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ABSTRACT
Verifying the robustness of machine learning models against eva-

sion attacks at test time is an important research problem. Unfor-

tunately, prior work established that this problem is NP-hard for

decision tree ensembles, hence bound to be intractable for specific

inputs. In this paper, we identify a restricted class of decision tree

ensembles, called large-spread ensembles, which admit a security

verification algorithm running in polynomial time. We then pro-

pose a new approach called verifiable learning, which advocates the

training of such restricted model classes which are amenable for

efficient verification. We show the benefits of this idea by designing

a new training algorithm that automatically learns a large-spread

decision tree ensemble from labelled data, thus enabling its secu-

rity verification in polynomial time. Experimental results on public

datasets confirm that large-spread ensembles trained using our

algorithm can be verified in a matter of seconds, using standard

commercial hardware. Moreover, large-spread ensembles are more

robust than traditional ensembles against evasion attacks, at the

cost of an acceptable loss of accuracy in the non-adversarial setting.

CCS CONCEPTS
• Theory of computation→ Problems, reductions and complete-

ness; • Security and privacy→ Logic and verification; • Com-
puting methodologies→ Supervised learning by classifica-
tion; Classification and regression trees.
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Machine Learning and Security, Robustness, Verification and Pro-

gram Analysis for Machine Learning Models
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1 INTRODUCTION
Machine learning (ML) is now phenomenally popular and found an

incredible number of applications. The more ML becomes pervasive
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and applied to critical tasks, however, the more it becomes impor-

tant to verify whether automatically trained ML models satisfy

desirable properties. This is particularly relevant in the security

setting, where models trained using traditional learning algorithms

proved vulnerable to evasion attacks, i.e., malicious perturbations

of inputs designed to force mispredictions at test time [3, 15, 34].

Unfortunately, verifying the security of ML models against eva-

sion attacks is a computationally hard problem, because verification

must account for all the possible malicious perturbations that the

attacker may perform. In this work, we are concerned about the

security of decision tree ensembles [5], a well-known class of ML

models particularly popular for non-perceptual classification tasks,

which already received significant attention by the research com-

munity. Kantchelian et al. [23] first proved that the problem of

verifying security against evasion attacks for decision tree ensem-

bles is NP-complete when malicious perturbations are modeled by

an arbitrary 𝐿𝑝 -norm. In more recent work, Wang et al. [41] further

investigated the problem and observed that the existing negative

result largely generalizes to the apparently simpler case of decision

stump ensembles, i.e., ensembles including just trees of depth one.

They thus proposed incomplete verification approaches for decision

tree and decision stump ensembles, which can formally prove the

absence of evasion attacks, but may incorrectly report evasion at-

tacks also for secure inputs. This conservative approach is efficient

and provides formal security proofs, however it is approximated

and can draw a pessimistic picture of the actual security guaran-

tees provided by the ML model. Complete verification approaches

against specific attackers, e.g., modeled in terms of the 𝐿∞-norm,

have also been proposed [12, 31]. They proved to be reasonably

efficient in practice for many cases, however they have to deal with

the NP-hardness of security verification, hence they are inherently

bound to fail in the general setting, especially when the size of the

decision tree ensembles increases. As a matter of fact, prior experi-

mental evaluations show that security verification does not always

terminate within reasonable time and memory bounds, leading to

approximated estimates of the actual robustness of the decision

tree ensemble against evasion attacks.

Contributions. We propose a novel approach to the security veri-

fication of decision tree ensembles, called verifiable learning. Our

key idea is moving away from the intractable verification problems

arising from arbitrary models to rather focus on learning restricted

model classes designed to be easily verifiable. In particular:

(1) We identify a restricted class of decision tree ensembles,

called large-spread ensembles, which admit a security veri-

fication algorithm running in polynomial time for evasion
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®𝑥, ®𝑧 Instances drawn from the feature space X
𝑥𝑖 𝑖-th component of the vector ®𝑥
𝑦 Class label drawn from the set of labels Y
𝑑 Number of features of ®𝑥 (i.e., dimensionality of X)
𝑡 Decision tree

𝑛 Number of nodes of a decision tree

𝑇 Tree ensemble

𝑁 Number of nodes of a tree ensemble

𝑚 Number of trees of a tree ensemble

®𝛿 Adversarial perturbation

Δ Norm of an adversarial perturbation

𝐴𝑝,𝑘 Attacker based on 𝐿𝑝 -norm (max. perturbation 𝑘)

Table 1: Summary of notation. In the definitions of 𝑛, 𝑁 ,𝑚
we assume that the decision tree and tree ensemble we are
predicating upon are clear from the context.

attacks modeled in terms of an arbitrary 𝐿𝑝 -norm, thus mov-

ing away from existing NP-hardness results (Section 3).

(2) We propose a new training algorithm that automatically

learns a large-spread decision tree ensemble amenable for

efficient security verification. In short, our algorithm first

trains a traditional decision tree ensemble and then prunes

it to satisfy the proposed large-spread condition (Section 4).

(3) We implement our training algorithm and experimentally

verify its effectiveness on four public datasets. Our large-

spread ensembles are more robust than traditional ensembles

against evasion attacks and admit a much more efficient

security verification, at the cost of just an acceptable loss of

accuracy in the non-adversarial setting (Section 5).

Code availability. Wemake our code available online (https://github.

com/LorenzoCazzaro/Verifiable-Learning-Robust-Tree-Ensembles).

2 BACKGROUND
In this section we review a few notions required to appreciate the

rest of the paper. To improve readability, we summarize the main

notation used in this paper in Table 1.

2.1 Supervised Learning
Let X ⊆ R𝑑 be a 𝑑-dimensional vector space of real-valued features.

An instance ®𝑥 ∈ X is a 𝑑-dimensional feature vector ⟨𝑥1, 𝑥2, . . . , 𝑥𝑑 ⟩
representing an object in the vector space X. Each instance is

assigned a class label 𝑦 ∈ Y by an unknown target function

𝑓 : X → Y. As common in the literature, we focus on binary

classification, i.e., we let Y = {+1,−1}, because any multi-class

classification problem can be encoded in terms of multiple binary

classification problems.

Supervised learning algorithms automatically learn a classifier

𝑔 : X → Y from a training set of correctly labeled instances

Dtrain = {( ®𝑥𝑖 , 𝑓 ( ®𝑥𝑖 ))}𝑖 , with the goal of approximating the tar-

get function 𝑓 as accurately as possible based on the empirical

observations in the training set. The performance of classifiers

is normally estimated on a test set of correctly labeled instances

Dtest = {(®𝑧𝑖 , 𝑓 (®𝑧𝑖 ))}𝑖 , disjoint from the training set, yet drawn from

𝑥1 ≤ 10

𝑥2 ≤ 5

+1 −1

𝑥2 ≤ 8

+1 −1

Figure 1: Example of decision tree.

the same data distribution. For example, the standard accuracy mea-

sure 𝑎(𝑔,Dtest) counts the percentage of test instances where the
classifier 𝑔 returns a correct prediction.

2.2 Decision Trees and Tree Ensembles
In this paper, we focus on traditional binary decision trees for clas-

sification [5]. Decision trees can be inductively defined as follows:

a decision tree 𝑡 is either a leaf 𝜆(𝑦) for some label 𝑦 ∈ Y or an

internal node 𝜎 (𝑓 , 𝑣, 𝑡𝑙 , 𝑡𝑟 ), where 𝑓 ∈ {1, . . . , 𝑑} identifies a feature,
𝑣 ∈ R is a threshold for the feature, and 𝑡𝑙 , 𝑡𝑟 are decision trees

(left and right child). We just write 𝜎 (𝑓 , 𝑣) to represent an internal

node when 𝑡𝑙 , 𝑡𝑟 are unimportant. Decision trees are learned by

initially putting all the training set into the root of the tree and by

recursively splitting leaves (initially: the root) by identifying the

threshold therein leading to the best split of the training data, e.g.,

the one with the highest information gain, thus transforming the

split leaf into a new internal node.

At test time, the instance ®𝑥 traverses the tree 𝑡 until it reaches

a leaf 𝜆(𝑦), which returns the prediction 𝑦, denoted by 𝑡 ( ®𝑥) = 𝑦.

Specifically, for each traversed tree node 𝜎 (𝑓 , 𝑣, 𝑡𝑙 , 𝑡𝑟 ), ®𝑥 falls into

the left sub-tree 𝑡𝑙 if 𝑥 𝑓 ≤ 𝑣 , and into the right sub-tree 𝑡𝑟 otherwise.

Fig. 1 represents an example decision tree of depth 2, which assigns

label +1 to the instance ⟨12, 7⟩ and label −1 to the instance ⟨8, 6⟩.
To improve their performance, decision trees are often combined

into an ensemble 𝑇 = {𝑡1, . . . , 𝑡𝑚}, which aggregates individual tree

predictions, e.g., by performing majority voting. We write 𝑇 ( ®𝑥) for
the prediction of𝑇 on ®𝑥 and we let 𝑁 stand for the number of nodes

of the ensemble 𝑇 when such ensemble is clear from the context.

For simplicity, we focus on majority voting to aggregate individual

tree predictions, assuming that the number of trees 𝑚 is odd to

avoid ties. While ensembles trained using existing frameworks (like

sklearn) may use more sophisticated aggregation techniques, our

focus on large-spread ensembles trained using a custom algorithm

gives us freedom on the choice of the aggregation strategy and ma-

jority voting already proves effective in practice. Notable ensemble

methods include Random Forest [4] and Gradient Boosting [26].

2.3 Robustness
Classifiers deployed in adversarial settings may be susceptible to

evasion attacks, i.e., malicious perturbations of test instances crafted

to force prediction errors [3, 34]. To capture this problem, the ro-

bustness measure has been introduced [29]. Below, we follow the

presentation in [31].

https://github.com/LorenzoCazzaro/Verifiable-Learning-Robust-Tree-Ensembles
https://github.com/LorenzoCazzaro/Verifiable-Learning-Robust-Tree-Ensembles
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An attacker 𝐴 : X → 2
X
is modeled as a function from instances

to sets of instances, i.e.,𝐴( ®𝑥) represents the set of all the adversarial
manipulations of the instance ®𝑥 , corresponding to the possible

evasion attack attempts against ®𝑥 . The stability property requires

that the classifier does not change its original prediction on some

input for all its possible adversarial manipulations.

Definition 2.1 (Stability). The classifier 𝑔 is stable on ®𝑥 for the

attacker 𝐴 iff for all ®𝑧 ∈ 𝐴( ®𝑥) we have 𝑔(®𝑧) = 𝑔( ®𝑥).

Stability is certainly a desirable property for classifiers deployed

in adversarial settings; however, a classifier that always predicts

the same class for all the instances trivially satisfies stability for

all the attackers, but it is useless in practice because it lacks any

predictive power. Robustness improves upon stability by requiring

the classifier to also perform correct predictions.

Definition 2.2 (Robustness). The classifier 𝑔 is robust on ®𝑥 for the

attacker 𝐴 iff 𝑔( ®𝑥) = 𝑓 ( ®𝑥) and 𝑔 is stable on ®𝑥 for 𝐴.

Based on the definition of robustness, for a given attacker 𝐴, we

can define the robustness measure 𝑟𝐴 (𝑔,Dtest) by computing the

percentage of test instances where the classifier 𝑔 is robust.

In the following, we focus on attackers represented in terms of

an arbitrary 𝐿𝑝 -norm, i.e., the attacker’s capabilities are defined by

some 𝑝 ∈ N ∪ {0,∞} and the maximum perturbation 𝑘 . For fixed 𝑝

and 𝑘 , we assume the attacker 𝐴𝑝,𝑘 ( ®𝑥) = {®𝑧 ∈ X | | |®𝑧 − ®𝑥 | |𝑝 ≤ 𝑘}.

3 EFFICIENT ROBUSTNESS VERIFICATION
We first review results regarding the robustness verification prob-

lem for single decision trees (Section 3.1). We then generalize the

result to𝑚 trees by introducing large-spread decision tree ensembles

(Section 3.2), which enable robustness verification in𝑂 (𝑁+𝑚 log𝑚)
time. This is a major improvement over traditional decision tree

ensembles, for which robustness verification is NP-complete [23].

3.1 Decision Trees
The robustness verification problem can be solved in𝑂 (𝑛𝑑) time for

a decision tree with 𝑛 nodes when the attacker is expressed in terms

of an arbitrary 𝐿𝑝 -norm [41]. This generalizes a previous result for

the 𝐿∞-norm [12]. The key idea of the algorithm is that stability on

the instance ®𝑥 can be verified by identifying all the leaves that are

reachable as the result of an evasion attack attempt ®𝑧 ∈ 𝐴𝑝,𝑘 ( ®𝑥);
hence, stability holds iff all such leaves predict the same class. This

set of leaves can be computed by means of a simple tree traversal.

Correspondingly, assuming that ®𝑥 has label 𝑦, a decision tree 𝑡 is

robust on ®𝑥 iff 𝑡 ( ®𝑥) = 𝑦 and there does not exist any reachable leaf

assigning to ®𝑥 a label different from 𝑦. The algorithm operates in

two steps: (1) tree annotation and (2) robustness verification.

3.1.1 Step 1 – Tree Annotation. The first step of the algorithm is

a pre-processing operation – performed only once – where each

node of the decision tree is annotated with auxiliary information

for the second step. The annotations are hyper-rectangles that

symbolically represent the set of instances which may traverse

the nodes upon prediction. The algorithm first annotates the root

with the 𝑑-dimensional hyper-rectangle (−∞, +∞]𝑑 , meaning that

every instance will traverse the root. Children are then annotated

by means of a recursive tree traversal: concretely, if the father

node 𝜎 (𝑓 , 𝑣, 𝑡1, 𝑡2) is annotated with (𝑙1, 𝑟1] × . . .× (𝑙𝑑 , 𝑟𝑑 ], then the

annotations of the roots of 𝑡1 and 𝑡2 are defined as (𝑙1
1
, 𝑟1
1
] × . . . ×

(𝑙1
𝑑
, 𝑟1
𝑑
] and (𝑙2

1
, 𝑟2
1
] × . . . × (𝑙2

𝑑
, 𝑟2
𝑑
] respectively, where:

(𝑙1𝑖 , 𝑟
1

𝑖 ] =
{
(𝑙𝑖 , 𝑟𝑖 ] ∩ (−∞, 𝑣] = (𝑙𝑖 ,min{𝑟𝑖 , 𝑣}] if 𝑖 = 𝑓

(𝑙𝑖 , 𝑟𝑖 ] otherwise,
(1)

and:

(𝑙2𝑖 , 𝑟
2

𝑖 ] =
{
(𝑙𝑖 , 𝑟𝑖 ] ∩ (𝑣, +∞) = (max{𝑙𝑖 , 𝑣}, 𝑟𝑖 ] if 𝑖 = 𝑓

(𝑙𝑖 , 𝑟𝑖 ] otherwise.
(2)

The annotation process terminates when all the nodes have been

annotated. Note that the complexity of this annotation step is𝑂 (𝑛𝑑),
because all 𝑛 nodes are traversed and annotated with a hyper-

rectangle of size 𝑑 .

