh · vh

subject to
∑
h

zh · wh ≤W.

Assuming that all weights are positive integers, we can
build a matrix M of size (|S|+1)×(W+1), where the entry
M [h,w] stores the maximum value that can be obtained with
capacity less than or equal to w using up to h items. The
matrix M can be defined as follows:

• M [0, w] = 0 for all 0 ≤ w ≤W , i.e., the maximum
value is 0 when the current maximum weight w is
0 and no item can be taken yet.

• M [h,w] = M [h − 1, w] when w ≥ 1 and wh >
w, i.e., if the weight of item h exceeds the current
maximum weight w, then h cannot be taken.

• M [h,w] = max{M [h−1, w],M [h−1, w−wh]+vh}
when w ≥ 1 and wh ≤ w, i.e., if the weight of item
h does not exceed the current maximum weight w,
then h can either be taken or not, depending on its
value.

The solution to the problem is then found in the lower
right corner of the matrix M . This simple dynamic program-
ming algorithm has complexity O(|S| ·W).

We now discuss how the same idea can be generalized
to efficiently solve Problem 1. For each tree ti ∈ T and leaf
λ(sij) ∈ L(ti, x⃗) such that G(ti, x⃗, λ(sij)) > 0, we compute
||dist(x⃗, λ(sij))||0. Note that the value of such computation
is always a positive integer by definition of || · ||0. The key
difference of Problem 1 with respect to 0-1 knapsack is that
we have to enforce constraint (3), which ensures that just a
single attack per tree is chosen. To deal with this, we create
a matrix M of size (m+ 1)× (k + 1) defined as follows:

• M [0, q] = 0 for all 0 ≤ q ≤ k.
• M [i, q] = M [i − 1, q] when i ≥ 1 and ∀λ(sij) ∈

L(ti, x⃗) : ||dist(x⃗, λ(sij))||0 > q.
• M [i, q] = max{M [i−1, q],maxQ} when i ≥ 1 and

∃λ(sij) ∈ L(ti, x⃗) : ||dist(x⃗, λ(sij))||0 ≤ q, where

Q ={M [i− 1, q − ||dist(x⃗, λ(sij))||0] +G(ti, x⃗, y, λ(sij)) |
λ(sij) ∈ L(ti, x⃗) ∧ ||dist(x⃗, λ(sij))||0 ≤ q}.

The idea of the solving algorithm is equivalent to the
dynamic programming approach for 0-1 knapsack, where
the second clause encodes the case where the tree ti cannot
be attacked within the current maximum perturbation q and
the third clause instead encodes the case where ti can
be attacked, with the algorithm determining whether this

should be done or not. Note that the third clause admits
the possibility of having a set of possible attacks against ti,
in which case we select the one maximizing the adversarial
gain against the ensemble t1, . . . , ti. Soundness comes from
the observation that, in a large-spread ensemble, each feature
can be successfully attacked in at most one tree. Hence, an
optimal attack against the ensemble t1, . . . , ti−1 cannot be
invalidated when considering the next tree ti, because the
features manipulated by an attack against ti cannot affect the
prediction paths of t1, . . . , ti−1, i.e., the verification problem
has an optimal sub-structure. The solution to the problem Γ
is again found in the lower right corner of the matrix M ,
i.e., M [m][k].

Complexity. We compute the sets L(ti, x⃗) for all
trees ti ∈ T in O(N) time. The computation of maxQ
takes O(2D) time, where D is the maximal tree depth
in the ensemble. The total complexity of the algorithm is
therefore R = O(m · k · 2D) since N = O(m · 2D).
It follows that also the EV algorithm runs in this time.
Technically speaking, the complexity of the algorithm is
pseudo-polynomial, because there is no formal guarantee
that k is bounded by a polynomial function of m · 2D.
Nevertheless, k is very small compared to m·2D in practical
cases, because the number of features that a meaningful L0-
norm attacker can perturb is much smaller than the size
of the ensemble. Indeed, observe that an L0-norm attacker
who can arbitrarily corrupt k features can trivially break the
robustness of any classifier when k grows large.

4.3. Solution for Lp-Attackers

Finally, we deal with the case Lp with p ∈ N. Again,
we start from a simple observation: for any set of pair-
wise orthogonal vectors {δi}i and any p ∈ N, we have
||∑i δ⃗i||p = (

∑
i ||δ⃗i||pp)1/p. Hence, constraint (2) can be

rewritten as: ∑
i,j

zij · ||dist(x⃗, λ(sij))||pp ≤ kp.

We can then leverage the same idea of the case L0,
but some additional care is needed. In particular, observe
that ||dist(x⃗, λ(sij))||pp is not necessarily a positive integer,
so the previous formulation cannot be readily applied. A
possible solution to work again with positive integers is
to multiply each ||dist(x⃗, λ(sij))||pp by a suitable power of
10. In particular, let η stand for a normalization function
which multiplies its argument by 10ℓ, where ℓ ≥ 0 is
a constant large enough to ensure that all the arguments
of η are transformed into integers, e.g., if ℓ = 3 and
x = 0.123, then η(x) = 123. We can therefore reuse the
same formulation we described for the case L0, where we
replace ||dist(x⃗, λ(sij))||0 with η(||dist(x⃗, λ(sij))||pp) and k
with η(kp).

Complexity. Similarly to the case L0, it follows that
the time for solving Problem 1 is R = O(m · η(kp) · 2D),
which is again pseudo-polynomial, but observe that the term
η(kp) may grow very fast, because the normalization factor
ℓ appears as an exponent of 10. Still, when ℓ is small,

one can directly apply the proposed approach to establish
exact robustness bounds. In practice, ℓ can be made small
by performing a discretization of the feature space, which
is a common pre-processing practice. Even in absence of
discretization, one may mitigate the complexity by enforcing
a properly reduced value of ℓ in the verification phase.
By taking ⌊η(||dist(x⃗, λ(sij))||pp)⌋ and ⌈η(kp)⌉ in constraint
(2), we get a conservative approximation for robustness
verification, because distances are under-approximated and
the maximum adversarial perturbation is over-approximated
with an arbitrarily chosen precision. This way, one may
occasionally get false alarms where robust instances are
flagged as not robust, but no evasion attack is missed.

4.4. NP-Hardness Result

We proposed verification algorithms for the case p ∈
N ∪ {0} based on 0-1 knapsack, hence running in pseudo-
polynomial time. Here we show that such limitation is
fundamental, because there exists no polynomial time al-
gorithm for the case p ∈ N ∪ {0} despite our large-spread
requirement. The proof is provided in Appendix C.

Theorem 3. The robustness verification problem for large-
spread boosted ensembles is NP-hard when considering
attackers based on the Lp-norm, for any p ∈ N ∪ {0}.

5. Implementation

We here describe the implementation of CARVE-GBM,
our robustness verification tool for large-spread boosted
ensembles. We then present a simple training algorithm for
large-spread boosted ensembles, implemented on top of the
popular LightGBM library.

CARVE-GBM. CARVE-GBM is a C++ implemen-
tation of the EV algorithm presented in Section 3.3, which
uses the techniques in Section 4 to solve the underlying opti-
mization problem. It currently supports large-spread boosted
ensembles trained using LightGBM, but it can be easily
extended to other input formats, e.g., to support XGBoost.

Training Algorithm. We implemented a training
algorithm for large-spread boosted ensembles on top of
the popular learning algorithm for boosted tree ensembles
available in LightGBM, based on Gradient Boosting. In
particular, we extended LightGBM to keep track of the
thresholds used for each feature upon tree construction.
Once the threshold v has been chosen for feature f in a
tree ti, all the other thresholds v′ for the same feature which
would violate the large-spread condition (Definition 2) are
not considered for node splitting when constructing the trees
tj with j > i. Note that this may effectively prevent the
reuse of f within the next trees, in particular when all
the other thresholds v′ are close to v. This “black-listing”
method reduces, tree by tree, the available splitting options
for creating new nodes. Eventually, this may force the train-
ing algorithm to stop the construction of new trees. In the
experimental section we show that this worst-case scenario
is not detrimental in terms of accuracy of the generated
model.

Dataset Instances Features Distribution

FMNIST 13,866 784 50%/50%
MNIST 14,000 784 51%/49%

Webspam 350,000 254 70%/30%

TABLE 2: Datasets statistics

6. Experimental Evaluation

In this section we experimentally evaluate the accuracy
and robustness of the proposed large-spread boosted ensem-
bles with respect to the state of the art. Moreover, we eval-
uate the primary objective of our large-spread models, i.e.,
we assess whether they are amenable to efficient robustness
verification.

6.1. Methodology

Our experimental evaluation is performed on three pub-
lic datasets: Fashion-MNIST (FMNIST) [18] , MNIST [19]
and Webspam [20]. We reduce FMNIST and MNIST to
binary classification tasks by considering two subsets of
them. In particular, for FMNIST we consider the instances
with class 0 (T-shirt/top) and 3 (Dress), while for MNIST we
keep the instances representing the digits 2 and 6. The key
characteristics of the chosen datasets are reported in Table 2.
Each dataset is partitioned into a training set, validation set
and a test set, using 55/15/30 stratified random sampling as
customary. Additionally, we reduce the size of the Webspam
test set to match the number of instances of the FMNIST
test set using stratified random sampling.

We then use the following methodology:

1) We perform hyper-parameter tuning to identify the
best-performing traditional boosted tree ensemble,
here also referred as traditional Gradient Boosted
Decision Trees (GBDT) model, trained using Light-
GBM. Evaluation is performed on the validation
set looking for the ensemble with highest accu-
racy. We train up to 500 regression trees, set-
ting an early stopping criterion of 50 boosting
rounds. We tune the number of leaves from the set
{16, 32, 64, 128, 256}, setting the learning rate to
0.1.

2) We perform the same hyper-parameter tuning to
identify the best-performing large-spread boosted
tree ensemble trained using our algorithm. We do
this for different norms (L∞, L0, L1) and different
magnitudes of the adversarial perturbation k. We
choose the values of k based on those used in pre-
vious work and to obtain roughly the same decrease
in robustness among datasets for each norm. For
example, the value k = 0.1 for L1-norm on FM-
NIST is also used in [7], and we consider smaller
perturbations for Webspam, as models trained on
Webspam are shown to be too fragile for larger
perturbations in [8].

3) We assess the accuracy and robustness of both the
traditional boosted ensemble and our large-spread
boosted ensemble to understand how the enforced
model restriction impacts on classic performance
measures in different settings (different norms and
magnitudes of adversarial perturbations).

4) We also assess the efficiency and scalability of ro-
bustness verification with respect to existing state-
of-the-art tools for different norms.

For all the experiments, we fix the inverse link function
ι to the identity and we set the threshold τ to 0.

Baselines. Robustness verification for large-spread
models can be efficiently performed using CARVE-GBM,
while traditional models without the large-spread restric-
tion must be analyzed using existing verification tools. We
consider two approaches as baselines. For L∞ we consider
SILVA [9], a state-of-the-art verification tool for tree ensem-
bles. SILVA uses abstract interpretation and in particular the
hyper-rectangle abstract domain to perform exact robustness
verification against attackers based on the L∞-norm. For L0

and L1, we instead consider an exact approach based on
mixed integer linear programming (MILP) [6].

Since SILVA and MILP may not scale on the entire test
set, we enforce a timeout of 10 seconds per instance and
we compute approximate values of robustness as required.
In particular, when the verification tool goes in timeout, we
consider its output as unknown, and we compute lower and
upper bounds to robustness by considering such unknown
instances as non-robust or robust respectively. We present
approximate results using the ± notation.