3.1.2 Step 2 – Robustness Verification. Given an annotated deci-

sion tree and an instance ®𝑥 , it is possible to identify the set of

leaves which may be reached by ®𝑥 upon prediction in presence of

adversarial manipulations.

Let𝐻 = (𝑙1, 𝑟1] × . . .× (𝑙𝑑 , 𝑟𝑑 ] be the hyper-rectangle annotating
a leaf 𝜆(𝑦′). The minimal perturbation required to push ®𝑥 into 𝜆(𝑦′)
is dist( ®𝑥, 𝐻 ) = ®𝛿 ∈ R𝑑 , where:1

𝛿𝑖 = dist( ®𝑥, 𝐻𝑖 ) =


0 if 𝑥𝑖 ∈ 𝐻𝑖 = (𝑙𝑖 , 𝑟𝑖 ]
𝑙𝑖 − 𝑥𝑖 + 𝜀 if 𝑥𝑖 ≤ 𝑙𝑖

𝑟𝑖 − 𝑥𝑖 if 𝑥𝑖 > 𝑟𝑖 .

(3)

Thus, given the instance ®𝑥 with label 𝑦, it is possible to compute

the set:

𝐷 =

{
| | ®𝛿 | |𝑝 | ∃𝐻 : dist( ®𝑥, 𝐻 ) = ®𝛿 ∧ || ®𝛿 | |𝑝 ≤ 𝑘

∧𝐻 annotates a leaf 𝜆(𝑦′) with 𝑦′ ≠ 𝑦

}
. (4)

In other words, during the visit we find the leaves with a wrong

class where ®𝑥 might fall as the result of adversarial manipulations by

the attacker 𝐴𝑝,𝑘 and we compute the norms | | ®𝛿 | |𝑝 of the minimal

perturbations
®𝛿 to be applied to ®𝑥 to push it there. Hence, the tree

is robust against the attacker 𝐴𝑝,𝑘 iff 𝐷 = ∅. This computation can

be performed in 𝑂 (𝑛𝑑) time, since we have 𝑂 (𝑛) leaves and each

vector
®𝛿 with its norm can be computed in Θ(𝑑) time.

3.2 Generalization to Tree Ensembles
The robustness verification problem is NP-complete for tree en-

sembles when the attacker is expressed in terms of an arbitrary

𝐿𝑝 -norm [23]. Of course, this negative result predicates over ar-

bitrary tree ensembles, but does not exclude the possibility that

restricted classes of ensembles may admit a more efficient robust-

ness verification algorithm. In this section we introduce the class

of large-spread tree ensembles, which rule out the key source of

complexity from the robustness verification problem and allow

robustness verification in 𝑂 (𝑁 +𝑚 log𝑚) time.

1
We write 𝑙𝑖 − 𝑥𝑖 + 𝜀 to stand for the minimum floating point number which is greater

than 𝑙𝑖 − 𝑥𝑖 . The original paper [12] uses 𝑙𝑖 − 𝑥𝑖 rather than 𝑙𝑖 − 𝑥𝑖 + 𝜀 , but this is
incorrect because

®𝛿 identifies the minimal perturbation such that ®𝑥 + ®𝛿 ∈ 𝐻 , however

𝑥𝑖 + 𝑙𝑖 − 𝑥𝑖 = 𝑙𝑖 ∉ (𝑙𝑖 , 𝑟𝑖 ]. We also assume here that 𝐻 is not empty, i.e., there does

not exist any (𝑙 𝑗 , 𝑟 𝑗 ] in 𝐻 ′ such that 𝑙 𝑗 ≥ 𝑟 𝑗 .
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𝑥1 ≤ 10

𝑡1

−1 +1

𝑥1 ≤ 12

𝑡2

+1 −1

𝑥1 ≤ 17

𝑡3

+1 −1

Figure 2: Example of tree ensemble with three decision trees.

3.2.1 Key Intuitions. The key idea of the proposed large-spread

condition allows one to verify the robustness guarantees of the

individual decision trees in the ensembles and compose their results

to draw conclusions about the robustness of the whole ensemble.

To understand why composing robustness verification results

is unfeasible for arbitrary ensembles, consider the ensemble 𝑇 in

Fig. 2 and an instance ®𝑥 with label +1 such that 𝑥1 = 11. Consider

the attacker 𝐴1,2 who can modify feature 1 of at most ±2, then for

every adversarial manipulation ®𝑧 ∈ 𝐴1,2 ( ®𝑥) we have 𝑧1 ∈ [9, 13].
We observe that the trees 𝑡1 and 𝑡2 are not robust on ®𝑥 , because
there exists an adversarial manipulation that forces them to pre-

dict the wrong class −1. However, the whole ensemble 𝑇 is robust

on ®𝑥 , because 𝑇 ( ®𝑥) = +1 and for every adversarial manipulation

®𝑧 ∈ 𝐴1,2 ( ®𝑥) we have 𝑇 (®𝑧) = +1, because either 𝑡1 or 𝑡2 alone is

affected by the attack, hence at least two out of the three trees in

the ensemble always perform the correct prediction. The example

is deliberately simple to show that attacks against two different

trees might be incompatible, i.e., an attack working against one tree

does not necessarily work against the other tree and vice-versa.

This implies that the combination of multiple non-robust trees can

lead to the creation of a robust ensemble.

The key intuition enabling our compositional reasoning is that

interactions among different trees are only possiblewhen the thresh-

olds therein are close enough to each other. Indeed, in our example

we showed that there exists an instance ®𝑥 which can be successfully

attacked in both 𝑡1 and 𝑡2, yet no attack succeeds against both trees

at the same time. The reason why this happens is that the thresholds

in the roots of the trees (10 and 12 respectively) are too close to each

other when taking into account the possible adversarial manipula-

tions: an adversarial manipulation can corrupt the original feature

value 11 to produce an arbitrary value in the interval [9, 13], which
suffices to enable attacks in both 𝑡1 and 𝑡2. However, none of the

attacks against 𝑡1 works against 𝑡2 and vice-versa. Conversely, it is

not possible to find any instance ®𝑥 which can be attacked in both 𝑡2
and 𝑡3, because for every adversarial manipulation ®𝑧 ∈ 𝐴1,2 ( ®𝑥) we
have 𝑧1 ∈ [𝑥1−2, 𝑥1+2] and the distance between the thresholds in

the trees (17−12 = 5 > 4) is large enough to ensure that the problem

of incompatible attacks cannot exist, because the feature 1 can be

attacked just in one of the two trees. For example, if 𝑥1 = 14, then

only 𝑡2 can be attacked, while if 𝑥1 = 16 only 𝑡3 can be attacked; if

𝑥1 = 15, instead, neither 𝑡2 nor 𝑡3 can be attacked.

3.2.2 Large-Spread Ensembles. We formalize this intuition by defin-

ing the 𝑝-spread of a tree ensemble 𝑇 as the minimum distance

between the thresholds of the same feature across different trees,

according to the 𝐿𝑝 -norm. If𝜓𝑝 (𝑇 ) > 2𝑘 , where 𝑘 is the maximum

adversarial perturbation, we say that 𝑇 is large-spread.

Definition 3.1 (Large-Spread Ensemble). Given the ensemble 𝑇 =

{𝑡1, . . . , 𝑡𝑚}, its 𝑝-spread𝜓𝑝 (𝑇 ) is:

𝜓𝑝 (𝑇 ) = min

⋃
1≤ 𝑓 ≤𝑑

𝑡,𝑡 ′∈𝑇,𝑡≠𝑡 ′

{
| |𝑣 − 𝑣 ′ | |𝑝 : 𝜎 (𝑓 , 𝑣) ∈ 𝑡 ∧ 𝜎 (𝑓 , 𝑣 ′) ∈ 𝑡 ′

}
.

We say that 𝑇 is large-spread for the attacker 𝐴𝑝,𝑘 iff𝜓𝑝 (𝑇 ) > 2𝑘 .

A large-spread ensemble 𝑇 allows one to compose attacks work-

ing against individual trees to produce an attack against the ensem-

ble as follows. Assuming ®𝑧𝑖 = ®𝑥 + ®𝛿𝑖 is an attack against a tree 𝑡𝑖 ∈ 𝑇
and ®𝑧 𝑗 = ®𝑥 + ®𝛿 𝑗 is an attack against a different tree 𝑡 𝑗 ∈ 𝑇 , then
the large-spread condition guarantees that

®𝛿𝑖 and ®𝛿 𝑗 target disjoint
sets of features, i.e., they are orthogonal (

®𝛿𝑖 · ®𝛿 𝑗 = 0). Indeed, each

feature can be corrupted of 𝑘 at most, however the same feature

can be reused in different trees only if the corresponding thresholds

are more than 2𝑘 away, hence it is impossible for any feature value

to traverse more than one threshold as the result of an evasion

attack (we formalize and prove this result in Appendix A). The

disjointness condition of attacks implies that ®𝑧 = ®𝑥 + ®𝛿𝑖 + ®𝛿 𝑗 is an
attack working against both 𝑡𝑖 and 𝑡 𝑗 (assuming | | ®𝛿𝑖 + ®𝛿 𝑗 | |𝑝 ≤ 𝑘),

because 𝑡𝑖 (®𝑧) and 𝑡 𝑗 (®𝑧) take the same prediction paths of 𝑡𝑖 (®𝑧𝑖 ) and
𝑡 𝑗 (®𝑧 𝑗 ) respectively, which are successful attacks against the two

trees. Note that this does not hold for arbitrary tree ensembles, like

the one in Fig. 2. Indeed, for that ensemble and an instance ®𝑥 such

that 𝑥1 = 11 the attack against 𝑡1 subtracts 2 from the feature 1 and

the attack against 𝑡2 adds 2 to the feature 1, hence the sum of the

two attacks would leave the instance ®𝑥 unchanged.

3.2.3 Robustness Verification of Large-Spread Ensembles. This com-

positionality result is powerful, because it allows the efficient ro-

bustness verification of large-spread ensembles. The intuition is

that – since the ensemble𝑇 is large-spread – the minimal perturba-

tions { ®𝛿𝑖 }𝑖 enabling attacks against the individual trees {𝑡𝑖 }𝑖 can be

summed up together to obtain a perturbation
®𝛿 enabling an attack

against the whole ensemble. More precisely, let 𝑇 ′ ⊆ 𝑇 be the set

of trees in 𝑇 which may suffer from a successful attack, then:

• If |𝑇 ′ | < 𝑚−1
2
+ 1, then the number of trees performing

a wrong prediction under attack is too low to identify a

successful attack against the whole ensemble.

• If |𝑇 ′ | ≥ 𝑚−1
2
+ 1, instead, we consider the 𝑚−1

2
+ 1 attacks

{ ®𝛿𝑖 }𝑖 with the smallest 𝐿𝑝 -norm. An attack against𝑇 is then

possible iff | | ®𝛿 | |𝑝 ≤ 𝑘 , where ®𝛿 =
∑𝑚−1

2
+1

𝑖=1
®𝛿𝑖 .

However, note that the complexity of this algorithm is 𝑂 (𝑁𝑑 +
𝑚 log𝑚) because we annotate each of the 𝑁 nodes in the ensemble
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with a hyper-rectangle of size 𝑑 and we compute the minimum per-

turbations along with their norms, as explained in Section 3.1. More-

over, to find the perturbations with the smallest norms, we have

to sort the pairs ( ®𝛿𝑖 , | | ®𝛿𝑖 | |𝑝 ) in non-decreasing order of 𝐿𝑝 -norm

in 𝑂 (𝑚 log𝑚) time. We now show that the large-spread condition

enables a more efficient algorithm, running in𝑂 (𝑁 +𝑚 log𝑚) time.

3.2.4 Optimization. If theminimal perturbations { ®𝛿𝑖 }𝑖 are pairwise
orthogonal vectors, then the following facts hold.

Fact 1. | |∑𝑞

𝑖=1
®𝛿𝑖 | |0 =

∑𝑞

𝑖=1
| | ®𝛿𝑖 | |0, if ®𝛿𝑖 · ®𝛿 𝑗 = 0, ∀(𝑖, 𝑗).

Fact 2. | |∑𝑞

𝑖=1
®𝛿𝑖 | |∞ = max

1≤𝑖≤𝑞
{| | ®𝛿𝑖 | |∞}, if ®𝛿𝑖 · ®𝛿 𝑗 = 0, ∀(𝑖, 𝑗).

Fact 3. | |∑𝑞

𝑖=1
®𝛿𝑖 | |𝑝 = (∑𝑞

𝑖=1
| | ®𝛿𝑖 | |𝑝𝑝 )1/𝑝 , if ®𝛿𝑖 · ®𝛿 𝑗 = 0, ∀(𝑖, 𝑗).

Note that the proof of Fact 1 and Fact 2 is immediate, hence we

just prove Fact 3 for the 𝐿𝑝 -norm, with 𝑝 ∈ N.

Proof. We show the equivalence for 𝑞 = 2; the case for 𝑞 > 2

is a simple generalization. By definition of 𝐿𝑝 -norm, | | ®𝛿1 + ®𝛿2 | |𝑝 =

(∑𝑑
𝑖=1 |𝛿1,𝑖 + 𝛿2,𝑖 |𝑝 )1/𝑝 . The quantity |𝛿1,𝑖 + 𝛿2,𝑖 |𝑝 is

∑𝑝

𝑗=0

(𝑝
𝑗

)
|𝛿𝑝− 𝑗
1,𝑖
·

𝛿
𝑗

2,𝑖
| for the binomial theorem. Note that the latter sum can be rewrit-

ten as |𝛿1,𝑖 |𝑝+|𝛿2,𝑖 |𝑝+
∑𝑝−1

𝑗=1

(𝑝
𝑗

)
|𝛿𝑝− 𝑗
1,𝑖
·𝛿 𝑗
2,𝑖
|, where∑𝑝−1

𝑗=1

(𝑝
𝑗

)
|𝛿𝑝− 𝑗
1,𝑖

𝛿
𝑗

2,𝑖
| =

0 because 𝛿1,𝑖 · 𝛿2,𝑖 = 0 for any 1 ≤ 𝑖 ≤ 𝑑 . Therefore, | | ®𝛿1 + ®𝛿2 | |𝑝 =

(∑𝑑
𝑖=1 |𝛿1,𝑖 |𝑝 +

∑𝑑
𝑖=1 |𝛿2,𝑖 |𝑝 )1/𝑝 = ( | | ®𝛿1 | |𝑝𝑝 + || ®𝛿2 | |

𝑝
𝑝 )1/𝑝 .

The generalization to an arbitrary number of vectors 𝑞 > 2

involves a multinomial theorem instead of a binomial theorem. □

We introduce the following operator to have a suitable way of

referring to the result of the three facts above:

𝑞⊕
𝑖=0

| | ®𝛿𝑖 | |𝑝 =


∑𝑞

𝑖=1
| | ®𝛿𝑖 | |0, if 𝑝 = 0

max

1≤𝑖≤𝑞
{| | ®𝛿𝑖 | |∞} if 𝑝 = ∞

(∑𝑞

𝑖=1
| | ®𝛿𝑖 | |𝑝𝑝 )1/𝑝 if 𝑝 ∈ N.

(5)

Fact 1, 2, and 3 imply that we do not actually need to explicitly

compute an adversarial perturbation if we just want its 𝐿𝑝 -norm,

which is exactly our case because we just need to check whether

such norm does not exceed 𝑘 . Since any adversarial perturbation

against a large-spread ensemble results from the sum of pairwise

orthogonal vectors, we can use Eq. 5 to compute the norm directly

from the norms of the orthogonal vectors, i.e., the verification

algorithm can operate on scalars rather than vectors, thus reducing

its complexity by a 𝑑 factor.

In light of these considerations, we now revisit the tree traversal

from Section 3.1 to show that we can compute for each leaf of the

tree just a scalar Δ = | | ®𝛿 | |𝑝 , where ®𝛿 = dist( ®𝑥, 𝐻 ) and 𝐻 is the

hyper-rectangle which would normally annotate the leaf. Similarly

to the linear-time tree visit described in [12] for the 𝐿∞-norm,

the idea is to maintain one global hyper-rectangle during the visit

instead of one hyper-rectangle per node. Ultimately, this reduces the

time complexity from 𝑂 (𝑛𝑑) to the optimal 𝑂 (𝑛), since the hyper-
rectangle is not copied from parent to children. The optimized

variant of the algorithm is described in the Reachable procedure

of Algorithm 1. This 𝑂 (𝑛)-time algorithm for arbitrary 𝐿𝑝 -norm is,

in fact, a combination of the 𝑂 (𝑛)-time algorithm of [12] (which

Algorithm 1 Optimized robustness verification algorithm for deci-

sion trees.

1: function Reachable(𝑡, 𝑝, 𝑘, ®𝑥,𝑦)
2: 𝐻 ← (−∞, +∞]𝑑
3: Δ← 0

4: return Traverse(𝑡, 𝑝, 𝑘, ®𝑥,𝑦, 𝐻,Δ)
5:

6: function Traverse(𝑡, 𝑝, 𝑘, ®𝑥,𝑦, 𝐻,Δ)
7: if 𝑡 = 𝜆(𝑦′) then
8: if Δ ≤ 𝑘 and 𝑦′ ≠ 𝑦 then
9: return {Δ}
10: return ∅
11: Let 𝑡 = 𝜎 (𝑓 , 𝑣, 𝑡𝑙 , 𝑡𝑟 )
12: 𝐷 ← ∅
13: 𝐻∗

𝑓
← 𝐻𝑓 ⊲ copy

14: 𝛿𝑓 = dist( ®𝑥, 𝐻𝑓 ) ⊲ Eq. 3

15: 𝐻𝑓 ← 𝐻∗
𝑓
∩ (−∞, 𝑣] ⊲ Eq. 1

16: 𝛿 ′
𝑓
= dist( ®𝑥, 𝐻𝑓 ) ⊲ Eq. 3

17: Δ𝑙 ← Update-Norm(𝑝,Δ, 𝛿𝑓 , 𝛿 ′𝑓 ) ⊲ Eq. 6

18: 𝐷 ← 𝐷 ∪ Traverse(𝑡𝑙 , 𝑝, 𝑘, ®𝑥,𝑦, 𝐻,Δ𝑙 )
19: 𝐻𝑓 ← 𝐻∗

𝑓
∩ (𝑣, +∞) ⊲ Eq. 2

20: 𝛿 ′
𝑓
= dist( ®𝑥, 𝐻𝑓 ) ⊲ Eq. 3

21: Δ𝑟 ← Update-Norm(𝑝,Δ, 𝛿𝑓 , 𝛿 ′𝑓 ) ⊲ Eq. 6

22: 𝐷 ← 𝐷 ∪ Traverse(𝑡𝑟 , 𝑝, 𝑘, ®𝑥,𝑦, 𝐻,Δ𝑟 )
23: 𝐻𝑓 ← 𝐻∗

𝑓
⊲ Restore hyper-rectangle

24: return 𝐷

25:

26: function Robust-Tree(𝑡, 𝑝, 𝑘, ®𝑥,𝑦)
27: if 𝑡 ( ®𝑥) = 𝑦 then
28: 𝐷 ← Reachable(𝑡, 𝑝, 𝑘, ®𝑥,𝑦)
29: if 𝐷 = ∅ then
30: return True

31: return False

works only for the 𝐿∞-norm) with the generalization to any 𝐿𝑝 -

norm of [41] (which however runs in 𝑂 (𝑛𝑑) time).

We implement 𝐻 as an initially-empty map (e.g., using a hash

table): 𝐻𝑖 ∈ R2 is the entry associated to the 𝑖-th feature. If the map

does not contain an entry for the 𝑖-th feature, then it is implicitly

assumed𝐻𝑖 = (−∞, +∞]. Let𝐻 = (𝑙1, 𝑟1] × . . .× (𝑙𝑑 , 𝑟𝑑 ] be the state
of the hyper-rectangle when visiting node 𝑡 = 𝜎 (𝑓 , 𝑣, 𝑡1, 𝑡2). When

moving to a child 𝑡 𝑗 of 𝑡 , with 𝑗 ∈ {1, 2}, note that the distance vector
®𝛿 changes only in its 𝑓 -th component 𝛿𝑓 , since only the 𝑓 -th com-

ponent (𝑙𝑓 , 𝑟 𝑓 ] of the hyper-rectangle 𝐻 changes. We can therefore

updateΔ efficiently as follows. LetΔ′ and𝐻 ′ = (𝑙 ′
1
, 𝑟 ′
1
]×. . .×(𝑙 ′

𝑑
, 𝑟 ′
𝑑
]

be the perturbation distance and hyper-rectangle associated to any

of 𝑡 ’s children. Let 𝛿 ′
𝑓
be the quantity defined in Eq. 3. We extend

the linear-time algorithm of [12] to an arbitrary 𝐿𝑝 -norm by noting
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that the following is implied by Facts 1, 2, and 3:

Update-Norm(𝑝,Δ, 𝛿𝑓 , 𝛿 ′𝑓 ) =


Δ − | |𝛿𝑓 | |0 + | |𝛿 ′𝑓 | |0 if 𝑝 = 0

max

(
Δ, |𝛿 ′

𝑓
|
)

if 𝑝 = ∞(
Δ𝑝 − |𝛿𝑓 |𝑝 + |𝛿 ′𝑓 |

𝑝
)
1/𝑝

if 𝑝 ∈ N.
(6)

By definition, it is clear that Update-Norm is computed in 𝑂 (1)
time. The correctness of the case 𝑝 = ∞ (as also discussed in [12])

follows from the fact that it must be |𝛿 ′
𝑓
| ≥ |𝛿𝑓 |, since (𝑙 ′𝑖 , 𝑟

′
𝑖
] ⊆

(𝑙𝑖 , 𝑟𝑖 ]. In conclusion, we spend 𝑂 (1) time per node and the time

complexity of the whole visit is therefore 𝑂 (𝑛). Hence, the set

𝐷 in Eq. 4 is computed in 𝑂 (𝑛) time rather than 𝑂 (𝑛𝑑) time as

we previously described in Section 3.1. This also lowers the time

complexity of the robustness verification for decision trees shown in

the Robust-Tree procedure of Algorithm 1 to just𝑂 (𝑛) rather than
𝑂 (𝑛𝑑). Since robustness verification for large-spread ensembles

builds on the verification algorithm of the individual trees therein,

this optimization reduces the complexity of our final algorithm.

3.2.5 Final Algorithm. We conclude this section with Algorithm 2,

our robustness verification algorithm for large-spread ensembles,

whose correctness is stated in the following theorem and proved in

Appendix A. It follows the description in Section 3.2.3, revised to

operate with norms (scalars) rather than vectors.

Theorem 3.2. Let ®𝑥 be an instance with label 𝑦. A tree ensemble

𝑇 such that 𝜓𝑝 (𝑇 ) > 2𝑘 is robust on ®𝑥 against the attacker 𝐴𝑝,𝑘 iff

Robust(𝑇, 𝑝, 𝑘, ®𝑥,𝑦) returns True.

Observe that the complexity of Algorithm 2 is 𝑂 (𝑁 +𝑚 log𝑚),
where 𝑁 and𝑚 are, respectively, the total number of nodes and

trees in the ensemble. Verifying the robustness of the𝑚 individual

trees in the ensemble and updating vector ®Δ takes𝑂 (𝑁 ) time thanks

to the linear-time Algorithm 1. Afterwards, the algorithm sorts ®Δ
in 𝑂 (𝑚 log𝑚) time and computes the minimum norm required to

attack at least
𝑚−1
2
+ 1 trees in 𝑂 (𝑚) time.

4 TRAINING LARGE-SPREAD ENSEMBLES
We have described an efficient robustness verification algorithm for

large-spread ensembles in Section 3. However, traditional decision

tree ensembles trained using, e.g., sklearn, do not necessarily en-

joy the large-spread condition. Here we discuss possible ideas for

training algorithms designed to enforce the large-spread condition

and we present a specific solution from the design space.

4.1 Design Space
While reasoning about the design of a training algorithm for large-

spread ensembles, we considered different approaches falling in

three broad classes:

(1) Custom ensemble learning algorithms. Develop new learning

algorithms in the spirit of Random Forest [4] or Gradient

Boosting [26], designed to constrain the ensemble shape so

as to satisfy the large-spread condition. For example, one

might train each tree while taking into account the thresh-

olds already present in the previously trained trees, to then

remove the training data whichmight lead to learning thresh-

olds which are too close to the existing ones. Indeed, recall

Algorithm 2 Robustness verification algorithm for large-spread

tree ensembles.

1: function Robust(𝑇, 𝑝, 𝑘, ®𝑥,𝑦)
2: if 𝑇 ( ®𝑥) = 𝑦 then
3: return Stable(𝑇, 𝑝, 𝑘, ®𝑥,𝑦)
4: return False

5:

6: function Stable(𝑇, 𝑝, 𝑘, ®𝑥,𝑦)
7: num_unstable_trees← 0

8:
®Δ← [+∞, . . . , +∞] ⊲ Vector of size𝑚

9: for 𝑖 ← 1 to𝑚 do
10: 𝐷 ← Reachable(𝑡𝑖 , 𝑝, 𝑘, ®𝑥,𝑦)
11: if 𝐷 ≠ ∅ then
12: Δ𝑖 ← min𝐷

13: num_unstable_trees← num_unstable_trees + 1
14: if num_unstable_trees ≥ (𝑚 − 1)/2 + 1 then
15: Sort ®Δ in non-decreasing order

16: Δ =
⊕(𝑚−1)/2+1

𝑖=0
Δ𝑖 ⊲ Eq. 5

17: if Δ ≤ 𝑘 then
18: return False

19: return True

that thresholds are learned from the training data, hence all

the possible thresholds are known a priori.

(2) Training set partitioning. Pre-compute a partition of the train-

ing data so that each decision tree in the ensemble is trained

over highly separated instances, thus leading to an ensemble

of trees satisfying the large-spread condition. The simplest

instantiation of this idea would be partitioning the set of

features and train different trees over different subsets of

features, so that the large-spread condition is trivially sat-

isfied, but more fine-grained strategies based on instance

partitioning would also be feasible.

(3) Pruning techniques. Train a standard decision tree ensemble,

e.g., using the Random Forest algorithm, and prune it so as

to keep only trees satisfying the large-spread condition. A

variant of this technique might perform different types of

mutations of the available trees to improve the effectiveness

of pruning.

Although we consider all these routes to be viable and worth

investigating, in this work we decide to prioritize the third class

of solutions. Compared to the first class, pruning leads to a range

of simple and intuitive solutions, which take advantage of state-

of-the-art implementations of existing training algorithms, e.g.,

those available in sklearn. This simplifies the deployment of an

efficient and robust implementation. Moreover, pruning does not

necessarily require a massive amount of training data and features,

as needed for an effective training set partitioning (second class).

In the last part of this section, we also discuss how to leverage

feature partitioning to improve the effectiveness of our pruning-

based learning algorithm in those settings where a high number of

features is available (hierarchical training).
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4.2 Proposed Training Algorithm
Here we present our training algorithm. We motivate its design,

describe how it works and discuss a few relevant aspects of the

proposed solution.

4.2.1 Preliminaries. Our problem of interest can be formulated as

follows: given a decision tree ensemble 𝑇 and a size 0 < 𝑠 ≤ |𝑇 |,
determine whether there exists an ensemble 𝑇 ′ ⊆ 𝑇 such that 𝑇 ′

is large-spread and |𝑇 ′ | = 𝑠 . We refer to this problem as the large-

spread subset problem for decision tree ensembles. Unfortunately,

we can prove that this problem is NP-hard. The proof is provided

in Appendix B.

Theorem 4.1. The large-spread subset problem is NP-hard.