6.2. Accuracy and Robustness

Table 3 compares the accuracy and the robustness of
traditional GBDT models trained using LightGBM and the
large-spread boosted ensembles trained using our algorithm.

Results for L∞-Attackers. We observe that the
large-spread condition preserves the accuracy of the trained
models: in all the cases, the accuracy of large-spread boosted
ensembles is equivalent to the accuracy of GBDT mod-
els. Although prior work already showed that large-spread
ensembles can be accurate, some performance degradation
was observed [10]. Our use of boosting further relaxes the
practical limitations of the large-spread condition, likely
because the trees of a boosted ensemble are specifically
trained to compensate the weaknesses of their predecessors,
yielding models which are equivalent to the state of the art.
In turn, the large-spread condition is beneficial to robustness
verification. Indeed, a state-of-the-art tool like SILVA can
only provide approximate robustness bounds, because veri-
fication takes too much time. The bounds are rather large and
make robustness verification unreliable: for many cases, the
uncertainty is above ±0.10. For example, in the case of the
Webspam dataset with the highest perturbation, robustness
ranges between 0.61 and 0.97. This gap is unacceptable for a
credible security verification. CARVE-GBM is instead able
to establish exact robustness bounds for our large-spread

Dataset p k
Accuracy Robustness

GBDT Large-Spread GBDT Large-Spread

FMNIST

∞
0.005 0.97 0.97 0.93 ± 0.01 0.96
0.01 0.97 0.97 0.81 ± 0.12 0.89
0.015 0.97 0.97 0.68 ± 0.21 0.88

0
1 0.97 0.96 0.94 0.96
2 0.97 0.96 0.90 0.90
3 0.97 0.96 0.86 0.85

1
0.05 0.97 0.97 0.87 0.89
0.1 0.97 0.96 0.81 0.83
0.15 0.97 0.96 0.72 0.66

MNIST

∞
0.01 0.99 0.99 0.98 0.99
0.02 0.99 0.99 0.93 ± 0.02 0.98
0.03 0.99 0.99 0.85 ± 0.10 0.97

0
1 0.99 0.99 0.77 ± 0.21 0.99
2 0.99 0.99 0.67 ± 0.21 0.98
3 0.99 0.99 0.44 ± 0.21 0.96

1
0.05 0.99 0.99 0.87 ± 0.05 0.99
0.1 0.99 0.99 0.86 ± 0.04 0.96
0.15 0.99 0.99 0.84 ± 0.04 0.84

Webspam

∞
0.0004 0.99 0.99 0.90 ± 0.08 0.97
0.0006 0.99 0.99 0.84 ± 0.13 0.97
0.0008 0.99 0.99 0.79 ± 0.18 0.96

0
1 0.99 0.96 - 0.91
2 0.99 0.96 - 0.86
3 0.99 0.96 - 0.79

1
0.002 0.99 0.97 - 0.95
0.003 0.99 0.96 - 0.93
0.004 0.99 0.96 - 0.89

TABLE 3: Accuracy and robustness (against Ap,k) measures for traditional GBDT models and large-spread boosted
ensembles. The robustness against A∞,k of the GBDT models is obtained using SILVA, while MILP is used against
Ap,k with p = {0, 1}. CARVE-GBM is used for computing the robustness of the large-spread models for p ∈ {∞, 0, 1}.
Robustness of GBDT over Webspam for the p ∈ {0, 1} case is omitted, because MILP does not scale to those models.

models. Observe that, in all cases, the robustness of large-
spread models is close to the most optimistic robustness
estimate of the GBDT models and quite close to 1 in general.

Results for L0-Attackers. In this case, the large-
spread restriction introduces a very limited accuracy loss
with respect to the GBDT models. The highest loss is on the
Webspam dataset, where the large-spread models sacrifice
0.03 of accuracy. This is definitely acceptable, because their
accuracy is still 0.96, which is close to 1. As to robustness,
we observe that MILP struggles against the analyzed mod-
els. In particular, for the Webspam dataset it is completely
unable to provide a reasonable robustness estimate, because
more than 90% of the instances go in timeout after 10
seconds. Again, CARVE-GBM is able to establish exact
robustness bounds very efficiently in all cases, showing
that the robustness of the large-spread models is reasonably
high. In particular, even against the strongest attacker, their
robustness is still above the frequency of the majority class
(0.70). For the other two datasets, the robustness of large-
spread models is either comparable to the most optimistic
robustness estimate of the GBDT models or even much
better. The major improvement is for the MNIST dataset,
where robustness against the strongest attacker increases

from 0.44 + 0.21 = 0.65 (at best) to 0.96 when moving
from GBDT models to large-spread models. The increase
in robustness is a byproduct of the large-spread condition:
by enforcing thresholds in different trees to be far away,
evasion attacks are empirically more complex to craft.

Results for L1-Attackers. Also the evaluation
against L1-attackers is largely positive. Again the large-
spread condition does not enforce any significant loss of
accuracy compared to GBDT models, because the highest
loss is 0.03 (again on the Webspam dataset). The robustness
of the large-spread models is generally higher than the
robustness of GBDT models or equal to the most opti-
mistic estimate, with just a few exceptions. These cases
happen when the best-performing large-spread model is
noticeably smaller than the best-performing GBDT model,
hence empirically less robust against evasion attacks. This
is not a negative result since the primary goal of the large-
spread condition is to enable efficient robustness verification
rather than to enhance the robustness of the boosted tree
ensembles. Thus, in some cases, the best large-spread model
may have a slightly lower robustness than the corresponding
traditional model. These cases can be avoided by integrat-
ing robustness verification into the hyper-parameter tuning

pipeline of large-spread models, thus looking for the model
showing the highest robustness or the best trade-off between
accuracy and robustness. However, this integration can not
be easily implemented for GBDT models because robustness
verification does not always scale. Hence, we did not tune
the hyper-parameters of the large-spread models taking into
account the robustness of the model but only their accuracy,
to keep the experimental comparison fair.

6.3. Performance and Scalability

Next, we turn our attention to assess the benefits on
robustness verification enabled by our large-spread boosted
ensembles.

Performance. In the first experiment, we train a
traditional GBDT model of the same size (number of trees
and nodes) of our best-performing large-spread boosted
ensemble and we compare the robustness verification times
of SILVA (for L∞) and MILP (for L0, L1) against CARVE-
GBM. We limit the analysis to 500 instances of the test
set sampled using stratified random sampling, because our
competitors often take too much time to run.4 The results
are shown in Table 4. Note that only entries in the same row
(i.e., with same k) can be directly compared, because large-
spread boosted ensembles trained for different values of k
may differ in terms of size, e.g., number of trees. Entries
in the same row determine how CARVE-GBM fares against
existing verification tools for models of the same size.

The first observation we make is that CARVE-GBM
is significantly faster than SILVA in the vast majority of
cases. For example, for the FMNIST dataset and the highest
perturbation, the verification times of CARVE-GBM are
three orders of magnitude lower than SILVA (4 seconds vs.
3,448 seconds). The same happens for the Webspam dataset,
where CARVE-GBM takes 4 seconds while SILVA takes
2,142 seconds for the highest perturbation. The MNIST
dataset shows a different trend, because SILVA is very
efficient there. We do not have a clear explanation for this
observation, except that even NP-hard problems can be easy
to solve in specific cases and for some reason the MNIST
model seems straightforward to verify. However, we stress
that SILVA does not provide formal complexity bounds,
but reuses an abstract interpretation engine hoping that it
scales to the NP-hardness of robustness verification. This
is the case for MNIST, but the other two datasets make
SILVA struggle. Finally, we discuss the comparison with
MILP: again, CARVE-GBM always performs better than its
competitor. For example, for L0-attackers on the Webspam
dataset, verification time reduces from 902 seconds to 2
seconds, i.e., a reduction of two orders of magnitude. A
similar picture can be drawn for L1-attackers.

Scalability. In our second experiment, we assess the
scalability of robustness verification by increasing the model
size. In particular, we set the maximum number of leaves

4. Using the full test set can only improve the picture in favour of
CARVE-GBM, in particular for the Webspam dataset, whose full test
set includes around 100,000 instances; this sheer size would magnify the
difference in the measured verification times.

Dataset p k
Verification Time

Baseline CARVE-GBM

FMNIST

∞
0.005 172 12
0.010 290 3
0.015 3,448 4

0
1 23 1
2 23 1
3 23 1

1
0.05 74 8
0.10 37 4
0.15 39 4

MNIST

∞
0.01 1 13
0.02 4 4
0.03 3 3

0
1 23 1
2 23 1
3 23 1

1
0.05 157 8
0.10 42 3
0.15 46 4

Webspam

∞
0.0004 216 5
0.0006 989 4
0.0008 2,142 4

0
1 902 2
2 902 2
3 902 2

1
0.002 278 5
0.003 179 4
0.004 424 5

TABLE 4: Robustness verification times (in seconds) for the
first 500 instances in the test set.

to 32 and we vary the number of trees in the ensemble
trained on the FMNIST dataset to understand the trend
of the robustness verification times. Results are shown in
Figure 2, where we plot the speedup of CARVE-GBM over
competitors. As we can see, the speedup ranges from around
10 times to more than 400 times for the largest ensembles of
125 trees, i.e., verification times are reduced by at least one
order of magnitude. Remarkably, this positive finding is also
artificially penalized by the enforcement of a 30 seconds
timeout per instance on SILVA and MILP. If these tools
were allowed to run for a longer time, the comparison would
be even more in favor of CARVE-GBM, which is able to
analyze each instance in less than one second.

7. Comparison With Large-Spread Ensembles

We here compare our large-spread boosted ensembles
with the large-spread ensembles with hard majority voting
proposed in [10] in terms of accuracy and robustness. We
recall that the large-spread ensembles from [10] are forests
of independently trained classification trees using hard ma-
jority voting, while our large-spread boosted ensembles are
ensembles of regression trees based on additive aggregation,
trained using Gradient Boosting, a state-of-the-art boosting
scheme.

50 60 70 80 90 100 110 120
#trees

101

102

sp
ee

du
p

Fashion-MNIST max #leaves=32

L∞-attacker

L0-attacker

L1-attacker

Figure 2: Speedup of the robustness verification time en-
abled by the use of CARVE-GBM over competitors.

We perform the experimental comparison using the same
experimental methodology used in [10]. In particular, we use
the FMNIST, MNIST, and Webspam datasets as described in
Section 6.1, and we consider ensembles with 101 trees and
maximum depth 6. We use the same hyper-parameter values
reported in [10] to train the large-spread ensembles since the
training algorithm for large-spread ensembles is guaranteed
to converge for those values and give the best models in
terms of accuracy and robustness. We then train large-spread
boosted ensembles of the same size, setting the number of
leaves to 64. We perform the training of the models for the
L∞, L1, L2 norms and with k = {0.005, 0.01, 0.015} for
FMNIST and MNIST and k = {0.0002, 0.0004, 0.0006} for
Webspam as done in [10].