The theorem implies that it is computationally hard to train large-

spread ensembles by pruning when the desired number of trees

therein is enforced a priori, which is normally the case because the

number of trees is a standard hyper-parameter of ensemble meth-

ods. One might argue that this negative result is not a showstopper,

because training is performed just once and one might devise effi-

cient heuristic approaches to approximate the large-spread subset

problem, however preliminary experiments on public datasets sug-

gest that any training approach which is purely based on pruning is

likely ineffective in practice. Indeed, we empirically observed on our

datasets that traditional random forests trained using sklearn are

not directly amenable for pruning, because any two trees in the en-

semble already violate the large-spread condition when joined into

an ensemble of size two. Our understanding of this phenomenon

is that there exist some important features which are pervasively

reused across different trees, which often learn the same thresholds,

thus making the identification of a large-spread ensemble unfea-

sible. Our training algorithm thus integrates a greedy heuristic

approach to pruning with a mutation operation, which perturbs

thresholds so as to actively enforce the large-spread condition even

when it would not be possible by pruning alone.

4.2.2 Training Algorithm. The proposed training algorithm takes

as input a training set Dtrain, a number of trees 𝑚, a norm 𝑝

and a maximum perturbation 𝑘 . In addition to the classic hyper-

parameters of tree learning such as tree depth, the algorithm relies

on a few specific hyper-parameters: a maximum number of iter-

ations 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 ∈ N, a multiplicative factor 𝑀𝑈𝐿𝑇 ∈ N and a

real-valued interval 𝐼𝑁𝑇𝑉 ∈ R×R. From a high level point of view,

the algorithm operates by training a standard random forest 𝑇 in-

cluding𝑀𝑈𝐿𝑇 ·𝑚 trees to then select a set of𝑚 trees constituting a

large-spread ensemble𝑇 ∗. This is done by a combination of pruning

and mutation of the trees in 𝑇 . After picking a random tree of 𝑇

to begin with, the algorithm iteratively tries to identify the other

𝑚 − 1 trees by means of a greedy approach. The candidate tree 𝑡 to

be inserted in 𝑇 ∗ is always the tree in 𝑇 minimizing the number of

feature overlaps with 𝑇 ∗, i.e., the number of features violating the

large-spread condition in𝑇 ∗∪{𝑡}. If the number of feature overlaps

is greater than zero, the ensemble is fixed to enforce the large-spread

condition by iteratively removing the overlaps. In particular, let

𝜎 (𝑓 , 𝑣) and 𝜎 (𝑓 , 𝑣 ′) be two nodes from different trees such that

| |𝑣 − 𝑣 ′ | |𝑝 ≤ 2𝑘 . We sample a perturbation 𝛿 ∈ 𝐼𝑁𝑇𝑉 , we subtract

𝛿 from min(𝑣, 𝑣 ′) and we sum 𝛿 to max(𝑣, 𝑣 ′) in the attempt to fix

the overlap. Since this change might introduce new overlaps, we

then iterate through the ensemble until all the overlaps have been

fixed (i.e., the ensemble is large-spread) or the maximum number

of iterations𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 have been reached. If all the overlaps of

𝑇 ∗ ∪ {𝑡} have been fixed, i.e., the resulting tree-based ensemble is

large-spread, then the extended large-spread ensemble becomes

the new large-spread ensemble 𝑇 ∗, otherwise 𝑇 ∗ is not extended
and the tree 𝑡 is discarded. Then the algorithm tries to extend 𝑇 ∗

with another tree in 𝑇 , unless 𝑇 ∗ has reached the desired number

of trees or all the trees in 𝑇 have been selected for extending the

large-spread ensemble. The pseudocode of the training algorithm

is presented in Algorithm 3.

4.2.3 Complexity. Recall that each tree has at most 𝑛 nodes and we

fix𝑀𝑈𝐿𝑇 to be a small constant, e.g.,𝑀𝑈𝐿𝑇 ∈ [2, 6]. TrainLarge-
Spread calls𝑂 (𝑚) times GetBestTree and FixForest. The former

function GetBestTree iterates at most |𝑇 | ∈ 𝑂 (𝑚) times (𝑡 ∈ 𝑇 ,
line 23) the construction of set overlaps. A naive way of building this

set is to iterate over all nodes of 𝑡 (at most 𝑛 nodes) and compare

their thresholds with all the thresholds appearing in the nodes of𝑇 ∗

(at most𝑚𝑛 nodes), leading to time 𝑂 (𝑚𝑛2) to build one instance

of overlaps. We observe that it is easy to speed up this step using

balanced search trees, but we leave optimizations to further exten-

sions of this work. To sum up, GetBestTree takes 𝑂 (𝑚2𝑛2) and,
hence, the 𝑂 (𝑚) calls to GetBestTree cost overall time 𝑂 (𝑚3𝑛2).
Function FixForest iterates𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 times the for loop at line

35. Each iteration of the for loop costs 𝑂 (1) time and there are

at most𝑚2𝑛2 iterations because the loop iterates over all possible

combinations of 𝜎 (𝑓 , 𝑣) and 𝜎 (𝑓 ′, 𝑣 ′) belonging to two distinct trees
of 𝑇 ∗. Since there are at most𝑚𝑛 nodes in 𝑇 ∗, the number of itera-

tions is at most𝑚2𝑛2. To this cost, we have to add the𝑀𝐴𝑋_𝐼𝑇𝐸𝑅

evaluations of "𝑇 ∗ is not large-spread" (line 33); this predicate can
be evaluated in𝑂 ( |𝑇 ∗ |2) = 𝑂 (𝑚2𝑛2) time by comparing all pairs of

thresholds appearing in 𝑇 ∗. We conclude that the running time of

the𝑂 (𝑚) iterations of FixForest is in total𝑂 (𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 ·𝑚3𝑛2).
This dominates the running time of the𝑂 (𝑚) iterations ofGetBest-
Tree, so we conclude that𝑂 (𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 ·𝑚3𝑛2) is also the running
time of TrainLargeSpread. This cost is paid in addition to the cost

of training the standard random forest at line 2.

As noted above, although it is feasible to reduce this complexity

using appropriate data structures, we observe that (𝑖) training is

often performed only once, so any optimization just offers limited

benefits and is left to future work, and (𝑖𝑖) the number of trees and

nodes is often small enough to make a cubic complexity acceptable

in practice. As a matter of fact, our experimental evaluation gives

evidence about the acceptable empirical efficiency of the proposed

training algorithm.

4.2.4 Hierarchical Training. We observe that our training algo-

rithm can fail, in particular when it is not possible to add one tree

to the current large-spread ensemble and reduce to zero the over-

laps by our mutation routine, i.e., the number of overlaps resulting

from adding a tree to the large-spread ensemble is too high. How-

ever, we show in our experimental evaluation (see Section 5) that

it is possible to train large-spread ensembles of different dimen-

sions after some parameter tuning. In particular, we propose an

intuitive and effective technique to mitigate the risks of failures

during training. A key insight is that the larger the ensemble is,

the more difficult it becomes to avoid violations of the large-spread
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Algorithm 3 Training algorithm for large-spread ensembles.

Require: Hyper-param.𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 ∈ N, 𝑀𝑈𝐿𝑇 ∈ N, 𝐼𝑁𝑇𝑉 ∈ R × R
1: function TrainLargeSpread(Dtrain,𝑚, 𝑝, 𝑘)

2: 𝑇 ← TrainRandomForest(Dtrain, 𝑀𝑈𝐿𝑇 ·𝑚)
3: 𝑡 ← SampleTree(𝑇 ) ⊲ Choose a random tree from𝑇

4: 𝑇 ← 𝑇 \ {𝑡 }
5: 𝑇 ∗ ← {𝑡 }
6: 𝑖 ← 1

7: while 𝑖 < 𝑀𝑈𝐿𝑇 ·𝑚 and |𝑇 ∗ | <𝑚 do
8: 𝑖 ← 𝑖 + 1
9: 𝑡 ← GetBestTree(𝑇,𝑇 ∗, 𝑝, 𝑘 )
10: 𝑇 ← 𝑇 \ {𝑡 }
11: 𝑇 ∗ ← 𝑇 ∗ ∪ {𝑡 }
12: 𝑇 ∗ ← FixForest(𝑇 ∗, 𝑝, 𝑘 )
13: if 𝑇 ∗ ≠ ⊥ then ⊲ FixForest succeded

14: 𝑇 ∗ ← 𝑇 ∗

15: if |𝑇 ∗ | =𝑚 then ⊲ TrainLargeSpread succeded

16: return𝑇 ∗

17: else
18: return ⊥
19:

20: function GetBestTree(𝑇,𝑇 ∗, 𝑝, 𝑘)
21: 𝑡∗ ← ⊥
22: 𝑚𝑖𝑛_𝑓 _𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 ← +∞
23: for 𝑡 ∈ 𝑇 do
24: 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 ← {𝜎 (𝑓 , 𝑣) ∈ 𝑡 | ∃𝜎 (𝑓 , 𝑣′ ) ∈ 𝑇 ∗ : | |𝑣−𝑣′ | |𝑝 ≤ 2𝑘 }
25: 𝑓 _𝑜𝑣 ← |{ 𝑓 | ∃𝜎 (𝑓 , 𝑣) ∈ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 } |
26: if 𝑓 _𝑜𝑣 <𝑚𝑖𝑛_𝑓 _𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 then
27: 𝑚𝑖𝑛_𝑓 _𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 ← 𝑓 _𝑜𝑣

28: 𝑡∗ ← 𝑡

29: return 𝑡∗

30:

31: function FixForest(𝑇 ∗, 𝑝, 𝑘)
32: 𝑖𝑡𝑒𝑟 ← 0

33: while𝑇 ∗ is not large-spread and 𝑖𝑡𝑒𝑟 < 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 do
34: 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1
35: for 𝑡, 𝑡 ′ ∈ 𝑇 ∗, 𝜎 (𝑓 , 𝑣) ∈ 𝑡, 𝜎 (𝑓 ′, 𝑣′ ) ∈ 𝑡 ′ do
36: if 𝑓 = 𝑓 ′ and | |𝑣 − 𝑣′ | |𝑝 ≤ 2𝑘 then
37: 𝛿 ← Random(𝐼𝑁𝑇𝑉 ) ⊲ Sample a float in 𝐼𝑁𝑇𝑉

38: if 𝑣 ≤ 𝑣′ then
39: 𝜎 (𝑓 , 𝑣) ← 𝜎 (𝑓 , 𝑣 − 𝛿 )
40: 𝜎 (𝑓 ′, 𝑣′ ) ← 𝜎 (𝑓 ′, 𝑣′ + 𝛿 )
41: else
42: 𝜎 (𝑓 , 𝑣) ← 𝜎 (𝑓 , 𝑣 + 𝛿 )
43: 𝜎 (𝑓 ′, 𝑣′ ) ← 𝜎 (𝑓 ′, 𝑣′ − 𝛿 )
44: if 𝑇 ∗ is not large-spread then
45: return ⊥
46: return𝑇 ∗

requirement, because ensembles including many trees also have

many thresholds, hence overlaps become harder to avoid. We thus

propose a hierarchical training approach as follows:

(1) We first partition the set of features in 𝑙 disjoint subsets and

we build 𝑙 different projections of the training set Dtrain,

based on such feature sets.

(2) We train a large-spread ensemble of size
𝑚
𝑙
on each of the

𝑙 different training sets using Algorithm 3 and we finally

merge all the trained ensembles into an ensemble of𝑚 trees.

Table 2: Dataset statistics.

Dataset Instances Features Distribution

Fashion-MNIST 13,866 784 50%/50%
MNIST 14,000 784 51%/49%

REWEMA 6,271 630 50%/50%
Webspam 350,000 254 70%/30%

Note that the final ensemble is indeed large-spread, because each

of the merged ensembles ensures the large-spread condition on

the trees therein, and trees from different ensembles cannot violate

the large-spread condition because they are built on disjoint sets

of features. For example, an ensemble of 100 trees can be trained

by building 4 disjoint projections of the training data (based on

feature partitioning) and training an ensemble of 25 trees on each of

them. We empirically observed that this approach may improve the

effectiveness of the training process, by enabling the construction of

larger ensembles in practice. We report on experiments confirming

this observation in the next section.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
To show the practical relevance of our theory, we develop two tools

on top of it and we prove their effectiveness on public datasets.

5.1.1 Tools. Our first tool CARVE2 is a C++ implementation of the

proposed robustness verification algorithm for large-spread ensem-

bles (Algorithm 2). It takes as input a random forest classifier 𝑇 , a

norm 𝑝 , a maximum perturbation 𝑘 and a test set Dtest to return as

output the robustness score 𝑟𝐴𝑝,𝑘
(𝑇,Dtest). CARVE assumes that

𝑇 is large-spread and implements majority voting as the aggrega-

tion scheme of individual tree predictions. Our second tool LSE

is a sequential Python implementation of the proposed training

algorithm for large-spread ensembles (Algorithm 3). Starting from

a training setDtrain, a number of trees𝑚, a norm 𝑝 and a maximum

perturbation 𝑘 , it returns a large-spread ensemble 𝑇 ∗ of 𝑚 trees

(unless the training algorithm fails by returning ⊥). The random
forest trained before pruning is created using sklearn.

5.1.2 Methodology. Our experimental evaluation is performed on

four public datasets: Fashion-MNIST
3
, MNIST

4
, REWEMA

5
and

Webspam
6
. Since Fashion-MNIST and MNIST are datasets asso-

ciated to multiclass classification tasks and we focus on binary

classification tasks in this work, we consider two subsets of them.

In particular, for Fashion-MNIST we consider the instances with

class 0 (T-shirt/top) and 3 (Dress), while for MNIST we keep the

instances representing the digits 2 and 6. The key characteristics of

the chosen datasets are reported in Table 2. The chosen datasets are

representative for different reasons: Fashion-MNIST, MNIST and

Webspam have already been considered in the robustness verifica-

tion literature [1, 12, 31, 41]; moreover, REWEMA andWebspam are

2
CARVE - CompositionAl Robustness Verifier for tree Ensembles

3
https://www.openml.org/search?type=data&sort=runs&id=40996&status=active

4
https://www.openml.org/search?type=data&sort=runs&id=554

5
https://www.kaggle.com/code/kerneler/starter-rewema-c5ce57b7-e/input

6
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

https://www.openml.org/search?type=data&sort=runs&id=40996&status=active
https://www.openml.org/search?type=data&sort=runs&id=554
https://www.kaggle.com/code/kerneler/starter-rewema-c5ce57b7-e/input
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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associated with a security-relevant classification task (malware and

spam detection, respectively) for which the robustness verification

of the employed classifier is critically important. In general, we

choose datasets with a high number of features, where it may be

useful to train large tree ensembles to reach the best performance.