Table 5 shows the accuracy and robustness of large-
spread ensembles, abbreviated as LSE, and large-spread
boosted ensembles, abbreviated as LSBE. We obtain the ro-
bustness of the large-spread ensembles using CARVE [10],
while we use CARVE-GBM to verify the robustness of
our large-spread boosted ensembles. We do not compare
the performance of the two verifiers since robustness veri-
fication is performed in a matter of seconds by both tools.
We observe that large-spread boosted ensembles present an
accuracy higher or, at worst, equal to the one of large-spread
ensembles on all the considered datasets. The gain in accu-
racy is particularly significant on the Webspam dataset. For
example, for k = 0.0006 and p = {∞, 1, 2}, the accuracy
of the large-spread ensemble is 0.85, while the accuracy of
the large-spread boosted ensemble is 0.97 (+0.12). This is a
consequence of the adoption of the training algorithm based
on Gradient Boosting, that trains trees that compensate for
the errors of the predecessors, while the training algorithm
in [10] trains independent trees. Our large-spread boosted
ensembles are also more robust than large-spread ensembles
in general. Again, the highest gain in robustness is achieved
on the Webspam dataset. For example, for k = 0.0006 and
p = ∞, the robustness of the large-spread ensemble is 0.82,
while the robustness of our large-spread boosted ensemble
is 0.96 (+0.14). The same gain is observed for the same

Dataset p k
Accuracy Robustness

LSE LSBE LSE LSBE

FMNIST

∞
0.005 0.96 0.97 0.93 0.95
0.010 0.94 0.97 0.91 0.92
0.015 0.92 0.97 0.89 0.88

1
0.005 0.96 0.97 0.94 0.95
0.010 0.94 0.97 0.93 0.94
0.015 0.92 0.97 0.91 0.94

2
0.005 0.96 0.97 0.93 0.95
0.010 0.94 0.97 0.91 0.94
0.015 0.92 0.97 0.89 0.92

MNIST

∞
0.005 0.99 0.99 0.97 0.99
0.010 0.99 0.99 0.97 0.99
0.015 0.99 0.99 0.94 0.99

1
0.005 0.99 0.99 0.98 0.99
0.010 0.99 0.99 0.98 0.99
0.015 0.99 0.99 0.97 0.99

2
0.005 0.99 0.99 0.98 0.99
0.010 0.99 0.99 0.98 0.99
0.015 0.99 0.99 0.95 0.99

Webspam

∞
0.0002 0.91 0.98 0.90 0.97
0.0004 0.89 0.98 0.86 0.97
0.0006 0.85 0.97 0.82 0.96

1
0.0002 0.91 0.98 0.90 0.98
0.0004 0.89 0.98 0.87 0.97
0.0006 0.85 0.97 0.83 0.97

2
0.0002 0.91 0.98 0.90 0.97
0.0004 0.89 0.98 0.86 0.97
0.0006 0.85 0.97 0.82 0.96

TABLE 5: Accuracy and robustness (against Ap,k) mea-
sures for large-spread ensembles (LSE) models of [10] and
our large-spread boosted ensembles (LSBE). The robust-
ness against A∞,k of the LSE models is obtained using
CARVE [10], while we used CARVE-GBM to compute the
robustness of the LSBE models.

value of k and p ∈ {1, 2}. This achievement in robustness
is a consequence of both the large-spread condition and
the gain in accuracy obtained by the large-spread boosted
ensembles with respect to the large-spread ensembles, since
the definition of robustness requires the correct classification
of the tested instances to be verified.

8. Application to Security-Related Tasks

In this section, we show that our large-spread boosted
ensembles can perform challenging security-related binary
classification tasks, i.e., spam URLs and spam accounts
detection, showing state-of-the-art performance. Moreover,
our verification algorithm can be used to efficiently verify
relevant security properties from previous work [13] on
large-spread boosted ensembles. These properties can be en-
coded in our framework, yet they go beyond the traditional
robustness property based on the Lp-norm.

8.1. Datasets and Security Properties

Datasets. We evaluate large-spread boosted ensem-

Dataset Features #train #test Distribution

Spam Accounts 15 (8) 36,000 4,000 49%/51%
Spam Urls 25 (4) 295,869 63,401 56%/44%

TABLE 6: Security-related datasets statistics

bles on two security-related datasets used in previous
work [21], [22]: Twitter Spam Accounts [23], and Twitter
Spam URLs [24]. Tree-based classifiers are well suited for
classifying these tabular datasets related to binary classifica-
tion tasks. Table 6 shows some statistics about the dataset.
Recent work [13] analyzed the cost incurred by the attacker
in perturbing each feature in the real world for the two
datasets, defining a subset of low-cost features that the
attacker can easily modify without incurring high economic
costs or making the attack suspicious. We report the number
of low-cost features for each dataset in round brackets.

Security Properties. Verifying the robustness of
tree-based models in security-related tasks is fundamental.
However, recent work [13] highlighted that the traditional
robustness property may not suffice for assessing the secu-
rity of tree-based classifiers in some specific security-related
tasks while still being popular and suited for assessing the
security in other tasks. For this reason, other properties have
been defined to complement the traditional robustness prop-
erty, specifically for security-related classification tasks. We
here focus on three properties defined in [13] for the tasks of
spam accounts detection and spam urls detection: Stability,
Maximum Score Decrease, and Small Neighborhood.5

In the following definitions, we suppose that J is the
subset of low-cost features. We define the properties below
to be satisfied by a boosted tree ensemble T , but the defini-
tion can be extended to any classifier that returns a raw score
prediction that is transformed by a monotonically increasing
inverse link function. We first define local stability that states
that, given an instance x⃗ ∈ X and a low-cost feature i, for
any instance z⃗ differing from it only for values of the feature
i the difference between the raw score predictions T̂ (x⃗) and
T̂ (z⃗) is bounded.

Definition 4 (Local Stability). Given a feature i ∈ J and a
constant c ∈ R, the boosted tree ensemble T satisfies local
stability on x⃗ if and only if ∀z⃗ ∈ X .[∀j ̸= i.(zj = xj)] =⇒
|T̂ (x⃗)− T̂ (z⃗)| ≤ c.

The local maximum score decrease property instead
bounds the maximum decrease in the raw score prediction
on the instance z⃗ with respect to the raw score prediction
on the instance x⃗ where z⃗ differs from x⃗ only for the values
of the low-cost features.

Definition 5 (Local Maximum Score Decrease). Given a set
of low-cost features J , a constant c ∈ R and an instance
x⃗ ∈ X , the boosted tree ensemble T satisfies local maximum

5. We actually consider local versions of the global properties defined
in [13], because our framework currently supports just the verification of
traditional local properties.

score decrease on x⃗ if and only if ∀z⃗ ∈ X .[∀i ̸∈ J.(zi =
xi)] =⇒ T̂ (x⃗)− T̂ (z⃗) ≤ ι−1(c).

Finally, the local small neighborhood property specifies
that, given an instance x⃗, the raw score prediction T̂ (x⃗)
remains stable in a neighborhood of x⃗.

Definition 6 (Local Small Neighborhood). Let σi be the
standard deviation of the input feature i ∈ [1, d]. Given
constants c, ε ∈ R and an instance x⃗ ∈ X , the boosted tree
ensemble T satisfies local small neighborhood on x⃗ if and
only if ∀z⃗ ∈ X .[maxi{|zi − xi|/σi} ≤ ε] =⇒ |T̂ (x⃗) −
T̂ (z⃗)| ≤ c · ε.

Verification. We show in Appendix D how to encode
the three properties in our framework and how to verify the
properties efficiently using CARVE-GBM.

8.2. Experimental Methodology and Results

We perform our experimental evaluation using the train-
ing set and test set already provided for the two security-
related tasks. We obtain a validation set by splitting the
training set using 80-20 stratified random sampling.

We then use the following methodology:

1) We perform hyper-parameter tuning to identify the
best-performing traditional GBDT model for each
dataset in the same way as explained in section 6.1,
with the exception that we look for the model
with the best F1 score. We prefer the F1 score
since it reflects the performance of the classifier
on the recognition of the positive class, i.e., the
spam, in particular, which is the principal target of
spam detection, penalizing a high number of false
positives and false negatives.

2) We perform the same hyper-parameter tuning to
identify the best-performing large-spread model
trained using our algorithm for each dataset. How-
ever, since the best large-spread model performs
poorly in classifying the positive class on the
Twitter spam URLs dataset, we additionally tune
the weight of positive labels using line search
from one to two with increments of 0.1. We re-
fer to Appendix D for details about enforcing the
large-spread condition for efficiently verifying each
security-related property.

We set the values of constants of the definitions of the
three properties as done in the related work [13]; we refer
to Appendix D for the details about the specific used values.

Table 7 shows the accuracy and F1 score of large-spread
models on the test sets. We report in round brackets the
difference in accuracy and F1 score with respect to the
corresponding best GBDT models. Moreover, we show the
percentage of instances of the test set on which the three
security-related robustness properties are satisfied by the
large-spread models and the cumulative verification time
using CARVE-GBM. We do not verify these properties on

Dataset Property Accuracy F1 score % Instances Verification Time

Twitter Spam Accounts
Stability 0.95 (-0.00) 0.95 (-0.01) 100% 3

Maximum Score Decrease 0.94 (-0.01) 0.94 (-0.02) 100% 1

Small Neighborhood 0.93 (-0.02) 0.93 (-0.03) 100% 1

Twitter Spam URLs
Stability 0.97 (-0.02) 0.97 (-0.02) 100% 12

Maximum Score Decrease 0.99 (-0.00) 0.98 (-0.01) 100% 8

Small Neighborhood 0.99 (-0.00) 0.98 (-0.01) 100% 4

TABLE 7: Accuracy, F1 score, percentage of instances of the test set on which the property is satisfied by the best large-
spread model, and time required (in seconds) for verifying the property on the test set for the best large-spread model.
We report in round brackets the difference in accuracy and F1 score with respect to the best-performing traditional GBDT
model. We do not report the verification time required by a baseline on the GBDT model since no baseline in the literature
directly verifies these properties.

traditional GBDT models since no baseline allows us to
verify them directly on these models.

The results highlight that large-spread models observe a
negligible loss in accuracy and F1 score, i.e., at most three
points, with respect to the best-performing traditional GBDT
models on the two datasets. In addition, the results support
that large-spread models are robust if evaluated with respect
to security properties defined for specific security-related
tasks. In particular, the large-spread models exhibit the three
security properties on all the instances of the test sets of
Twitter Spam Accounts and Twitter Spam URLs datasets,
using the constants in [13] in the definition of the three
properties. Finally, the verification of the three properties
with CARVE-GBM is efficient: it requires at most three
seconds for verifying each property on the Twitter Spam
Accounts test set and 12 seconds at most for verifying the
local stability property on the Twitter Spam URLs test set,
which contains around 16 times the number of instances of
the test set of the Twitter Spam Accounts dataset. These
positive results highlight that large-spread boosted ensem-
bles are applicable in challenging security-related tasks since
they satisfy specific security properties. Moreover, CARVE-
GBM verifies these properties in a matter of seconds.

9. Related Work

We already discussed that prior work studied the com-
plexity of robustness verification for decision tree ensem-
bles [6], [7]. This problem is NP-complete for arbitrary
Lp-norm attackers, even when considering decision stump
ensembles [7], [25]. Despite this negative result, prior work
proposed several approaches to robustness verification for
tree ensembles [6], [8], [9], [26], [27], [28], [29], [30].
Though effective in many cases, these techniques are bound
to fail for large ensembles and complex datasets. We ex-
perimentally showed that state-of-the-art verification tools
do not scale and are much less efficient than our approach
based on large-spread ensemble training; thus, we generalize
preliminary results on verifiable learning for simple random
forest models [10] to the gradient boosting setting.