Each dataset is partitioned into a training set and a test set, using

70/30 stratified random sampling.

In our experimental evaluation we make use of two training

algorithms to learn different types of classifiers: (𝑖) a majority-

voting classifier based on a traditional random forest (RF) trained

using sklearn, and (𝑖𝑖) a majority-voting classifier based on a large-

spread tree ensemble trained using LSE. Moreover, we consider

tree-based classifiers of different sizes: (𝑖) small ensembles with

25 trees of maximum depth 4; (𝑖𝑖) large ensembles with 101 trees

with maximum depth 6. We only consider ensembles with an odd

number of trees in order to avoid ties in classification.

Robustness verification is then performed using CARVE and

SILVA, a state-of-the-art verifier for traditional decision tree en-

sembles based on abstract interpretation [31]. Note that SILVA

can be applied to arbitrary ensembles, while CARVE can only be

used on large-spread ensembles. Since SILVA leverages the hyper-

rectangle abstract domain for verification, which does not introduce

any loss of precision for 𝐿∞-norm attackers but might lead to an

over-approximation for generic 𝐿𝑝 -norm attackers, we only focus

on 𝐿∞-attackers in our comparison. For the sake of completeness,

in our evaluation of CARVE we also consider robustness against

𝐿1-attackers and 𝐿2-attackers for large-spread ensembles.

Finally, in our evaluation we consider different perturbations

𝑘 ∈ {0.0050, 0.0100, 0.0150} for the MNIST, Fashion-MNIST and

REWEMA datasets, while we assume 𝑘 ∈ {0.0002, 0.0004, 0.0006}
for Webspam. We choose different perturbations for the Webspam

dataset to be aligned with previous work and to obtain roughly the

same decrease in robustness observed on the other three datasets

for the considered tree-based classifiers. Indeed, Chen et. al. [11]

showed in their experimental evaluation that the certified minimum

adversarial perturbation obtained for the Webspam dataset is one

order of magnitude smaller than the one obtained for the MNIST

dataset, i.e., models trained over Webspam would be too fragile to

be usable when tested against larger perturbations.

5.1.3 LSE Setup. Our tool LSE requires the user to specify the

value of some additional parameters (described in Section 4.2) with

respect to the traditional implementation of the training algorithm

for random forests by sklearn. The norm 𝑝 and the perturbation 𝑘

depend on the assumed attacker’s capabilities, so they do not re-

quire a particular tuning. Still, other parameters such as the number

of partitions 𝑙 for the hierarchical training and the maximum num-

ber of iterations 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 of the FixForest procedure require

some tuning. Indeed, although partitioning the features may enable

the training of larger ensembles, a too high number of partitions

might negatively affect the accuracy of the resulting large-spread

ensemble, because each sub-forest has only a partial view on the

set of available features and some patterns may not be learned. In

the same way, the maximum number of rounds 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 has

an impact on the success of the training procedure, since a min-

imum number of rounds is required to adjust the thresholds of

the ensemble, but a too high number of rounds may modify the

thresholds too much and downgrade the predictive power of the

model. We perform some experiments in order to assess the influ-

ence of these parameters on the success of training a large-spread

ensemble and on the accuracy of the resulting model to then pick

the best-performing models in our experimental evaluation. For

space reasons, we discuss details in Appendix C.

5.2 Accuracy and Robustness Results
In our first experiment we assess whether large-spread ensembles

are effective at classification and we analyze their robustness prop-

erties. Indeed, the large-spread condition enforced on the ensemble

limits the model shape, thus potentially reducing its predictive

power with respect to traditional tree ensembles. Since we are not

just concerned about accuracy but we target robustness, we also

analyze how large-spread ensembles fare against evasion attacks.

Our evaluation consists of two parts. We first compare the accuracy

and robustness of the large-spread ensembles against traditional

random forests of the same size, considering an 𝐿∞-attacker. The
robustness of the traditional models is computed using SILVA, since

CARVE can only be used for verifying large-spread ensembles. We

set a timeout per instance of one second, as in [31]. Then, we use

CARVE to verify the robustness of large-spread ensembles against

𝐿1-attackers and 𝐿2-attackers that are not supported by SILVA.

5.2.1 Comparison for 𝐿∞-norm Attackers. Table 3 shows the exper-
imental results of our comparison. Note that the value of robustness

may be approximated, since SILVA may not be able to verify robust-

ness on some instances within the time limit; for these cases, we

provide lower and upper bounds of robustness, using the± notation.
The results highlight that the large-spread ensembles are reasonably

accurate and often more robust than the random forests of the same

size. In particular, the accuracy of the large-spread ensembles is at

most 0.03 lower than the accuracy of the corresponding traditional

model in the majority of the cases, while the improvement in robust-

ness is at least 0.04 in around half of the cases. This is reassuring,

because accuracy was at stake, since the large-spread condition

restricts the shape of the ensemble and might be associated to a

reduction of predictive power. The increase of robustness is an

interesting byproduct of the large-spread condition: since thresh-

olds in different trees are far way, evasion attacks are empirically

harder to craft. Observe that the accuracy and robustness values

of the large-spread ensembles on the MNIST and Fashion-MNIST

test sets show that large-spread models present better performance

overall than the traditional ensembles. The accuracy of the large-

spread ensembles on these two test sets is usually equal to the one

of the traditional ensembles, while the robustness value improves

of at least 0.06 in half of the cases, in particular when the largest

considered perturbation 𝑘 is used as the attacker’s capability. For

example, the robustness of the large-spread ensemble with 101 trees

of maximum depth 6 and perturbation 0.0150 is at least 0.22 higher

than the robustness of the corresponding random forest, while the

accuracy decreases only by 0.04 at most. When the value of the

perturbation 𝑘 is the lowest considered, the results are still positive,

since the large-spread ensembles present the same accuracy and a

higher robustness than the ones of the traditional ensembles.

We see a slightly different trend in the results for the REWEMA

and Webspam datasets: the robustness of large-spread ensembles
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Table 3: Accuracy and robustness measures for traditional and large-spread ensembles. Robustness is computed against 𝐴∞,𝑘 .
We highlight in bold the cases in which the gap between the accuracy and the robustness of the traditional tree-based ensemble
and large-spread ensemble is at least of 0.05.

Dataset 𝑘 Trees Depth Accuracy Robustness

Traditional Large-Spread Traditional Large-Spread

Fashion-MNIST

0.0050
25 4 0.93 0.92 0.90 0.90

101 6 0.96 0.96 0.91 0.93

0.0100
25 4 0.93 0.92 0.86 0.87

101 6 0.96 0.94 0.79 0.91

0.0150
25 4 0.93 0.91 0.60 0.88
101 6 0.96 0.92 0.51 ± 0.01 0.89

MNIST

0.0050
25 4 0.97 0.97 0.90 0.96
101 6 0.99 0.99 0.94 0.97

0.0100
25 4 0.97 0.97 0.72 0.90
101 6 0.99 0.99 0.77 ± 0.02 0.97

0.0150
25 4 0.97 0.97 0.64 0.83
101 6 0.99 0.99 0.67 ± 0.05 0.94

REWEMA

0.0050
25 4 0.88 0.88 0.85 0.87

101 6 0.98 0.89 0.88 0.89

0.0100
25 4 0.88 0.88 0.83 0.87

101 6 0.98 0.89 0.86 0.88

0.0150
25 4 0.88 0.88 0.83 0.85

101 6 0.98 0.88 0.78 0.88

Webspam

0.0002
25 4 0.90 0.90 0.83 0.87

101 6 0.94 0.91 0.88 0.90

0.0004
25 4 0.90 0.89 0.80 0.86
101 6 0.94 0.89 0.85 0.86

0.0006
25 4 0.90 0.89 0.78 0.85
101 6 0.94 0.85 0.81 0.82

is always equal to or greater than the robustness of the traditional

ensembles, but the gap in accuracy with respect to the traditional

ensembles may increase, in particular when considering large ad-

versarial perturbations, which make it harder to enforce the large-

spread condition. For example, the large spread ensembles of 101

trees with maximum depth 6 trained on the two datasets present

0.88 and 0.82 robustness with perturbation 0.015 and 0.0006 (respec-

tively, +0.10 and +0.01 than the robustness of the corresponding

traditional tree ensembles), but their accuracy is 0.88 and 0.85 (re-

spectively, −0.10 and −0.09 than the accuracy of the traditional

tree ensembles). This confirms that an improvement in robustness

often occurs at the price of a decrease in accuracy, because of the

classic trade-off between accuracy and robustness [30, 37]. Even

in these cases though, adopting large-spread ensembles continues

to be useful: the accuracy is always way above the majority class

distribution, so the model is usable in the non-adversarial setting,

while being normally more robust than the traditional counterpart

and amenable for efficient security verification. To explain the ob-

served drop in accuracy for large-spread models, we compare the

permutation feature importance [4] for traditional ensembles and

large-spread ensembles to assess which features have more predic-

tive power according to the different models. The analysis is quite

interesting. For REWEMA, it shows that traditional models give

significant importance to a few numerical features which are less

important for large-spread models; large-spread models, in turn,

privilege some categorical / ordinal features which are less impor-

tant for traditional models. Instead, for Webspam, it shows that

traditional and large-spread models privilege numerical features

with many distinct values. However, the traditional models give

also importance to some features with a very skewed empirical dis-

tribution towards the value 0, while the large-spread ensembles give

more importance to features with scattered values. This motivates

why large-spread models sacrifice some predictive power, but show

better robustness in general: categorical / ordinal features and, in

general, features with more scattered values are harder to target for

𝐿𝑝 -norm attackers, because their sparse nature makes them more

robust to adversarial perturbations, i.e., larger perturbations are

required to actually traverse thresholds and thus affect predictions.

5.2.2 Additional Attackers. Table 4 shows the robustness of the

trained large-spread ensembles against different 𝐿𝑝 -attackers for

𝑝 ∈ {1, 2,∞}. As expected, the large-spread ensembles trained

on MNIST and Fashion-MNIST are generally more robust against

the weakest 𝐿1-attacker and less robust against the strongest 𝐿∞-
attacker. Instead, we observe that the large-spread ensembles trained
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Table 4: Robustness measures for large-spread ensembles
against different 𝐿𝑝 -attackers.

Dataset 𝑘 Trees Depth Robustness

𝐴∞,𝑘 𝐴
2,𝑘 𝐴

1,𝑘

Fashion-MNIST

0.0050
25 4 0.90 0.90 0.90

101 6 0.93 0.93 0.94

0.0100
25 4 0.87 0.88 0.89

101 6 0.91 0.91 0.93

0.0150
25 4 0.88 0.89 0.89

101 6 0.89 0.89 0.91

MNIST

0.0050
25 4 0.96 0.96 0.97

101 6 0.97 0.98 0.98

0.0100
25 4 0.90 0.93 0.95

101 6 0.97 0.98 0.98

0.0150
25 4 0.83 0.88 0.93

101 6 0.94 0.95 0.97

REWEMA

0.0050
25 4 0.87 0.87 0.87

101 6 0.89 0.89 0.89

0.0100
25 4 0.87 0.87 0.87

101 6 0.88 0.88 0.88

0.0150
25 4 0.85 0.87 0.87

101 6 0.88 0.88 0.88

Webspam

0.0002
25 4 0.87 0.88 0.88

101 6 0.90 0.90 0.90

0.0004
25 4 0.86 0.86 0.86

101 6 0.86 0.86 0.87

0.0006
25 4 0.85 0.86 0.86

101 6 0.82 0.83 0.83

on the REWEMA andWebspam datasets show a different behaviour:

the robustness values of the large-spread ensemble models are al-

most the same for every attacker considered. This is explained by

the fact that large-spread models trained over such datasets make

a more significant use of categorical / ordinal features and features

with more scattered values, as discussed in the previous section. The

attacker thus cannot perturb the test instances to cross thresholds

of important features for prediction, independently of the chosen

𝐿𝑝 -norm. We remark here that the effectiveness of CARVE does

not depend upon 𝑝 : robustness verification is always exact and the

complexity of the analysis is independent from 𝑝 . This motivates

why the rest of our evaluation only considers the case 𝑝 = ∞.

5.3 Efficiency of Robustness Verification
We now compare the SILVA and CARVE robustness verification

tools along two different dimensions: verification time and memory

consumption. For simplicity, we only focus on the verification of

large ensembles with 101 trees and maximum depth 6 on the MNIST

dataset with 𝑘 = 0.0150. As emerged from the results in Section 5.2,

this is a setting where a state-of-the-art approach like SILVA clearly

shows its limits: indeed, SILVA could not provide a precise estimate

of the robustness of this model (± 0.05). In order to measure the

verification time per instance and setting timeouts in the same way

for both the tools, we use the GNU commands time and timeout
that measure the elapsed wall clock time. The former command is

also used to compute the maximum amount of physical memory

allocated to the verifier. When it is required to set a maximum

amount of physical memory that the process can use, we use the

Linux kernel feature cgroup. All the experiments are performed

on a virtual machine with 103 GB of RAM and Ubuntu 20.04.4 LTS,

running on a server with an Intel Xeon Gold 6148 2.40GHz.

5.3.1 Time Efficiency. In our first experiment we compare the ro-

bustness verification times for traditional tree ensembles using

SILVA and the robustness verification times for large-spread ensem-

bles using CARVE. This way, we compare a state-of-the-approach

for adversarial machine learning models (i.e., what we would do

today) against our custom algorithm designed to take advantage of

the large-spread condition (i.e., what we put forward in this paper).

In the experiments of Section 5.2, we set the maximum verification

time per instance of SILVA to one second. However, SILVA may

complete the verification also on more difficult instances if more

time is granted, e.g., 60 seconds [31]. In order to perform a fair

comparison, we compare how many instances of the MNIST test

set can be verified under growing time limits per instance, i.e., from

one second to 10 minutes. This methodology allows us to figure

out on how many instances the verification is really difficult. Note

that the timeout of 10 minutes per instance is already extremely

large, since test sets normally include thousands of instances.

Figure 3a shows the results of our experiment. The plot shows

that SILVA is not able to verify the robustness of the traditional

tree ensemble on 434 instances in less than one second and on

190 instances in less than one minute, providing just approximate

robustness estimates with an uncertainty of 0.10 (±0.05) and 0.05

(±0.025) respectively. On the other hand, our tool CARVE requires

less than one second per instance to verify the robustness of the

large-spread ensemble on all the instances of the test set, providing

an exact estimate of the robustness of the model. As the maximum

amount of verification time per instance increases, the number of

instances on which SILVA is not able to verify the robustness of

the model further decreases, e.g., 168 instances with a timeout of

120 seconds and 166 instances with a timeout of 180 seconds. Even

though the robustness estimate of SILVA becomes more precise

as the timeout per instance increases, i.e., the uncertainty on ro-

bustness decreases to 0.04 (±0.02) with a timeout per instance of

180 seconds, this process eventually hits a wall: the remaining 166

instances cannot be verified even when the timeout increases to 10

minutes per instance. Moreover, the improved precision comes at

the cost of an higher total verification time: with a timeout of 120

seconds, SILVA requires in total 22,220 seconds to verify the tradi-

tional tree ensemble on the entire MNIST test set, while CARVE

requires just 129 seconds in total, i.e., a reduction of two orders of

magnitude. As expected, the results show the pitfalls of the com-

plete robustness verification on traditional tree-ensembles and the

improvements in the verification time enabled by the large-spread

condition. Since the verification problem is NP-complete, there may

be instances on which the verification time increases exponentially,

while the large-spread condition allows one to train tree ensembles

whose robustness can always be verified in polynomial time.
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Figure 3: Comparison of the time and memory efficiency of SILVA and CARVE on the MNIST dataset (we consider ensembles
with 101 trees of maximum depth 6).

5.3.2 Memory Efficiency. Our first experiment provides only a par-

tial picture of the efficiency of the robustness verification and the

reasons for the potential inefficiency of SILVA. Indeed, memory

constraints should also be taken into account during robustness

verification, since a high memory consumption may make the veri-

fication unfeasible on standard commercial systems.

In our second experiment, we compare the memory efficiency of

SILVA and CARVE. In particular, we compare how many instances

can be verified given a growing maximum memory consumption

limit per instance, setting the maximum amount of verification

time per instance to 10 minutes. The results of our experiment are

shown in Figure 3b. The results highlight that SILVA may consume

a lot of memory in order to provide precise robustness estimates.

In the best scenario, with 100 GB of memory available, SILVA is

still unable to verify the robustness of the model on 168 instances,

providing just an approximate estimate of the robustness of the

traditional tree-based ensemble with an uncertainty of 0.04 (±0.02).
Even though the interval on which the robustness approximation

is not so large in this setting, the plot shows that the number of

instances that SILVA can not verify increases as the memory con-

sumption limit decreases, expanding also the uncertainty of SILVA

in the robustness estimation. For example, SILVA is not able to ver-

ify the robustness of the model on 216 and 342 instances with the

memory consumption limit of 32 GB and 4 GB respectively, provid-

ing an uncertainty in the robustness estimates of 0.05 (±0.025) and
0.08 (±0.04). Instead, CARVE manages to verify the robustness of

the large-spread ensemble on all the MNIST test set using less than

4GB of memory per instance, providing an exact value of robustness.

More precisely, the maximum memory consumption by CARVE

is less than 1 GB in practice. The results confirm the efficiency in

terms of memory consumption of our proposal and the unfeasibility

of obtaining an exact value of robustness on traditional tree en-

sembles using a state-of-the-art verifier like SILVA when memory

consumption constraints are imposed.

Table 5: Comparison of total verification time and maximum
memory consumption of SILVA and CARVE on the MNIST
test set. The last column reports the number of instances on
which the verifier was not able to provide an answer because
it exceeded the time or memory limits.

Tool Total Time (s) Memory (GB) # Failures

SILVA 14,448 64 190

CARVE 129 0.03 0

5.3.3 Efficiency Under Time and Memory Constraints. We finally

perform a comparison between CARVE and SILVA when enforcing

both a maximum verification time limit and a maximum memory

consumption limit. In particular, we compare the total verification

time, the maximum memory consumption and the number of in-

stances on which the tool is not able to return an answer given

a maximum verification time of 60 seconds per instance and a

maximum memory consumption limit of 64 GB.

Table 5 shows the results of our experiment. The results confirm

the observations from the previous sections: CARVE is far more

efficient of SILVA in terms of both verification time and memory

consumption. In particular, CARVE outperforms SILVA on the total

verification time on the MNIST test set, verifying the large-spread

ensemble on all the instances in just 129 seconds, thus being 112

times faster than SILVA (that requires 14,448 seconds). Moreover,

the memory consumption of CARVE is more than 2,000 times lower

than the one of SILVA, using just 0.03 GB of memory capacity, thus

CARVE is usable on commodity hardware. Finally, SILVA is not

able to provide an answer on 190 instances of the test set, providing

an approximated robustness estimate with an uncertainty of 0.05

(±0.025), while CARVE is able to provide the exact robustness value.

This provides clear evidence of the challenges of robustness verifi-

cation for traditional tree ensembles: since robustness verification
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is NP-hard in general, even a state-of-the-art tool like SILVA is

bound to fail on specific inputs.

5.4 Efficiency of the Training Algorithm
Finally, we evaluate the time efficiency of the training algorithm for

large-spread ensembles (Algorithm 3). Intuitively, the difficulty of

enforcing the large-spread conditions depends on two factors: the

model size and the adversarial perturbation 𝑘 . Indeed, the larger is 𝑘 ,

the higher becomes the distance to be enforced across thresholds in

different trees. We then perform two experiments, each for different

values of 𝑘 : in the first, we fix the maximum tree depth at six and

we vary the number of trees in {25, 51, 75, 101}; in the second, we

fix the number of trees at 101 and we vary the maximum depth

of the trees in {3, 4, 5, 6}. The presented times are measured for a

specific hyper-parameter choice enabling successful training in all

settings (𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 = 500,𝑀𝑈𝐿𝑇 = 6, 𝐼𝑁𝑇𝑉 = [𝑘, 1.5𝑘], 𝑙 = 6).

5.4.1 Number of Trees. Figure 4 shows the results of our first exper-
iment. We observe that the time required for training a large-spread

ensemble depends on the dataset, most likely because enforcing

the large-spread condition might be easier or harder for different

training data. When considering a number of trees less than or

equal to 75, the time required for training a large-spread ensemble

is less than 150 seconds for all the considered datasets and adver-

sarial perturbations. For example, the time required for training

a large-spread ensemble of 75 trees is 28 seconds on MNIST and

145 seconds on Webspam when considering the largest adversarial

perturbation. Similarly, training a large-spread ensemble is effi-

cient when considering smaller adversarial perturbations: for the

smallest perturbations, training time ranges from one second on

the REWEMA dataset to 16 seconds on the Webspam dataset. This

result is encouraging, because the trained models already obtain

a reasonable accuracy on the test set and the range of adversarial

perturbations might be small in practical cases.

On the downside, when considering larger models with 101

trees, the role of the adversarial perturbations on the training time

becomes more significant. For example, training a large-spread

ensemble with 101 trees under the largest adversarial perturbations

required 137 seconds on MNIST and 1,835 seconds on Webspam.

The motivation is that the cost of adding a tree to the ensemble

increases as the size of the ensemble increases, because all the

thresholds of the current ensemble must be adjusted with respect

to the new tree. Fixing such violations to the large-spread condition

is difficult for larger adversarial perturbations, because thresholds

must be pushed farther away. This fact particularly affects the

time required for training large-spread ensembles on the Webspam

dataset: since some important features for the ensemble have a

very skewed empirical distribution, the thresholds learned by the

traditional tree-based ensembles for these features are close, thus

separating them in an effective way is difficult and may require the

training algorithm to perform many iterations.

5.4.2 Maximum Tree Depth. Figure 5 shows the results of our sec-
ond experiment. We observe that training a large-spread ensemble

of depth at most five requires at most 122 seconds for all the consid-

ered datasets and adversarial perturbations. For example, training a

large-spread ensemble of 101 trees with maximum depth five takes

55 seconds on the Fashion-MNIST dataset and 122 seconds on the

Webspam dataset. Moreover, the results confirm that training a

large-spread ensemble considering small adversarial perturbations

is efficient, e.g., the maximum time required for training a large-

spread ensemble of 101 trees with maximum depth six, considering

the smallest adversarial perturbation for each dataset, is 35 seconds.

However, we observe that, when considering large-spread ensem-

bles with deeper trees, choosing a higher adversarial perturbation

may determine a considerable increase in the time required for the

training. The worst case is observed on theWebspam dataset, where

the time required for training a large-spread ensemble of 101 trees

with maximum depth six and 𝑘 = 0.0006 is 1,835 seconds. Indeed,

increasing the value of the depth of the trees in the ensemble causes

an exponential growth in the number of nodes of the ensemble and

enforcing the large-spread condition for higher perturbations is

more difficult, thus more violations of the large-spread condition

need to be fixed to add a single tree to the ensemble.

5.4.3 Discussion. Our experimental evaluation shows that the

training algorithm for large-spread ensembles is efficient when

the model size is relatively limited (≤ 75 trees) or the adversarial

perturbation is small. Concretely, the most challenging model in-

cluding 75 trees could be trained in 145 seconds, while the most

challenging model for the smallest adversarial perturbation could

be trained in 35 seconds. When combining large model size with

large adversarial perturbations, however, the training time can be-

come higher. The worst case was observed on the Webspam dataset,

where a model with 101 trees required 1,835 seconds to be trained

under the largest adversarial perturbation. Nevertheless, this price

is just paid for training: once the model is trained, robustness can be

verified in polynomial time for thousands of instances. Also, such

extreme cases only occurred on the Webspam dataset: for exam-

ple, the most challenging models to train on Fashion-MNIST and

REWEMA took just 113 seconds and 13 seconds respectively. We

find these results appropriate for our first evaluation of large-spread

ensembles, in particular because our implementation of LSE is not

heavily optimized, and we plan to design more efficient training

algorithms for large-spread ensembles as future work.

5.5 Take-Away Messages
Our experimental evaluation shows that:

• Large-spread ensembles sacrifice some predictive powerwith

respect to traditional tree ensembles, yet their accuracy re-

mains way higher than the majority class of the test set. Even

better, in several cases the accuracy of large-spread ensem-

bles is equal to the accuracy of traditional tree ensembles.

• Large-spread ensembles are generally more robust than tradi-

tional tree ensembles. This empirical observation is a useful

byproduct of the large-spread condition, which makes it

harder to craft evasion attacks which are effective against

multiple trees in the ensemble.

• Our verification tool for large-spread ensemble CARVE is

much more efficient than SILVA, a state-of-the-art verifier

for traditional tree ensembles. Improvements are due to both

verification time and memory consumption.
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Figure 4: Efficiency of LSE when varying the number of trees of the large-spread ensemble.
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Figure 5: Efficiency of LSE when varying the maximum depth of the trees of the large-spread ensemble.

• Our training tool LSE is efficient for training large-spread

ensembles of moderate size or when considering small adver-

sarial perturbations. The time required for training a large-

spread ensemble may increase when the model is large and

the considered perturbation is high for the chosen dataset.

Moreover, we showed that SILVA can provide just approximate

robustness estimates in some experimental settings, even when

provided with extremely high time andmemory bounds (10 minutes

per instance, 100 GB of RAM). Conversely, CARVE can compute

the exact value of robustness using just limited time and memory

(1 second per instance, 1 GB of RAM). This shows the effectiveness

of the verifiable learning paradigm: models trained with formal

verification in mind can be verified in a matter of seconds even on

traditional commercial hardware, contrary to traditional machine

learning models which cannot be accurately verified even when

extremely powerful servers are available.

6 RELATEDWORK
We already mentioned that prior work studied the complexity of the

robustness verification problem for decision tree ensembles [23, 41].

This problem was proved to be NP-complete for arbitrary 𝐿𝑝 -norm

attackers, even when restricting the model shape to decision stump

ensembles [1, 41]. To the best of our knowledge, we are the first

to identify a specific class of decision tree ensembles enabling ro-

bustness verification in polynomial time. Prior work on robustness

verification for decision tree ensembles proposed different tech-

niques, such as exploiting equivalence classes extracted from the

tree ensemble [36], integer linear programming [23], a reduction

to the max clique problem [12], abstract interpretation [7, 31] and

satisfiability modulo theory (SMT) solving [16, 18, 33]. Though

effective in many cases, these techniques still have to deal with

the exponential complexity of the robustness verification prob-

lem, so they are bound to fail for large ensembles and complex

datasets. We experimentally showed that a state-of-the-art verifier

like SILVA [31] is much less efficient than our verifiable learn-

ing approach, supporting verification in polynomial time, and can

only compute approximate robustness estimates in practical cases.

Moreover, our LSE training algorithm produces tree ensembles that

are in general more robust than the traditional counterparts as a

side-effect of imposing that the thresholds of different trees are

sufficiently far away. Several papers in the literature discussed new

algorithms for training tree ensembles that are robust to evasion

attacks [1, 8–11, 13, 20, 23, 32, 38–40], but our work is complemen-

tary to them. Indeed, our primary goal is not enforcing robustness,

which is a byproduct of our training algorithm, but supporting

efficient robustness verification of the trained models. We also ac-

knowledge that our work solely focuses on the classic definition

of robustness, known as local robustness in more recent literature

discussing global robustness and related properties [6, 14, 27]. This

line of research aims to achieve security verification independently

of the choice of a specific test set, enhancing the credibility of se-

curity proofs. Given that local robustness remains popular and is

easier to deal with, we stick to it in this paper and we leave the

extension of our framework to global robustness as future work.
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It is worth mentioning that a lot of work has been done on the

robustness verification of deep neural networks (DNNs). Classic ap-

proaches for exact verification often do not scale to large DNNs, as

for tree ensembles, and they are typically based on SMT [21, 24, 25]

and integer linear programming [2, 17, 28, 35]. To mitigate the

scalability problems of robustness verification, different proposals

have been done, such as shrinking the original DNN through prun-

ing [19] and finding specific classes of DNNs that empirically enable

more efficient robustness verification [22]. Xiao et. al. [42] proposed

the idea of co-designing model training and verification, i.e., train-

ing models that show reasonable accuracy and robustness, while

better enabling exact verification. In particular, their work proposes

a training algorithm for DNNs that encourages weight sparsity

and ReLU stability, two properties that improve the efficiency of

verification through SMT solving. There are significant differences

between these lines of work and ours. First, prior techniques only

provide empirical efficiency guarantees, while our proposal leads to

a formal complexity reduction of the robustness verification prob-

lem through the design of a polynomial time algorithm. Moreover,

our research deals with tree ensembles rather than DNNs.