Numerous studies in the literature have delved into
algorithms for training tree ensembles that exhibit robustness

against evasion attacks [6], [21], [22], [25], [31], [32], [33],
[34], [35], [36]. However, our work complements these en-
deavors. Our primary objective is not enforcing robustness;
rather, robustness may emerge as a byproduct of our training
algorithm. Our focus lies in facilitating efficient robustness
verification for the trained models. Combining our approach
with existing robust training algorithms may further improve
their performance against evasion attacks.

Previous work also focused on how to turn ML models
into models whose robustness can be certified. In particular,
Randomized Smoothing [37] has been proposed to turn a
generic classifier into a new classifier certifiably robust.
While both Randomized Smoothing and our technique may
induce a loss in the accuracy of the model for certifying
robustness to large perturbations, our work shows signif-
icant differences to Randomized Smoothing. In particular,
our verification algorithm provides deterministic robustness
guarantees, while many certifiable methods based on Ran-
domized Smoothing provide probabilistic ones. More recent
work [38] proposes a Randomized Smoothing approach spe-
cific for tree-based models providing deterministic robust-
ness guarantees, but it supports only decision stumps, while
our technique supports generic boosted tree ensembles.

It is essential to note that our work addresses the classic
definition of robustness, termed local robustness in recent
literature on global robustness and related properties [13],
[39], [40]. The aim of this line of research is to achieve se-
curity verification independent of the selection of a specific
test set, thereby enhancing the credibility of security proofs.
While acknowledging the popularity and relative ease of
dealing with local robustness, we leave the extension of our
framework to global robustness for future work.

Significant efforts have been invested in the robustness
verification of deep neural networks (DNNs). Traditional ap-
proaches for exact verification, often based on Satisfiability
Modulo Theories (SMT) [41], [42], [43] and integer linear
programming [44], [45], [46], [47], frequently face scalabil-
ity issues with large DNNs, similar to tree ensembles. To
address these challenges, various proposals, such as pruning
the original DNN [48] and identifying specific classes of
DNNs for more efficient robustness verification [49], have
been presented. Xiao et al. [50] introduced the concept of

co-designing model training and verification, emphasizing
training models that balance accuracy and robustness to
facilitate exact verification. While prior techniques offer
empirical efficiency guarantees, our proposal stands out
by providing a formal complexity reduction through the
development of a polynomial time algorithm. Furthermore,
our research focuses on tree ensembles rather than DNNs.

Lastly, recent work explored the adversarial robustness
of model ensembles [51]. The key finding of this study
demonstrated that a combination of “diversified gradient”
and “large confidence margin” serves as sufficient and nec-
essary conditions for certifiably robust ensemble models.
While this result may not directly apply to non-differentiable
models like decision tree ensembles, the idea of diversifying
models aligns with our large-spread condition. We plan to
explore connections with this proposition in future work.

10. Conclusion

In this work, we generalized existing endeavours on
verifiable learning from simple ensembles based on hard
majority voting to state-of-the-art boosted ensembles, such
as those trained using LightGBM [12]. We formally char-
acterized robustness verification for large-spread boosted
ensembles in terms of an optimization problem and we
proposed efficient techniques to solve it in practical cases.
We experimentally showed on public datasets that our verifi-
able learning techniques allows one to train models offering
state-of-the-art accuracy, while being amenable to efficient
robustness verification. Our analysis also confirmed that
robustness verification for traditional tree ensembles does
not scale when increasing the model size, thus reinforcing
the importance of verifiable learning.

As future work, we would like to investigate different
approaches to verifiable learning for tree ensembles, be-
sides the large-spread condition advocated in existing work.
Moreover, we plan to study how verifiable learning can
be applied to fundamentally different classes of machine
learning models, such as DNNs.

Acknowledgements. We thank the reviewers for
their constructive feedback, which has greatly contributed
to the improvement of this paper. This research was sup-
ported by project SERICS (PE00000014) under the MUR
National Recovery and Resilience Plan funded by the Euro-
pean Union - NextGenerationEU, by the European Union -
Next-GenerationEU - PNRR – M.4 C.2, I.1.1 - PRIN 2022
WHAM!, 2022ZZX57L, H53D23003750006 and by iNEST
(Interconnected NordEst Innovation Ecosystem, Project ID:
ECS 00000043), funded by PNRR (Mission 4.2, Investment
1.5) NextGeneration EU.

References

[1] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” in ECML PKDD, 2013.

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
ICLR, 2014.

[3] L. Demetrio, S. E. Coull, B. Biggio, G. Lagorio, A. Armando, and
F. Roli, “Adversarial exemples: A survey and experimental evalua-
tion of practical attacks on machine learning for windows malware
detection,” ACM Trans. Priv. Secur., vol. 24, no. 4, pp. 27:1–27:31,
2021.

[4] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,” in
ICLR, 2018.

[5] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifi-
cation and Regression Trees. Wadsworth, 1984.

[6] A. Kantchelian, J. D. Tygar, and A. D. Joseph, “Evasion and hard-
ening of tree ensemble classifiers,” in ICML, 2016.

[7] Y. Wang, H. Zhang, H. Chen, D. S. Boning, and C. Hsieh, “On lp-
norm robustness of ensemble decision stumps and trees,” in ICML,
2020.

[8] H. Chen, H. Zhang, S. Si, Y. Li, D. S. Boning, and C. Hsieh,
“Robustness verification of tree-based models,” in NeurIPS, 2019.

[9] F. Ranzato and M. Zanella, “Abstract interpretation of decision tree
ensemble classifiers,” in AAAI, 2020.

[10] S. Calzavara, L. Cazzaro, G. E. Pibiri, and N. Prezza, “Verifiable
learning for robust tree ensembles,” in Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2023, Copenhagen, CA, USA, November 26-30, 2023, 2023.

[11] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[12] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision
tree,” Advances in neural information processing systems, vol. 30,
2017.

[13] Y. Chen, S. Wang, Y. Qin, X. Liao, S. Jana, and D. A. Wagner, “Learn-
ing security classifiers with verified global robustness properties,” in
ACM CCS, 2021.

[14] C. M. Bishop, Pattern recognition and machine learning, 5th Edition,
ser. Information science and statistics. Springer, 2007. [Online].
Available: https://www.worldcat.org/oclc/71008143

[15] Y. Freund and R. E. Schapire, “A decision-theoretic generalization
of on-line learning and an application to boosting,” J. Comput.
Syst. Sci., vol. 55, no. 1, pp. 119–139, 1997. [Online]. Available:
https://doi.org/10.1006/jcss.1997.1504

[16] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[17] D. Pisinger and P. Toth, “Knapsack problems,” Handbook of Combi-
natorial Optimization: Volume1–3, pp. 299–428, 1998.

[18] “Fashion-MNIST Dataset,” https://www.openml.org/search?type=
data&sort=runs&id=40996&status=active, accessed: 2024-10-15.

[19] “MNIST Dataset,” https://www.openml.org/search?type=data&sort=
runs&id=554&status=active, accessed: 2024-10-15.

[20] “Webspam Dataset,” https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/
datasets/binary.html, accessed: 2024-10-15.

[21] H. Chen, H. Zhang, D. S. Boning, and C. Hsieh, “Robust decision
trees against adversarial examples,” in ICML, 2019.

[22] Y. Chen, S. Wang, W. Jiang, A. Cidon, and S. Jana, “Cost-aware
robust tree ensembles for security applications,” in USENIX Security
Symposium, 2021.

[23] K. Lee, B. D. Eoff, and J. Caverlee, “Seven months with the
devils: A long-term study of content polluters on twitter,” in
Proceedings of the Fifth International Conference on Weblogs
and Social Media, Barcelona, Catalonia, Spain, July 17-21, 2011,
L. A. Adamic, R. Baeza-Yates, and S. Counts, Eds. The AAAI
Press, 2011. [Online]. Available: http://www.aaai.org/ocs/index.php/
ICWSM/ICWSM11/paper/view/2780

https://www.worldcat.org/oclc/71008143
https://doi.org/10.1006/jcss.1997.1504
https://www.openml.org/search?type=data&sort=runs&id=40996&status=active
https://www.openml.org/search?type=data&sort=runs&id=40996&status=active
https://www.openml.org/search?type=data&sort=runs&id=554&status=active
https://www.openml.org/search?type=data&sort=runs&id=554&status=active
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2780
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2780

[24] H. Kwon, M. B. Baig, and L. Akoglu, “A domain-agnostic approach
to spam-url detection via redirects,” in Advances in Knowledge
Discovery and Data Mining - 21st Pacific-Asia Conference, PAKDD
2017, Jeju, South Korea, May 23-26, 2017, Proceedings, Part II,
ser. Lecture Notes in Computer Science, J. Kim, K. Shim, L. Cao,
J. Lee, X. Lin, and Y. Moon, Eds., vol. 10235, 2017, pp. 220–232.
[Online]. Available: https://doi.org/10.1007/978-3-319-57529-2 18

[25] M. Andriushchenko and M. Hein, “Provably robust boosted decision
stumps and trees against adversarial attacks,” in NeurIPS, 2019.

[26] J. Törnblom and S. Nadjm-Tehrani, “Formal verification of input-
output mappings of tree ensembles,” Sci. Comput. Program., vol. 194,
p. 102450, 2020.

[27] S. Calzavara, P. Ferrara, and C. Lucchese, “Certifying decision trees
against evasion attacks by program analysis,” in ESORICS, 2020.

[28] L. Devos, W. Meert, and J. Davis, “Verifying tree ensembles by
reasoning about potential instances,” in SDM, 2021.

[29] G. Einziger, M. Goldstein, Y. Sa’ar, and I. Segall, “Verifying robust-
ness of gradient boosted models,” in AAAI, 2019.

[30] N. Sato, H. Kuruma, Y. Nakagawa, and H. Ogawa, “Formal verifica-
tion of a decision-tree ensemble model and detection of its violation
ranges,” IEICE Trans. Inf. Syst., vol. 103-D, no. 2, pp. 363–378, 2020.

[31] S. Calzavara, C. Lucchese, G. Tolomei, S. A. Abebe, and S. Orlando,
“Treant: training evasion-aware decision trees,” Data Min. Knowl.
Discov., vol. 34, no. 5, pp. 1390–1420, 2020.

[32] D. Vos and S. Verwer, “Efficient training of robust decision trees
against adversarial examples,” in ICML, 2021.

[33] F. Ranzato and M. Zanella, “Genetic adversarial training of decision
trees,” in GECCO, 2021.

[34] J. Guo, M. Teng, W. Gao, and Z. Zhou, “Fast provably robust decision
trees and boosting,” in ICML, 2022.

[35] D. Vos and S. Verwer, “Robust optimal classification trees against
adversarial examples,” in AAAI, 2022.

[36] ——, “Adversarially robust decision tree relabeling,” in ECML
PKDD, 2022.

[37] J. Cohen, E. Rosenfeld, and J. Z. Kolter, “Certified adversarial
robustness via randomized smoothing,” in Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, ser. Proceedings of
Machine Learning Research, K. Chaudhuri and R. Salakhutdinov,
Eds., vol. 97. PMLR, 2019, pp. 1310–1320. [Online]. Available:
http://proceedings.mlr.press/v97/cohen19c.html

[38] M. Z. Horváth, M. N. Müller, M. Fischer, and M. T. Vechev,
“(de-)randomized smoothing for decision stump ensembles,”
in Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing Systems
2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., 2022.
[Online]. Available: http://papers.nips.cc/paper files/paper/2022/hash/
146b4bab3f8536a07905f25d367b4924-Abstract-Conference.html

[39] S. Calzavara, L. Cazzaro, C. Lucchese, F. Marcuzzi, and S. Orlando,
“Beyond robustness: Resilience verification of tree-based classifiers,”
Comput. Secur., vol. 121, 2022.

[40] K. Leino, Z. Wang, and M. Fredrikson, “Globally-robust neural
networks,” in ICML, 2021.

[41] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochen-
derfer, “Reluplex: An efficient SMT solver for verifying deep neural
networks,” in CAV, 2017.

[42] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim,
P. Shah, S. Thakoor, H. Wu, A. Zeljic, D. L. Dill, M. J. Kochenderfer,
and C. W. Barrett, “The marabou framework for verification and
analysis of deep neural networks,” in CAV, 2019.

[43] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verifica-
tion of deep neural networks,” in CAV, 2017.

[44] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. V. Nori,
and A. Criminisi, “Measuring neural net robustness with constraints,”
in NeurIPS, 2016.

[45] A. Lomuscio and L. Maganti, “An approach to reachability analysis
for feed-forward relu neural networks,” CoRR, vol. abs/1706.07351,
2017.

[46] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural
networks with mixed integer programming,” in ICLR, 2019.

[47] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output range
analysis for deep feedforward neural networks,” in NFM, 2018.

[48] D. Guidotti, F. Leofante, L. Pulina, and A. Tacchella, “Verification
of neural networks: Enhancing scalability through pruning,” in ECAI,
2020.

[49] K. Jia and M. C. Rinard, “Efficient exact verification of binarized
neural networks,” in NeurIPS, 2020.

[50] K. Y. Xiao, V. Tjeng, N. M. M. Shafiullah, and A. Madry, “Training
for faster adversarial robustness verification via inducing relu stabil-
ity,” in ICLR, 2019.

[51] Z. Yang, L. Li, X. Xu, B. Kailkhura, T. Xie, and B. Li, “On the
certified robustness for ensemble models and beyond,” in ICLR, 2022.

[52] M. R. Garey and D. S. Johnson, Computers and Intractability; A
Guide to the Theory of NP-Completeness. USA: W. H. Freeman &
Co., 1990.

https://doi.org/10.1007/978-3-319-57529-2_18
http://proceedings.mlr.press/v97/cohen19c.html
http://papers.nips.cc/paper_files/paper/2022/hash/146b4bab3f8536a07905f25d367b4924-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/146b4bab3f8536a07905f25d367b4924-Abstract-Conference.html

Appendix A.
Proof of Theorem 1

Proof. We prove the two directions separately:

(⇒) Assume that BV (T, x⃗, y, p, k) returns True. In this
case we know that T (x⃗) = y, hence we just need
to prove that ∀z ∈ Ap,k(x⃗) : T (z⃗) = y to conclude.
Since BV (T, x⃗, y, p, k) returns True, we know that
T (x⃗+ δ⃗opt) = y for the adversarial perturbation δ⃗opt
constructed by the algorithm. Assume for simplicity
that y = +1, a similar argument applies to the
case y = −1. Since T (x⃗) = +1, we know that
ι(T̂ (x⃗)) ≥ τ . We now formalize the following in-
tuition: since ι is monotonically increasing, the best
strategy to force a prediction error is lowering T̂ (x⃗)
as much as possible to push it below τ , so that the
predicted class becomes −1. Since T is large-spread,
any evasion attack against T can be decomposed
into a sum of pairwise orthogonal perturbations
δ⃗1, . . . , δ⃗m that do not affect the prediction paths
of different trees when they are added together [10].
Let δ⃗ =

∑m
i=1 δ⃗i and, for each δ⃗i, let λ(sij) be the

leaf that it is reached by ti(x⃗+δ⃗i), which is the same
leaf reached by ti(x⃗+ δ⃗). This implies that the sum
of the adversarial gains G(ti, x⃗, y, λ(sij)) is equal to
T̂ (x⃗)− T̂ (x⃗+ δ⃗), i.e., such sum identifies how much
T̂ (x⃗) can be lowered by δ⃗. Note that we are im-
plicitly using constraint (3) here, since we consider
leaves belonging to different trees. Now observe that
T (x⃗+ δ⃗opt) = +1 implies that ι(T̂ (x⃗+ δ⃗opt)) ≥ τ .
Since δ⃗opt is the perturbation maximizing the sum of
the adversarial gains, i.e., δ⃗opt lowers T̂ (x⃗) as much
as possible, we have that ∀z ∈ Ap,k(x⃗) : T̂ (z⃗) ≥ τ ,
hence ∀z ∈ Ap,k(x⃗) : T (z⃗) = +1.

(⇐) Assume that T is robust on x⃗. In this case we know
that T (x⃗) = y, hence we just need to prove that
T (x⃗+ δ⃗opt) = y for the adversarial perturbation δ⃗opt
constructed by the algorithm to conclude. Since T is
robust on x⃗, we know that ∀z ∈ Ap,k(x⃗) : T (z⃗) = y.
Hence, we just need to show that x⃗+δ⃗opt ∈ Ap,k(x⃗),
which is equivalent to proving that ||δ⃗opt||p ≤ k.
This follows from constraint (2) by definition of δ⃗opt.

Appendix B.
Proof of Theorem 2

Proof. The intuition of the proof is similar to the idea used
in the proof of Theorem 1, hence we provide just a proof
sketch based on Figure 3. The picture shows how the inverse
link function ι (in blue) maps a raw prediction T̂ (x⃗) on
the x-axis to a class label on the y-axis via the threshold
τ . The ι function shown here is just an example; it is
not necessarily a linear function, but it can be an arbitrary

monotonically increasing function. Let sτ = ι−1(τ) be the
decision boundary separating the two classes. The model is
not robust on the instance x⃗ when scenario (a) happens. In
this case, an attack is possible: for an instance with label
y = +1, raw score prediction T̂ (x⃗) = s+ and maximum
adversarial gain Γ+, we have s+ − Γ+ < sτ , thus the
instance is assigned the wrong class by ι as ι(s+−Γ+) < τ .
Symmetrically, for an instance with label y = −1, raw score
prediction T̂ (x⃗) = s−, and maximum adversarial gain Γ−,
we have s−+Γ− ≥ sτ . Scenario (b) shows instead the case
where no attack is possible and the model is robust, because
the maximum adversarial gain is not sufficient to change the
assigned label.

Appendix C.
Proof of Theorem 3

Proof. We show a reduction from the Subset Sum Prob-
lem (SSP) [52] to robustness verification for large-spread
boosted ensembles. We consider the variant of SSP where all
inputs are positive, which is still NP-hard. For simplicity, we
define the reduction for the case p = 1 and we then explain
how the construction can be generalized to an arbitrary
p ∈ N ∪ {0}.

Let S be a multiset of integers and let G be an integer,
the goal of SSP is determining whether there exists any
subset of S which sums to G. Let S = {s1, . . . , sm} be
a multiset of m integers and ζ = 1

m+1 . We construct a
large-spread boosted ensemble T with m trees such that T
is robust against A1,G on the instance x⃗ = ⟨ζ, . . . , ζ⟩ with
true label −1 if and only if there does not exist a subset of S
which sums to G. Each tree ti is a regression stump, i.e., a
regression tree of depth 1, built on top of a different feature
i. Specifically, ti = σ(i, si, λ(0), λ(si)). We stipulate that
the inverse link function ι used by the ensemble T is the
identity function and that the threshold τ is set to G.

We have that T̂ (x⃗) = 0 < τ , hence T (x⃗) = −1.
This means that T is robust on x⃗ if and only if there
does not exist any z⃗ ∈ A1,G(x⃗) such that T̂ (z⃗) ≥ τ .
Since T is large-spread, finding such z⃗ is equivalent to
finding pairwise orthogonal perturbations δ⃗1, . . . , δ⃗m such
that ||∑m

i=1 δ⃗i||1 ≤ G and
∑m

i=1 ti(x⃗ + δ⃗i) ≥ τ = G. Let
{δ⃗j}j be the multiset of the non-zero perturbations, we now
observe the following inequalities.

1) ||∑m
i=1 δ⃗i||1 = ||∑j δ⃗j ||1 =

∑
j ||δ⃗j ||1 =∑

j(sj − ζ) ≤ G
2)

∑m
i=1 ti(x⃗+ δ⃗i) =

∑
j tj(x⃗+ δ⃗j) =

∑
j sj ≥ G

By using the first inequality, we obtain:∑
j

sj ≤ G+
∑
j

ζ ≤ G+m · ζ < G+ 1.

Combined with the second inequality, this leads to:

G ≤
∑
j

sj < G+ 1,

<latexit sha1_base64="hpiS4nmo4gKqi8QHGBHsJ+qFwXA=">AAACfHicbVHBThsxEHW2lEJKaYBjLysSJKpCtIsQ7QUJtZceASWAlKyiWWeWWHi9W3s2TWrlV7i2v9SfQfUuESKhI1l6evPGfvMc51IYCoK/Ne/VyuvVN2vr9bcb7zbfN7a2r0xWaI5dnslM38RgUAqFXRIk8SbXCGks8Tq++1b2r8eojchUh6Y5RincKpEIDuSoQWO71R8B2c5svz9Gbiezj61Boxm0g6r8lyCcgyab1/lgq3bZH2a8SFERl2BMLwxyiixoElzirN4vDObA7+AWew4qSNFEtjI/8/ccM/STTLujyK/Y5xMWUmOmaeyUKdDILPdK8n+9XkHJl8gKlReEij8+lBTSp8wvk/CHQiMnOXUAuBbOq89HoIGTy2vhJqLTBKTBg2owPCVdYGSliNFtqJYWHIP+UUT2lzhe5J/kkVX4kyaV7wVFJ4xsmUHptu5+IVzO/CW4OmqHJ+3ji6Pm2df5f6yxD2yX7bOQfWZn7Ds7Z13G2YTds9/sT+3Ba3mfvMNHqVebz+ywhfJO/gH08cQ1</latexit>

)̂ (ÆG)

<latexit sha1_base64="S/lcNeqrvsVUdKwTPlncc1lwvTI=">AAACbnicbVHBbtNAEN24FNJAISlSLwjVIq3UQxXZUQS9RKrgwrGgJq2UWNV4M26WrNdmdzZtavUfuMKf8Rd8Ams3Qk3KSCs9vXkz+2YmzqUwFAS/a97Gk82nz+pbjecvtl++arZ2hiazmuOAZzLTFzEYlELhgARJvMg1QhpLPI9nn8r8+Ry1EZk6o0WOUQpXSiSCAzlquD8msPuXzXbQCarwH4NwCdpsGaeXrdrX8STjNkVFXIIxozDIKSpAk+AS7xpjazAHPoMrHDmoIEUTFZXdO//AMRM/ybR7ivyKfVhRQGrMIo2dMgWamvVcSf4vN7KUHEeFULklVPz+o8RKnzK/nN2fCI2c5MIB4Fo4rz6fggZObkMrnYj6CUiDR1Vh2CdtMSqkiNFNqNYGnIP+bqPiVvRW+X/yqFB4TTeV7xXFWRgV5Q5Ktw13hXB954/BsNsJ33d6X7rtk4/Le9TZG/aOHbKQfWAn7DM7ZQPG2Tf2g/1kv2p/vF3vrbd3L/Vqy5rXbCW8w78sor7y</latexit>g