Finally, we observe that recent work explored the adversarial

robustness of model ensembles [43]. The main result of this work

proved that the combination of “diversified gradient” and “large

confidence margin” are sufficient and necessary conditions for certi-

fiably robust ensemble models. While this result cannot be directly

applied to non-differentiable models such as decision tree ensem-

bles, the intuition of diversifying models is similarly captured by

our large-spread condition. We plan to explore any intriguing con-

nections with this proposal as future work.

7 CONCLUSION
We introduced the general idea of verifiable learning, i.e., the adop-

tion of training algorithms designed to learn restrictedmodel classes

amenable for efficient security verification. We applied this idea

to decision tree ensembles, identifying the class of large-spread en-

sembles. We showed that this class of ensembles admits robustness

verification in polynomial time, whereas the problem is NP-hard for

general decision tree models. We then proposed a pruning-based

training algorithm to learn large-spread ensembles from traditional

decision tree ensembles. Our experiments on public datasets show

that large-spread ensembles sacrifice a limited amount of the pre-

dictive power of traditional tree ensembles, but their robustness

is normally higher and much more efficient to verify. This makes

large-spread ensembles appealing in the adversarial setting.

As future work, we plan to investigate the use of verifiable learn-

ing also for other popular model classes, e.g., neural networks.

Moreover, we want to explore different training algorithms for

large-spread ensembles and compare their effectiveness against the

pruning-based approach proposed in this paper.
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A PROOF OF THEOREM 3.2
We introduce the following auxiliary notation: opt(𝑡, 𝑝, 𝑘, ®𝑥,𝑦) =
argmin ®𝛿∈𝑆 | |

®𝛿 | |𝑝 where 𝑆 = { ®𝛿 | | | ®𝛿 | |𝑝 ∈ Reachable(𝑡, 𝑝, 𝑘, ®𝑥,𝑦)}.
Note that Reachable(𝑡, 𝑝, 𝑘, ®𝑥,𝑦) visits every leaf of 𝑡 . Therefore,

opt(𝑡, 𝑝, 𝑘, ®𝑥,𝑦) is undefined iff Reachable(𝑡, 𝑝, 𝑘, ®𝑥,𝑦) = ∅, i.e.,
Reachable does not visit any leaf with label different from 𝑦.

LemmaA.1. Let ®𝑥 be an instance with label𝑦 and let ®𝛿 = opt(𝑡, 𝑝, 𝑘, ®𝑥,𝑦).
Then the following properties hold:

(1) If
®𝛿 is undefined, then there does not exist any ®𝑧 ∈ 𝐴𝑝,𝑘 ( ®𝑥)

such that 𝑡 (®𝑧) ≠ 𝑦.

(2) If
®𝛿 is defined, then ®𝑧𝑜 = ®𝑥 + ®𝛿 ∈ 𝐴𝑝,𝑘 ( ®𝑥) and 𝑡 (®𝑧𝑜 ) ≠ 𝑦.

Moreover, for every ®𝑧 ∈ 𝐴𝑝,𝑘 ( ®𝑥) such that 𝑡 (®𝑧) ≠ 𝑦 we have

| |®𝑧𝑜 | |𝑝 ≤ ||®𝑧 | |𝑝 , i.e., | |®𝑧𝑜 | |𝑝 is the attack whose perturbation
®𝛿

has minimal norm.

Proof. (1) If
®𝛿 is undefined then Reachable(𝑡, 𝑝, 𝑘, ®𝑥,𝑦) = ∅.

This means there is no perturbation
®𝛿 ′ = ®𝑧 − ®𝑥 computed during a

call toReachable such that | | ®𝛿 ′ | | ≤ 𝑘 and is able to push ®𝑧 into a leaf
with label different from 𝑦. That is, 𝑡 (®𝑧) ≠ 𝑦. (2) If ®𝛿 is defined, then

| | ®𝑧𝑜 − ®𝑥 | | = | | ®𝛿 | | ≤ 𝑘 , hence ®𝑧𝑜 ∈ 𝐴𝑝,𝑘 ( ®𝑥). In particular, ®𝑧𝑜 = ®𝑥 + ®𝛿 is

the attack of minimum cost since
®𝛿 is the perturbation whose norm

is minimal, hence it must be 𝑡 ( ®𝑧𝑜 ) ≠ 𝑦 and | | ®𝛿 | |𝑝 ≤ || ®𝛿 ′ | |𝑝 for any

other
®𝛿 ′ such that ®𝑧 = ®𝑥 + ®𝛿 ′ ∈ 𝐴𝑝,𝑘 ( ®𝑥). But | | ®𝛿 | |𝑝 ≤ || ®𝛿 ′ | |𝑝 ⇐⇒

|| ®𝑧𝑜 − ®𝑥 | |𝑝 ≤ ||®𝑧 − ®𝑥 | |𝑝 ⇐⇒ || ®𝑧𝑜 | |𝑝 ≤ ||®𝑧 | |𝑝 . □

In the following we refer to
®𝛿 = opt(𝑡, 𝑝, 𝑘, ®𝑥,𝑦) that is the pertur-

bation whose norm is minimal as just the “minimal perturbation”.

Lemma A.2. Assume𝜓𝑝 (𝑇 ) > 2𝑘 and consider two distinct trees

𝑡, 𝑡 ′ ∈ 𝑇 . Let ®𝑥 be an instance with label 𝑦 and let
®𝛿 = opt(𝑡, 𝑝, 𝑘, ®𝑥,𝑦)

and
®𝛿 ′ = opt(𝑡 ′, 𝑝, 𝑘, ®𝑥,𝑦) be defined, then supp( ®𝛿) ∩ supp( ®𝛿 ′) = ∅.

Proof. By contradiction. Assume that there exists a feature 𝑓

such that 𝛿𝑓 ≠ 0 and 𝛿 ′
𝑓
≠ 0. Since

®𝛿, ®𝛿 ′ are the minimal pertur-

bations with respect to | | · | |𝑝 by Lemma A.1, the feature 𝑓 must

be tested when performing the predictions 𝑡 ( ®𝑥 + ®𝛿) and 𝑡 ′ ( ®𝑥 + ®𝛿 ′)
respectively, i.e., the prediction 𝑡 ( ®𝑥 + ®𝛿) must perform a test 𝑥 𝑓 ≤ 𝑣

and the prediction 𝑡 ′ ( ®𝑥 + ®𝛿 ′) must perform a test 𝑥 𝑓 ≤ 𝑣 ′ for
some thresholds 𝑣, 𝑣 ′. Since | |𝑣 ′ − 𝑥 𝑓 | |𝑝 = | |𝑥 𝑓 − 𝑣 ′ | |𝑝 , we get

| |𝑣 − 𝑣 ′ | |𝑝 ≤ ||𝑣 − 𝑥 𝑓 | |𝑝 + ||𝑥 𝑓 − 𝑣 ′ | |𝑝 by triangle inequality. Since

| |𝑣 −𝑥 𝑓 | |𝑝 ≤ 𝑘 and | |𝑣 ′ −𝑥 𝑓 | |𝑝 ≤ 𝑘 because both
®𝛿, ®𝛿 ′ are valid min-

imal perturbations, this implies | |𝑣 − 𝑣 ′ | |𝑝 ≤ 2𝑘 which contradicts

the hypothesis𝜓𝑝 (𝑇 ) > 2𝑘 . □

Lemma A.3. Assume𝜓𝑝 (𝑇 ) > 2𝑘 and consider two distinct trees

𝑡, 𝑡 ′ ∈ 𝑇 . Let ®𝑥 be an instance with label 𝑦 and let ®𝑧 ∈ 𝐴𝑝,𝑘 ( ®𝑥) be
such that 𝑡 (®𝑧) ≠ 𝑦 and 𝑡 ′ (®𝑧) ≠ 𝑦. Then there exist

®𝛿 and
®𝛿 ′ such:

(1) ®𝑧 = ®𝑥 + ®𝛿 + ®𝛿 ′ with supp( ®𝛿) ∩ supp( ®𝛿 ′) = ∅;
(2) 𝑡 ( ®𝑥 + ®𝛿) ≠ 𝑦;

(3) 𝑡 ′ ( ®𝑥 + ®𝛿 ′) ≠ 𝑦.

Proof. Let ®𝑧 = ®𝑥 + ®𝛿∗. We show an algorithm that constructs

®𝛿 and
®𝛿 ′ with the desired properties (1) – (3). In particular, the

algorithm identifies how to split
®𝛿∗ into ®𝛿 and

®𝛿 ′ by partitioning
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the set of features. The algorithm takes as input the decision tree 𝑡 ,

®𝑥 and ®𝑧, and operates as follows:

• Initialize the set 𝐹 to ∅;
• Let the root of the tree be 𝜎 (𝑓 , 𝑣, 𝑡𝑙 , 𝑡𝑟 );
• If 𝑥 𝑓 ≤ 𝑣 and 𝑧𝑓 > 𝑣 : let 𝐹 = 𝐹 ∪ {𝑓 } and recursively visit 𝑡𝑟 ;
• If 𝑥 𝑓 > 𝑣 and 𝑧𝑓 ≤ 𝑣 : let 𝐹 = 𝐹 ∪ {𝑓 } and recursively visit 𝑡𝑙 ;

• If 𝑥 𝑓 ≤ 𝑣 and 𝑧𝑓 ≤ 𝑣 : recursively visit 𝑡𝑙 ;

• If 𝑥 𝑓 > 𝑣 and 𝑧𝑓 > 𝑣 : recursively visit 𝑡𝑟 .

The algorithm terminates by returning 𝐹 when the visit reaches

a leaf. We then construct
®𝛿 by setting the features in 𝐹 to their

corresponding value in
®𝛿∗ and setting the other features to 0; con-

versely, we construct
®𝛿 ′ by setting all the features not in 𝐹 to their

corresponding value in
®𝛿∗ and setting the other features to 0. We

can show that
®𝛿 and

®𝛿 ′ have the desired properties as follows:

(1) We have supp( ®𝛿) ∩ supp( ®𝛿 ′) = ∅ by construction. The fact

that
®𝛿∗ = ®𝛿 + ®𝛿 ′ follows by definition of

®𝛿 and
®𝛿 ′, because all

the components of
®𝛿∗ are distributed between them;

(2) We have 𝑡 ( ®𝑥 + ®𝛿) ≠ 𝑦, because 𝑡 ( ®𝑥 + ®𝛿) follows the same

prediction path of 𝑡 (®𝑧) by construction;

(3) This property follows from the large-spread assumption. In

particular, we define ®𝑧′ such that∀𝑖 ∈ 𝐹 : 𝑧′
𝑖
= 𝑥𝑖 and∀𝑗 ∉ 𝐹 :

𝑧′
𝑗
= 𝑧 𝑗 . We have 𝑡 ′ (®𝑧′) ≠ 𝑦, because 𝑡 ′ (®𝑧′) follows the same

prediction path of 𝑡 ′ (®𝑧) by construction. Indeed, features

in 𝐹 cannot affect the prediction path of 𝑡 ′ (®𝑧) w.r.t. 𝑡 ′ ( ®𝑥),
since such features already affect the prediction path of 𝑡 (®𝑧)
w.r.t. 𝑡 ( ®𝑥) and 𝑇 is large-spread. The property 𝑡 ′ ( ®𝑥 + ®𝛿 ′) ≠ 𝑦

follows by observing that ®𝑥 + ®𝛿 ′ = ®𝑧′.
□

Lemma A.4. Assume 𝜓𝑝 (𝑇 ) > 2𝑘 and pick any 𝑇 ′ ⊆ 𝑇 . Let ®𝑥
be an instance with label 𝑦 and assume that

®𝛿𝑖 = opt(𝑡𝑖 , 𝑝, 𝑘, ®𝑥,𝑦) is
defined for every tree 𝑡𝑖 ∈ 𝑇 ′. Then for every ®𝑧 ∈ 𝐴𝑝,𝑘 ( ®𝑥) such that

∀𝑡𝑖 ∈ 𝑇 ′ : 𝑡𝑖 (®𝑧) ≠ 𝑦 we have | | ®𝑥 +∑𝑖
®𝛿𝑖 | |𝑝 ≤ ||®𝑧 | |𝑝 .

Proof. Let
®𝛿 = ®𝑧 − ®𝑥 . We want to show that | |∑𝑖

®𝛿𝑖 | |𝑝 ≤ || ®𝛿 | |𝑝 ,
which yields the conclusion. Since

®𝛿 is a perturbation inducing an

attack against all trees in 𝑇 ′ and 𝑇 ′ is large-spread, then ®𝛿 can be

written as the sum of |𝑇 ′ | pairwise-orthogonal perturbations { ®𝛿 ′
𝑖
}𝑖

by Lemma A.3, each inducing an attack against 𝑡𝑖 ∈ 𝑇 ′, i.e., ®𝛿 =∑
𝑖
®𝛿 ′
𝑖
. Hence | | ®𝛿 | |𝑝 = | |∑𝑖

®𝛿 ′
𝑖
| |𝑝 =

⊕
𝑖 | | ®𝛿 ′𝑖 | |𝑝 . By Lemma A.1 (part

2), it must be | | ®𝛿 ′
𝑖
| |𝑝 ≥ || ®𝛿𝑖 | |𝑝 because

®𝛿𝑖 = opt(𝑡𝑖 , 𝑝, 𝑘, ®𝑥,𝑦). Since
{ ®𝛿𝑖 }𝑖 are also pairwise-orthogonal by Lemma A.2, we conclude

| | ®𝛿 | |𝑝 =
⊕

𝑖 | | ®𝛿 ′𝑖 | |𝑝 ≥
⊕

𝑖 | | ®𝛿𝑖 | |𝑝 = | |∑𝑖
®𝛿𝑖 | |𝑝 . □

Lemma A.5. If Stable(𝑇, 𝑝, 𝑘, ®𝑥,𝑦) returns True and𝜓𝑝 (𝑇 ) > 2𝑘 ,

then 𝑇 is stable on ®𝑥 against 𝐴𝑝,𝑘 .