<latexit sha1_base64="XJ+i/W3p1Cme3Z7t7bj8AHs/+wk=">AAACb3icdVFdSxtBFJ2s/bBprR996EOhDI2FCiXshhjNgyD60kctxgjJIncnd+OQ2dntzF01XfwRvuov82f4D5xdY2mkPTBwOPfcmXPvRJmSlnz/ruYtvHj56vXim/rbd0vvl1dW145tmhuBPZGq1JxEYFFJjT2SpPAkMwhJpLAfTfbLev8cjZWpPqJphmECYy1jKYCc1F8fypRg/XSl4TfbvkOLVyQIOo50u9ubnS4Pmn6FBpvh4HS19nM4SkWeoCahwNpB4GcUFmBICoVX9WFuMQMxgTEOHNWQoA2LKu8V/+qUEY9T444mXql/dxSQWDtNIudMgM7s81op/qs2yCneDgups5xQi8eH4lxxSnk5PB9Jg4LU1BEQRrqsXJyBAUFuRXM3Ee3EoCx+rxqDHTI5hoWSEboJ9bMBz8H8ysPit2zP63/sYaHxgi6r3HOOoyAsyh2UaevuF55Wzf9PjlvNoNNsH7Yau3uz/1hkn9gX9o0FbIvtsh/sgPWYYBN2zW7Ybe3e++h99vij1avNej6wOXgbD5eyv58=</latexit>]

<latexit sha1_base64="tufcvVQpBDQSOegI4lxhFA5Cn5Q=">AAACcnicbVFNT9tAEN24H0BKC7Q3uLgNlXpAkY0Q7QUJlQtHWhFAJFY03ozJivXa7M4C6Sr/olf4X/wPfkDXxqqa0Cet9PTmY9/MpKUUhqLooRW8ePnq9cLiUvvN8tt3K6tr709MYTXHHi9koc9SMCiFwh4JknhWaoQ8lXiaXh5U8dNr1EYU6pgmJSY5XCiRCQ7kpfNNM3QDAjvdHK52om5UI3xO4oZ0WIOj4Vrr52BUcJujIi7BmH4clZQ40CS4xGl7YA2WwC/hAvueKsjRJK62PA0/e2UUZoX2T1FYq/9WOMiNmeSpz8yBxmY+Von/i/UtZd8SJ1RpCRV/+iizMqQirOYPR0IjJznxBLgW3mvIx6CBk9/STCeivQykwa26MN4jbTFxUqToJ1RzA16DvrKJ+yV2ZvW/6YlTeEO3te+ZjOM4cdUOKrdtf4V4fufPycl2N97t7vzY7ux/b+6xyDbYJ/aFxewr22eH7Ij1GGeK/WZ37L71GKwHH4PmeEGrqfnAZhBs/QFrXsDk</latexit>Bg

<latexit sha1_base64="tuy74DB09kt5xx1nFw1Ust7dLCw=">AAACanicbVHbSsNAEN3GW623Vp+kL8EqCEpJRNQXoeiLj1VsFWoom+1El242cXdSraF/4Kv+m//gR7iJRWx1YOFw5szsmRk/Flyj43wUrJnZufmF4mJpaXllda1cWW/rKFEMWiwSkbr1qQbBJbSQo4DbWAENfQE3fv88y98MQGkeyWscxuCF9F7ygDOKhrrac7vlmlN38rD/AncMamQczW6lcHXXi1gSgkQmqNYd14nRS6lCzgSMSneJhpiyPr2HjoGShqC9NLc6sncM07ODSJkn0c7Z3xUpDbUehr5RhhQf9HQuI//LdRIMTryUyzhBkOz7oyARNkZ2Nrfd4woYiqEBlCluvNrsgSrK0GxnohPiaUCFhv280D1FlYCXCu6DmVBODTig6jHx0hd+OMn/yL1UwhM+574nFNeul2Y7yNyWzBXc6Z3/Be2DuntUP7w8qDXOxvcokirZIrvEJcekQS5Ik7QIIwF5JW/kvfBprVubVvVbahXGNRtkIqztL2ZYvTg=</latexit>+1

<latexit sha1_base64="MhQskxXG4obPclEYhn2PBtUouKE=">AAACbHicbVHbSsNAEN3EW623enkTIVgVH7QkRdQXQfTFRxWrQg2y2U7apZtN3J1Ua/AXfNVf8yf8BjexiK0OLBzOnJk9MxMkgmt03Q/LHhufmJwqTZdnZufmFyqLS9c6ThWDBotFrG4DqkFwCQ3kKOA2UUCjQMBN0D3N8zc9UJrH8gr7CfgRbUseckYxpzZ2vY37StWtuUU4f4E3AFUyiPP7RevyrhWzNAKJTFCtm56boJ9RhZwJeCnfpRoSyrq0DU0DJY1A+1lh9sXZNEzLCWNlnkSnYH9XZDTSuh8FRhlR7OjRXE7+l2umGB76GZdJiiDZ90dhKhyMnXxyp8UVMBR9AyhT3Hh1WIcqytDsZ6gT4lFIhYadotA7QpWCnwkegJlQjgzYo+oh9bNnvjfM/8j9TMIjPhW+hxRXnp/lO8jdls0VvNGd/wXX9Zq3X9u7qFePTwb3KJFVsk62iUcOyDE5I+ekQRjpkFfyRt6tT3vFXrXXvqW2NahZJkNhb30BR3W9lg==</latexit>�1

<latexit sha1_base64="4o++DkQPuTPhnU7AwlGY9Xr1r+c=">AAACb3icbVHBThsxEHUWKJDSFuiBAxKyGioVUUW7UQRckKJy6TFUhEQKW+R1ZsGK17vYs7TBykf02n5ZP4M/qHdZVSRhJEtPb96M38xEmRQGff9vzVtaXnm1urZef73x5u27za3tS5PmmkOPpzLVg4gZkEJBDwVKGGQaWBJJ6EfjsyLfvwdtRKoucJJBmLAbJWLBGTqqv2++28Pp/vVmw2/6ZdBFEFSgQaroXm/Vvl2NUp4noJBLZsww8DMMLdMouIRp/So3kDE+ZjcwdFCxBExoS79T+tExIxqn2j2FtGSfV1iWGDNJIqdMGN6a+VxBvpQb5hifhFaoLEdQ/OmjOJcUU1oMT0dCA0c5cYBxLZxXym+ZZhzdimY6IZ7GTBr4XBYGp6hzCK0UEbgJ1dyA90zf5aF9EO1Z/r88tAp+4M/S94ziIghtsYPCbd1dIZjf+SK4bDWDo2b7vNXofKnusUZ2yQfyiQTkmHTIV9IlPcLJmPwiv8mf2qO34+159Enq1aqa92QmvIN/8bO/Sg==</latexit>

B+
<latexit sha1_base64="sY4YHgJvz4T0OLUyS/atWnvk6TU=">AAACb3icbVHBThsxEHUWKJDSFuiBAxKyGioViUa7UQRckKJy6TFUhEQKW+R1ZsGK17vYs7TBykf02n5ZP4M/qHdZVSRhJEtPb96M38xEmRQGff9vzVtaXnm1urZef73x5u27za3tS5PmmkOPpzLVg4gZkEJBDwVKGGQaWBJJ6EfjsyLfvwdtRKoucJJBmLAbJWLBGTqqv2++28/T/evNht/0y6CLIKhAg1TRvd6qfbsapTxPQCGXzJhh4GcYWqZRcAnT+lVuIGN8zG5g6KBiCZjQln6n9KNjRjROtXsKack+r7AsMWaSRE6ZMLw187mCfCk3zDE+Ca1QWY6g+NNHcS4pprQYno6EBo5y4gDjWjivlN8yzTi6Fc10QjyNmTRwWBYGp6hzCK0UEbgJ1dyA90zf5aF9EO1Z/r88tAp+4M/S94ziIghtsYPCbd1dIZjf+SK4bDWDo2b7vNXofKnusUZ2yQfyiQTkmHTIV9IlPcLJmPwiv8mf2qO34+159Enq1aqa92QmvIN/9cG/TA==</latexit>

B�

<latexit sha1_base64="bEGfil44oDhG8lgHUsVXRZrtkPc=">AAACdHicdVFNb9QwEPWmfJTlqy1HOFhsK3GAyGlXJTlUquAAx4K6baXdUDneSWvVdoI9KSzW/g2u8Lf4I5xx0gWxFYxk6enNG/vNc1Er6ZCxH71o5cbNW7dX7/Tv3rv/4OHa+saRqxorYCQqVdmTgjtQ0sAIJSo4qS1wXSg4Li5et/3jS7BOVuYQZzXkmp8ZWUrBMVCTzckbrjX/4F/MN0/XBizO0jRjKWXxkLFhmgWwk2XZ7g5NYtbVgCzq4HS9934yrUSjwaBQ3LlxwmrMPbcohYJ5f9I4qLm44GcwDtBwDS73nek53QrMlJaVDccg7di/JzzXzs10EZSa47m73mvJf/XGDZZp7qWpGwQjrh4qG0Wxom0CdCotCFSzALiwMnil4pxbLjDktHQT4l7JlYPn3WCyh7aB3CtZQNjQXFvwktuPTe6/yOEy/0eeewOf8HPne0lxmOS+zaB12w+/8Dtq+n9wtB0nu/Hw3fZg/9XiP1bJY/KUPCMJeUn2yVtyQEZEkJp8Jd/I997P6Ek0iLaupFFvMfOILFUU/wIwSMG0</latexit>

��
<latexit sha1_base64="qdA7H79AjJqo1TtU+Tjw1EJ+SnI=">AAACdHicdVFNb9QwEPWmfJTlqy1HOFhsKyGBIqddleRQqYIDHAvqtpV2Q+V4J61V2wn2pLBY+ze4wt/ij3DGSRfEVjCSpac3b+w3z0WtpEPGfvSilRs3b91evdO/e+/+g4dr6xtHrmqsgJGoVGVPCu5ASQMjlKjgpLbAdaHguLh43faPL8E6WZlDnNWQa35mZCkFx0BNNidvuNb8g38+3zxdG7A4S9OMpZTFQ8aGaRbATpZluzs0iVlXA7Kog9P13vvJtBKNBoNCcefGCasx99yiFArm/UnjoObigp/BOEDDNbjcd6bndCswU1pWNhyDtGP/nvBcOzfTRVBqjufueq8l/9UbN1imuZembhCMuHqobBTFirYJ0Km0IFDNAuDCyuCVinNuucCQ09JNiHslVw5edIPJHtoGcq9kAWFDc23BS24/Nrn/IofL/B957g18ws+d7yXFYZL7NoPWbT/8wu+o6f/B0Xac7MbDd9uD/VeL/1glj8lT8owk5CXZJ2/JARkRQWrylXwj33s/oyfRINq6kka9xcwjslRR/AssOsGy</latexit>

�+

(a) a!ack

<latexit sha1_base64="hpiS4nmo4gKqi8QHGBHsJ+qFwXA=">AAACfHicbVHBThsxEHW2lEJKaYBjLysSJKpCtIsQ7QUJtZceASWAlKyiWWeWWHi9W3s2TWrlV7i2v9SfQfUuESKhI1l6evPGfvMc51IYCoK/Ne/VyuvVN2vr9bcb7zbfN7a2r0xWaI5dnslM38RgUAqFXRIk8SbXCGks8Tq++1b2r8eojchUh6Y5RincKpEIDuSoQWO71R8B2c5svz9Gbiezj61Boxm0g6r8lyCcgyab1/lgq3bZH2a8SFERl2BMLwxyiixoElzirN4vDObA7+AWew4qSNFEtjI/8/ccM/STTLujyK/Y5xMWUmOmaeyUKdDILPdK8n+9XkHJl8gKlReEij8+lBTSp8wvk/CHQiMnOXUAuBbOq89HoIGTy2vhJqLTBKTBg2owPCVdYGSliNFtqJYWHIP+UUT2lzhe5J/kkVX4kyaV7wVFJ4xsmUHptu5+IVzO/CW4OmqHJ+3ji6Pm2df5f6yxD2yX7bOQfWZn7Ds7Z13G2YTds9/sT+3Ba3mfvMNHqVebz+ywhfJO/gH08cQ1</latexit>

)̂ (ÆG)

<latexit sha1_base64="S/lcNeqrvsVUdKwTPlncc1lwvTI=">AAACbnicbVHBbtNAEN24FNJAISlSLwjVIq3UQxXZUQS9RKrgwrGgJq2UWNV4M26WrNdmdzZtavUfuMKf8Rd8Ams3Qk3KSCs9vXkz+2YmzqUwFAS/a97Gk82nz+pbjecvtl++arZ2hiazmuOAZzLTFzEYlELhgARJvMg1QhpLPI9nn8r8+Ry1EZk6o0WOUQpXSiSCAzlquD8msPuXzXbQCarwH4NwCdpsGaeXrdrX8STjNkVFXIIxozDIKSpAk+AS7xpjazAHPoMrHDmoIEUTFZXdO//AMRM/ybR7ivyKfVhRQGrMIo2dMgWamvVcSf4vN7KUHEeFULklVPz+o8RKnzK/nN2fCI2c5MIB4Fo4rz6fggZObkMrnYj6CUiDR1Vh2CdtMSqkiNFNqNYGnIP+bqPiVvRW+X/yqFB4TTeV7xXFWRgV5Q5Ktw13hXB954/BsNsJ33d6X7rtk4/Le9TZG/aOHbKQfWAn7DM7ZQPG2Tf2g/1kv2p/vF3vrbd3L/Vqy5rXbCW8w78sor7y</latexit>g

<latexit sha1_base64="XJ+i/W3p1Cme3Z7t7bj8AHs/+wk=">AAACb3icdVFdSxtBFJ2s/bBprR996EOhDI2FCiXshhjNgyD60kctxgjJIncnd+OQ2dntzF01XfwRvuov82f4D5xdY2mkPTBwOPfcmXPvRJmSlnz/ruYtvHj56vXim/rbd0vvl1dW145tmhuBPZGq1JxEYFFJjT2SpPAkMwhJpLAfTfbLev8cjZWpPqJphmECYy1jKYCc1F8fypRg/XSl4TfbvkOLVyQIOo50u9ubnS4Pmn6FBpvh4HS19nM4SkWeoCahwNpB4GcUFmBICoVX9WFuMQMxgTEOHNWQoA2LKu8V/+qUEY9T444mXql/dxSQWDtNIudMgM7s81op/qs2yCneDgups5xQi8eH4lxxSnk5PB9Jg4LU1BEQRrqsXJyBAUFuRXM3Ee3EoCx+rxqDHTI5hoWSEboJ9bMBz8H8ysPit2zP63/sYaHxgi6r3HOOoyAsyh2UaevuF55Wzf9PjlvNoNNsH7Yau3uz/1hkn9gX9o0FbIvtsh/sgPWYYBN2zW7Ybe3e++h99vij1avNej6wOXgbD5eyv58=</latexit>]

<latexit sha1_base64="tufcvVQpBDQSOegI4lxhFA5Cn5Q=">AAACcnicbVFNT9tAEN24H0BKC7Q3uLgNlXpAkY0Q7QUJlQtHWhFAJFY03ozJivXa7M4C6Sr/olf4X/wPfkDXxqqa0Cet9PTmY9/MpKUUhqLooRW8ePnq9cLiUvvN8tt3K6tr709MYTXHHi9koc9SMCiFwh4JknhWaoQ8lXiaXh5U8dNr1EYU6pgmJSY5XCiRCQ7kpfNNM3QDAjvdHK52om5UI3xO4oZ0WIOj4Vrr52BUcJujIi7BmH4clZQ40CS4xGl7YA2WwC/hAvueKsjRJK62PA0/e2UUZoX2T1FYq/9WOMiNmeSpz8yBxmY+Von/i/UtZd8SJ1RpCRV/+iizMqQirOYPR0IjJznxBLgW3mvIx6CBk9/STCeivQykwa26MN4jbTFxUqToJ1RzA16DvrKJ+yV2ZvW/6YlTeEO3te+ZjOM4cdUOKrdtf4V4fufPycl2N97t7vzY7ux/b+6xyDbYJ/aFxewr22eH7Ij1GGeK/WZ37L71GKwHH4PmeEGrqfnAZhBs/QFrXsDk</latexit>Bg

<latexit sha1_base64="tuy74DB09kt5xx1nFw1Ust7dLCw=">AAACanicbVHbSsNAEN3GW623Vp+kL8EqCEpJRNQXoeiLj1VsFWoom+1El242cXdSraF/4Kv+m//gR7iJRWx1YOFw5szsmRk/Flyj43wUrJnZufmF4mJpaXllda1cWW/rKFEMWiwSkbr1qQbBJbSQo4DbWAENfQE3fv88y98MQGkeyWscxuCF9F7ygDOKhrrac7vlmlN38rD/AncMamQczW6lcHXXi1gSgkQmqNYd14nRS6lCzgSMSneJhpiyPr2HjoGShqC9NLc6sncM07ODSJkn0c7Z3xUpDbUehr5RhhQf9HQuI//LdRIMTryUyzhBkOz7oyARNkZ2Nrfd4woYiqEBlCluvNrsgSrK0GxnohPiaUCFhv280D1FlYCXCu6DmVBODTig6jHx0hd+OMn/yL1UwhM+574nFNeul2Y7yNyWzBXc6Z3/Be2DuntUP7w8qDXOxvcokirZIrvEJcekQS5Ik7QIIwF5JW/kvfBprVubVvVbahXGNRtkIqztL2ZYvTg=</latexit>+1

<latexit sha1_base64="MhQskxXG4obPclEYhn2PBtUouKE=">AAACbHicbVHbSsNAEN3EW623enkTIVgVH7QkRdQXQfTFRxWrQg2y2U7apZtN3J1Ua/AXfNVf8yf8BjexiK0OLBzOnJk9MxMkgmt03Q/LHhufmJwqTZdnZufmFyqLS9c6ThWDBotFrG4DqkFwCQ3kKOA2UUCjQMBN0D3N8zc9UJrH8gr7CfgRbUseckYxpzZ2vY37StWtuUU4f4E3AFUyiPP7RevyrhWzNAKJTFCtm56boJ9RhZwJeCnfpRoSyrq0DU0DJY1A+1lh9sXZNEzLCWNlnkSnYH9XZDTSuh8FRhlR7OjRXE7+l2umGB76GZdJiiDZ90dhKhyMnXxyp8UVMBR9AyhT3Hh1WIcqytDsZ6gT4lFIhYadotA7QpWCnwkegJlQjgzYo+oh9bNnvjfM/8j9TMIjPhW+hxRXnp/lO8jdls0VvNGd/wXX9Zq3X9u7qFePTwb3KJFVsk62iUcOyDE5I+ekQRjpkFfyRt6tT3vFXrXXvqW2NahZJkNhb30BR3W9lg==</latexit>�1

<latexit sha1_base64="4o++DkQPuTPhnU7AwlGY9Xr1r+c=">AAACb3icbVHBThsxEHUWKJDSFuiBAxKyGioVUUW7UQRckKJy6TFUhEQKW+R1ZsGK17vYs7TBykf02n5ZP4M/qHdZVSRhJEtPb96M38xEmRQGff9vzVtaXnm1urZef73x5u27za3tS5PmmkOPpzLVg4gZkEJBDwVKGGQaWBJJ6EfjsyLfvwdtRKoucJJBmLAbJWLBGTqqv2++28Pp/vVmw2/6ZdBFEFSgQaroXm/Vvl2NUp4noJBLZsww8DMMLdMouIRp/So3kDE+ZjcwdFCxBExoS79T+tExIxqn2j2FtGSfV1iWGDNJIqdMGN6a+VxBvpQb5hifhFaoLEdQ/OmjOJcUU1oMT0dCA0c5cYBxLZxXym+ZZhzdimY6IZ7GTBr4XBYGp6hzCK0UEbgJ1dyA90zf5aF9EO1Z/r88tAp+4M/S94ziIghtsYPCbd1dIZjf+SK4bDWDo2b7vNXofKnusUZ2yQfyiQTkmHTIV9IlPcLJmPwiv8mf2qO34+159Enq1aqa92QmvIN/8bO/Sg==</latexit>

B+
<latexit sha1_base64="sY4YHgJvz4T0OLUyS/atWnvk6TU=">AAACb3icbVHBThsxEHUWKJDSFuiBAxKyGioViUa7UQRckKJy6TFUhEQKW+R1ZsGK17vYs7TBykf02n5ZP4M/qHdZVSRhJEtPb96M38xEmRQGff9vzVtaXnm1urZef73x5u27za3tS5PmmkOPpzLVg4gZkEJBDwVKGGQaWBJJ6EfjsyLfvwdtRKoucJJBmLAbJWLBGTqqv2++28/T/evNht/0y6CLIKhAg1TRvd6qfbsapTxPQCGXzJhh4GcYWqZRcAnT+lVuIGN8zG5g6KBiCZjQln6n9KNjRjROtXsKack+r7AsMWaSRE6ZMLw187mCfCk3zDE+Ca1QWY6g+NNHcS4pprQYno6EBo5y4gDjWjivlN8yzTi6Fc10QjyNmTRwWBYGp6hzCK0UEbgJ1dyA90zf5aF9EO1Z/r88tAp+4M/S94ziIghtsYPCbd1dIZjf+SK4bDWDo2b7vNXofKnusUZ2yQfyiQTkmHTIV9IlPcLJmPwiv8mf2qO34+159Enq1aqa92QmvIN/9cG/TA==</latexit>

B�

(b) no a!ack

<latexit sha1_base64="vzofY10b14te2V1bQ4GDtEkL0Bc=">AAACdHicdVFNbxMxEHWWrxI++sERDhZpJSTQyps2bTlUquAAx4KatlKyVLPObGvV613s2UKw8je4wt/ij3DGuw2IVDCSpac3b+w3z1mllSMhfnSiGzdv3b6zdLd77/6Dh8srq2tHrqytxKEsdWlPMnColcEhKdJ4UlmEItN4nF28bvrHl2idKs0hTStMCzgzKlcSKFDj9fEbKAr44J/P1k9XeiIW24PNlwMu4oFIdvsN6A8SITZ5Eou2emxeB6ernffjSSnrAg1JDc6NElFR6sGSkhpn3XHtsAJ5AWc4CtBAgS71rekZ3wjMhOelDccQb9m/JzwUzk2LLCgLoHN3vdeQ/+qNasp3U69MVRMaefVQXmtOJW8S4BNlUZKeBgDSquCVy3OwICnktHAT0V4O2uGLdjDZI1tj6rXKMGxori14CfZjnfovamuR/yNPvcFP9Ln1vaA4TFLfZNC47YZf+B01/z846sfJdrz1rt/bfzX/jyX2mD1lz1jCdtg+e8sO2JBJVrGv7Bv73vkZPYl60caVNOrMZx6xhYriX9LfwYQ=</latexit>

�+
<latexit sha1_base64="HHqKxu/fU+8fU3FVj+pCJdIKmMQ=">AAACdHicdVFNbxMxEHWWrxI++sERDhZpJQ6w8qZNWw6VKjjAsaCmrZQs1awz21r1ehd7thCs/A2u8Lf4I5zxbgMiFYxk6enNG/vNc1Zp5UiIH53oxs1bt+8s3e3eu//g4fLK6tqRK2srcShLXdqTDBxqZXBIijSeVBahyDQeZxevm/7xJVqnSnNI0wrTAs6MypUECtR4ffwGigI++Bez9dOVnojF9mDz5YCLeCCS3X4D+oNEiE2exKKtHpvXwelq5/14Usq6QENSg3OjRFSUerCkpMZZd1w7rEBewBmOAjRQoEt9a3rGNwIz4XlpwzHEW/bvCQ+Fc9MiC8oC6Nxd7zXkv3qjmvLd1CtT1YRGXj2U15pTyZsE+ERZlKSnAYC0Knjl8hwsSAo5LdxEtJeDdvi8HUz2yNaYeq0yDBuaawtegv1Yp/6L2lrk/8hTb/ATfW59LygOk9Q3GTRuu+EXfkfN/w+O+nGyHW+96/f2X83/Y4k9Zk/ZM5awHbbP3rIDNmSSVewr+8a+d35GT6JetHEljTrzmUdsoaL4F9btwYY=</latexit>

��

Figure 3: Correctness of robustness verification for the efficient algorithm EV .

which implies
∑

j sj = G, because all the elements of the
summation are integers. We conclude that T is robust on x⃗ if
and only if there does not exist {sj}j such that

∑
j sj = G,

i.e., SSP does not have a solution. Of course, this reduction
operates in polynomial time.

The reduction generalizes to the case p > 1 by observing
that, when working with large-spread ensembles, the norm
of the sum of adversarial perturbations can be related to
the sum of the their norms. In particular, for any set of
pairwise orthogonal perturbations {δi}i and any p ∈ N,
we have ||∑i δ⃗i||p = (

∑
i ||δ⃗i||pp)1/p. Hence, the reduction

can be performed by making the following changes: set
ti = σ(i, spi , λ(0), λ(s

p
i)), increase the maximum adversarial

perturbation from G to Gp, and similarly set the threshold
τ = Gp.

Finally, the case p = 0 uses a different reduction, but
the underlying intuition remains the same. The constructed
large-spread ensemble includes regression trees, rather than
regression stumps. For each integer si ∈ S we generate si
features, call them f i1, . . . , f

i
si . The corresponding regression

tree ti is a right chain of depth si, where we inductively de-
fine the sub-tree rooted at layer j as t′j = σ(f ij , 1, λ(0), t

′
j+1)

with the base case t′si = σ(f isi , 1, λ(0), λ(si)). This way, a
successful evasion attack against ti requires a perturbation δ⃗i
such that ||δ⃗i||0 = si and the corresponding adversarial gain
is si. Note that, in this setting, for each tree there is only
one relevant leaf λ(si) to consider, i.e., the leaf providing
a positive adversarial gain si. Since we do not need to
materialize every leaf in ti, the reduction is performed in
polynomial time. Correctness follows by the same argument
used for the case p = 1.

Appendix D.
Verification of Security-Related Properties

We show here how to encode in our framework the three
properties defined in Section 8.1. Furthermore, we show
that it is possible to verify them on large-spread boosted
ensembles by solving Problem 1. Finally, we provide more

details about the experimental methodology presented in
Section 8.2.

Verification. We first discuss how to modify the
procedure to find the minimal adversarial perturbation re-
quired to push x⃗ into any given leaf λ(s) of a tree in the
ensemble. We want to take into account the fact that an
attacker can easily modify only the low-cost features in
J . Let H = (l1, r1] × . . . × (ld, rd] be the hyper-rectangle
annotating λ(s), we define dist(x⃗, λ(s)) = δ⃗ ∈ Rd as:

∀i ∈ [1, d] : δi =

0 if xi ∈ Hi = (li, ri]

li − xi + ε if xi ≤ li ∧ i ∈ J

ri − xi if xi > ri ∧ i ∈ J

∞ otherwise.

The value ||δ⃗||p will be ∞ for p ̸= 0 if one of the
components of δ⃗ corresponding to a feature not in J is not 0,
i.e., a feature that is not low-cost has been perturbed. When
p = 0, we assign ∞ to ||δ⃗||0 if at least one component of δ⃗
is ∞.

Second, we discuss how to formalize the attacker de-
scribing the instances z⃗ different from x⃗ of each definition.
Since the large-spread condition (Definition 2) is defined
with respect to an attacker A(x⃗), defining the attacker is
fundamental to understand how to enforce the large-spread
condition to efficiently verify each security-related property.
Given x⃗ ∈ X , the local stability property predicates over
all the instances that differ from x⃗ on only one of the
low-cost features in J . Thus, given the feature i ∈ J , an
attacker including exactly these instances can be formalized
as A(x⃗) = {z⃗ ∈ X | ||z⃗ − x⃗||0 ≤ 1 ∧ (∀j ̸= i : xj = zj)}.
The large-spread property with respect to this attacker can
be then enforced for L0-norm only on the feature i. Instead,
the local maximum score decrease property predicates over
all the instances that differ from x⃗ in the value of at least one
feature in J . Again, the attacker including all these instances
can be formalized as A(x⃗) = {z⃗ ∈ X | (||z⃗ − x⃗||0 ≤
|J |) ∧ (∀j ̸∈ J : xj = zj)}. The large-spread property with
respect to this attacker can then be enforced for the L0-norm

on all the features in J . Finally, the local small neighborhood
property predicates over all the instances z⃗ such that the
absolute value of the difference of the values of the feature
i of z⃗ and x⃗ divided by σi is at most ε, where σi is the stan-
dard deviation of the feature i, for every feature i ∈ [1, d].
The attacker including all these instances can be formalized
as A(x⃗) = {z⃗ ∈ X | ∀i ∈ [1, d] : |zi − xi|/σi ≤ ε}.
The large-spread condition can then be enforced on the
boosted tree ensemble by requiring that the distance between
each threshold of the feature i (not necessarily low-cost) on
different trees divided by σi must be greater than 2 · ε.

Now, we are ready to discuss how to verify the three
local properties. Given the large-spread boosted ensem-
ble T and x⃗ ∈ X , verifying the local stability and lo-
cal small neighborhood properties requires verifying ∀z⃗ ∈
A(x⃗). |T̂ (x⃗)− T̂ (z⃗)| ≤ c, where A(x⃗) is the attacker of the
corresponding property. Instead, local maximum score de-
crease requires to verify ∀z⃗ ∈ A(x⃗). T̂ (x⃗)− T̂ (z⃗) ≤ c. Note
that c represents a generic constant here, to be substituted
with the constants or product of constants appearing in the
definitions of the properties. To verify these properties, we
can leverage the efficient solving algorithm of Problem 1 af-
ter choosing the appropriate true label y, setting τ properly,
and supposing that the boosted tree ensemble satisfies the
large-spread condition corresponding to the attacker of the
property to verify. We show how to verify T̂ (z⃗)− T̂ (x⃗) ≤ c
and T̂ (z⃗)− T̂ (x⃗) ≥ −c, following the intuition provided in
the proof of Theorem 2:

1) Given x⃗ ∈ X and A(x⃗) of the property, to ver-
ify T̂ (z⃗) − T̂ (x⃗) ≤ c , set y = −1 and solve
Problem 1 for the given input to determine the
maximum total adversarial gain Γ. Γ represent the
maximum increase of the raw score of x⃗ that
they can obtain by applying the optimal pertur-
bation to x⃗. Let T̂ (x⃗) = s and τ = ι(s + c). If
ι(s + Γ) ≤ τ = ι(s + c), then s + Γ ≤ s + c and
Γ ≤ c, since ι is monotonically increasing. Then,
return True if ι(s+ Γ) ≤ τ , False otherwise.

2) Given x⃗ ∈ X and A(x⃗) of the property, to verify
T̂ (z⃗) − T̂ (x⃗) ≥ −c , set y = +1 and solve
Problem 1 for the given input to determine the
maximum total adversarial gain Γ. Γ represent the
maximum decrease of the raw score of x⃗ that
they can obtain by applying the optimal pertur-
bation to x⃗. Let T̂ (x⃗) = s and τ = ι(s − c). If
ι(s − Γ) ≥ τ = ι(s − c), then s − Γ ≥ s − c and
Γ ≤ c, since ι is monotonically increasing. Then,
return True if ι(s− Γ) ≥ τ , False otherwise.

Details of the Experimental Methodology. Here,
we provide more details about the methodology of the
experimental evaluation in Section 8.2.

We set the values of constants from the definition of the
three properties as done in the related work [13]: c = 8 for
local stability; c = 0.98 for local maximum score decrease;
ε = 0.1 and c = 50 for the Twitter Spam Accounts dataset
and ε = 1.5 and c = 10 for the Twitter Spam URLs dataset

for local small neighborhood. Since LightGBM uses the
logistic function to compute the probabilities from the raw
score predictions, we set ι−1 from the local maximum score
decrease property to the logit function. Finally, we test local
stability on the feature NumDailyTweets of the Twitter Spam
Accounts dataset and Tweet Count of the Twitter Spam
URLs dataset (we refer to [13] for details about the features
of the two datasets), while we suppose that the attacker of
the local maximum score decrease property is not allowed
to perturb multiple low-cost features (as supposed in [13]).

Appendix E.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

This paper focuses on robustness verification for de-
cision tree classifiers. It identifies a class of classifiers –
large-spread boosted tree ensembles – for which efficient
verification is possible.

E.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

E.3. Reasons for Acceptance

1) This paper extends verifiable learning from basic
ensemble methods to state-of-the-art boosted tree
ensembles, formulating an optimal attack strategy
and proposing two verification algorithms. This ap-
pears to be helpful and valuable for building better
robustness verification methods in tree-based mod-
els. The formulation of optimal attack strategy and
the solutions may provide insights for robustness
verification.

2) The application to security-related tasks also shows
the importance.

3) The paper is well-motivated, and the formal proof
and the evaluation results demonstrate the effective-
ness of the proposed algorithm.

E.4. Noteworthy Concerns

1) The paper only considers the binary classification
problem and all experiments are conducted in bi-
nary classification case. It is unclear how the pro-
posed methods work and perform in multi-class
cases in practice.

	Introduction
	Background
	Supervised Learning
	Boosted Tree Ensembles
	Classifier Robustness
	Robustness Verification of Tree Ensembles

	Robustness Verification of Large-Spread Boosted Ensembles
	Optimization Problem
	Basic Verification Algorithm
	Efficient Verification Algorithm

	Solving the Optimization Problem
	Solution for L-Attackers
	Solution for L0-Attackers
	Solution for Lp-Attackers
	NP-Hardness Result

	Implementation
	Experimental Evaluation
	Methodology
	Accuracy and Robustness
	Performance and Scalability

	Comparison With Large-Spread Ensembles
	Application to Security-Related Tasks
	Datasets and Security Properties
	Experimental Methodology and Results

	Related Work
	Conclusion
	References
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Theorem 2
	Appendix C: Proof of Theorem 3
	Appendix D: Verification of Security-Related Properties
	Appendix E: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