Proof. We perform a case analysis:

• The number of unstable trees is at least
𝑚−1
2
+ 1. This means

that there exist at least
𝑚−1
2
+ 1 trees 𝑡𝑖 ∈ 𝑇 such that

Reachable(𝑡𝑖 , 𝑝, 𝑘, ®𝑥,𝑦) ≠ ∅, let Δ𝑖 be the minima of these

sets. The quantity Δ computed by the algorithm is the 𝐿𝑝 -

norm of the vector
®𝛿 =

∑(𝑚−1)/2+1
𝑖=1

opt(𝑡𝑖 , 𝑝, 𝑘, ®𝑥,𝑦) by Facts

1-3. Note that it must be Δ > 𝑘 because the algorithm returns

True. Assume now by contradiction that there exists 𝑇 ′ ⊆ 𝑇
with |𝑇 ′ | ≥ 𝑚−1

2
+ 1 such that there exist ®𝑧 ∈ 𝐴𝑝,𝑘 ( ®𝑥) such

that ∀𝑡 ′ ∈ 𝑇 ′ : 𝑡 ′ (®𝑧) ≠ 𝑦, i.e.,𝑇 is not stable on ®𝑥 . Lemma A.4

ensures that Δ ≤ ||®𝑧 − ®𝑥 | |𝑝 , hence | |®𝑧 − ®𝑥 | |𝑝 > 𝑘 by transi-

tivity. This is a contradiction, because ®𝑧 ∈ 𝐴𝑝,𝑘 ( ®𝑥), i.e., we
conclude that 𝑇 is stable on ®𝑥 .
• The number of unstable trees is less than

𝑚−1
2
+ 1. This means

that there are less than
𝑚−1
2
+ 1 trees 𝑡𝑖 ∈ 𝑇 such that

Reachable(𝑡𝑖 , 𝑝, 𝑘, ®𝑥,𝑦) ≠ ∅. By Lemma A.1 (part 1) there

exist at least
𝑚−1
2
+ 1 trees 𝑡𝑖 ∈ 𝑇 such that ∀®𝑧 ∈ 𝐴𝑝,𝑘 ( ®𝑥) :

𝑡𝑖 (®𝑧) = 𝑦. This implies ∀®𝑧 ∈ 𝐴𝑝,𝑘 ( ®𝑥) : 𝑇 (®𝑧) = 𝑦, i.e., 𝑇 is

stable on ®𝑥 .
□

Lemma A.6. Assume 𝜓𝑝 (𝑇 ) > 2𝑘 and pick any 𝑇 ′ ⊆ 𝑇 . Let ®𝑥
be an instance with label 𝑦 and assume that

®𝛿𝑖 = opt(𝑡𝑖 , 𝑝, 𝑘, ®𝑥,𝑦)
is defined for every tree 𝑡𝑖 ∈ 𝑇 ′. If ®𝑧 = ®𝑥 + ∑𝑖

®𝛿𝑖 ∈ 𝐴𝑝,𝑘 ( ®𝑥), then
∀𝑡𝑖 ∈ 𝑇 ′ : 𝑡𝑖 (®𝑧) ≠ 𝑦.

Proof. Let 𝑇 ′ = {𝑡1, ..., 𝑡𝑞}, the proof is by induction on 𝑞. The

base case is 𝑞 = 1. Since
®𝛿1 = opt(𝑡1, 𝑝, 𝑘, ®𝑥,𝑦) is defined, Lemma A.1

(part 1) guarantees that there exists ®𝑧1 = ®𝑥 + ®𝛿1 ∈ 𝐴𝑝,𝑘 ( ®𝑥) such
that 𝑡1 (®𝑧1) ≠ 𝑦. The inductive case is when 𝑞 > 1. Let

®𝛿𝑖 =

opt(𝑡𝑖 , 𝑝, 𝑘, ®𝑥,𝑦) be defined for all 𝑖 . Note that
∑𝑞

𝑖=1
®𝛿𝑖 =

∑𝑞−1
𝑖=1
®𝛿𝑖+ ®𝛿𝑞 ,

at first we show that | |∑𝑞−1
𝑖=1
®𝛿𝑖 | |𝑝 ≤ 𝑘 . Since 𝑠𝑢𝑝𝑝 (∑𝑞−1

𝑖=1
®𝛿𝑖 ) =⋃𝑞−1

𝑖=1
𝑠𝑢𝑝𝑝 ( ®𝛿𝑖 ) and ∀1 ≤ 𝑖 ≤ 𝑞 − 1 : 𝑠𝑢𝑝𝑝 ( ®𝛿𝑖 ) ∩ 𝑠𝑢𝑝𝑝 ( ®𝛿𝑞) = ∅ by

Lemma A.2, we have that 𝑠𝑢𝑝𝑝 (∑𝑞−1
𝑖=1
®𝛿𝑖 ) ∩ 𝑠𝑢𝑝𝑝 ( ®𝛿𝑞) = ∅. By ob-

serving that | |∑𝑞

𝑖=1
®𝛿𝑖 | |𝑝 ≤ 𝑘 by definition and 𝑠𝑢𝑝𝑝 (∑𝑞−1

𝑖=1
®𝛿𝑖 ) and

𝑠𝑢𝑝𝑝 ( ®𝛿𝑞) are disjoint, we have that | |
∑𝑞−1
𝑖=1
®𝛿𝑖 | |𝑝 ≤ 𝑘 . This implies

®𝑥 +∑𝑞−1
𝑖=1
®𝛿𝑖 ∈ 𝐴𝑝,𝑘 ( ®𝑥), hence ∀1 ≤ 𝑖 ≤ 𝑞 − 1 : 𝑡𝑖 ( ®𝑥 +

∑𝑞−1
𝑖=1
®𝛿𝑖 ) ≠ 𝑦

by induction hypothesis. Moreover, we know that 𝑡𝑞 ( ®𝑥 + ®𝛿𝑞) ≠ 𝑦

by Lemma A.1 (part 1) and ®𝑧 = ®𝑥 + ∑𝑞

𝑖=1
®𝛿𝑖 ∈ 𝐴𝑝,𝑘 ( ®𝑥) since

| |∑𝑞

𝑖=1
®𝛿𝑖 | |𝑝 ≤ 𝑘 by definition. We now show that ∀1 ≤ 𝑖 ≤ 𝑞 :

𝑡𝑖 (®𝑧) ≠ 𝑦. Since 𝑠𝑢𝑝𝑝 (∑𝑞−1
𝑖=1
®𝛿𝑖 ) and 𝑠𝑢𝑝𝑝 ( ®𝛿𝑞) are disjoint, for every

feature 𝑓 we have (∑𝑞

𝑖=1
®𝛿𝑖 )𝑓 = (∑𝑞−1

𝑖=1
®𝛿𝑖 )𝑓 or (∑𝑞

𝑖=1
®𝛿𝑖 )𝑓 = ( ®𝛿𝑞)𝑓 .

In addition, we observe that:

• 𝑡𝑞 (®𝑧) follows the same prediction path of 𝑡𝑞 ( ®𝑥 + ®𝛿𝑞). Indeed
features in 𝑠𝑢𝑝𝑝 (∑𝑞−1

𝑖=1
®𝛿𝑖 ) cannot affect the prediction path

of 𝑡𝑞 (®𝑧) w.r.t 𝑡𝑞 ( ®𝑥) because they already affect the prediction
path of ®𝑧 in the trees in {𝑡1, . . . , 𝑡𝑞−1} w.r.t the path of ®𝑥 in

the trees in {𝑡1, . . . , 𝑡𝑞−1} and 𝑇 is large-spread.

• for every 1 ≤ 𝑖 ≤ 𝑞 − 1, 𝑡𝑖 (®𝑧) follow the same prediction

path of 𝑡𝑖 ( ®𝑥 +
∑𝑞−1
𝑖=1
®𝛿𝑖 ). Indeed features in 𝑠𝑢𝑝𝑝 ( ®𝛿𝑞) cannot

affect the prediction path of ®𝑧 in the trees in {𝑡1, . . . , 𝑡𝑞−1}
w.r.t the path of ®𝑥 in the trees in {𝑡1, . . . , 𝑡𝑞−1} because they
already affect the prediction path of 𝑡𝑞 (®𝑧) w.r.t 𝑡𝑞 ( ®𝑥) and 𝑇
is large-spread.

We thus conclude that ∀1 ≤ 𝑖 ≤ 𝑞 : 𝑡𝑖 (®𝑧) ≠ 𝑦. □

Lemma A.7. If 𝑇 is stable on ®𝑥 against𝐴𝑝,𝑘 and𝜓𝑝 (𝑇 ) > 2𝑘 , then

Stable(𝑇, 𝑝, 𝑘, ®𝑥,𝑦) returns True.
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Proof. By contradiction. Assume that Stable(𝑇, 𝑝, 𝑘, ®𝑥,𝑦) re-
turns False. This means that there exist at least

𝑚−1
2
+ 1 trees 𝑡𝑖 ∈ 𝑇

such that Reachable(𝑡𝑖 , 𝑝, 𝑘, ®𝑥,𝑦) ≠ ∅, let Δ𝑖 be the minima of

these sets. The quantity Δ computed by the algorithm is the 𝐿𝑝 -

norm of the vector
®𝛿 =

∑(𝑚−1)/2+1
𝑖=1

opt(𝑡𝑖 , 𝑝, 𝑘, ®𝑥,𝑦) by Facts 1-3.

Note that it must be Δ ≤ 𝑘 because the algorithm returns False.

Let 𝑇 ′ ⊆ 𝑇 be the set of trees used in the computation of Δ and

let ®𝑧 = ®𝑥 + ®𝛿 . We have that ®𝑧 ∈ 𝐴𝑝,𝑘 ( ®𝑥) and ∀𝑡𝑖 ∈ 𝑇 ′ : 𝑡𝑖 (®𝑧) ≠ 𝑦

by Lemma A.6, hence 𝑇 is not stable on ®𝑥 against 𝐴𝑝,𝑘 . This is a

contradiction, since 𝑇 is stable on ®𝑥 against 𝐴𝑝,𝑘 , i.e., we conclude

that Stable(𝑇, 𝑝, 𝑘, ®𝑥,𝑦) returns True. □

Theorem 3.2. Let ®𝑥 be an instance with label 𝑦. A tree ensemble

𝑇 such that 𝜓𝑝 (𝑇 ) > 2𝑘 is robust on ®𝑥 against the attacker 𝐴𝑝,𝑘 iff

Robust(𝑇, 𝑝, 𝑘, ®𝑥,𝑦) returns True.

Proof. Since 𝜓𝑝 (𝑇 ) > 2𝑘 , Lemma A.5 and Lemma A.7 ensure

that Stable(𝑇, 𝑝, 𝑘, ®𝑥,𝑦) returns True if and only if 𝑇 is stable on ®𝑥
against the attacker 𝐴𝑝,𝑘 ( ®𝑥). The conclusion follows by observing

that𝑇 is robust on ®𝑥 if and only if𝑇 ( ®𝑥) = 𝑦 and𝑇 is stable on ®𝑥 . □

B PROOF OF THEOREM 4.1
We here prove the NP-hardness of the large-spread subset problem.

Theorem 4.1. The large-spread subset problem is NP-hard.

Proof. We show how to reduce an instance of the max-clique

problem to the large-spread subset problem. Let 𝐺 = (𝑉 , 𝐸) be an
undirected graph, we construct an ensemble𝑇 such that𝐺 contains

a clique of size 𝑠 if and only if there exists𝑇 ′ ⊆ 𝑇 of size 𝑠 such that

𝑇 ′ is large-spread for the attacker 𝐴0,0 (who does not perturb any

feature). In particular, the construction operates as follows:

(1) We construct the complementary graph 𝐺 = (𝑉 , 𝐸), where
{𝑢, 𝑣} ∈ 𝐸 if and only if {𝑢, 𝑣} ∉ 𝐸.

(2) We introduce a feature 𝜋𝐸 (𝑒) for each 𝑒 ∈ 𝐸, i.e., the dimen-

sionality of the feature space is |𝐸 |. We assume features are

totally ordered, using any ordering convention.

(3) We construct a decision tree 𝜋𝑉 (𝑣) for each 𝑣 ∈ 𝑉 as follows:

• If deg(𝑣) = 0, we let 𝜋𝑉 (𝑣) be a leaf with label +1.

• If deg(𝑣) > 0, we let 𝜋𝑉 (𝑣) be a decision tree of depth

deg(𝑣) built on top of the feature set {𝜋𝐸 (𝑒) | ∃𝑢 ∈ 𝑉 :

𝑒 = {𝑢, 𝑣} ∈ 𝐸}. Each level of the tree tests a single feature

from this set with threshold arbitrarily set to 1, following

the total order assumed on features. Leaves are arbitrarily

set so that the left child has label -1 and the right child has

label +1.

By construction, decision trees 𝜋𝑉 (𝑢), 𝜋𝑉 (𝑣) ∈ 𝑇 share a feature

if and only if {𝑢, 𝑣} ∉ 𝐸, i.e., 𝜋𝑉 (𝑢), 𝜋𝑉 (𝑣) ∈ 𝑇 do not share any

feature if and only if {𝑢, 𝑣} ∈ 𝐸. Given that all thresholds are set to

the same value 1 and the attacker does not perturb any feature, any

𝑇 ′ ⊆ 𝑇 is large-spread if and only if the trees in 𝑇 ′ do not share

any feature. This implies that 𝐺 has a clique of size 𝑠 if and only if

there exists 𝑇 ′ ⊆ 𝑇 of size 𝑠 such that 𝑇 ′ is large-spread. □

C PARAMETER TUNING FOR LSE TRAINING
Our training algorithm for large-spread ensembles has four hyper-

parameters: the maximum number of iterations𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 to fix

violations to the large-spread condition, the multiplicative factor

𝑀𝑈𝐿𝑇 determining the size of the initially trained forest, the in-

terval 𝐼𝑁𝑇𝑉 of the perturbation applied to fix the forest and the

size of the feature partition 𝑙 . Each hyper-parameter can affect the

performance of the trained large-spread ensemble, as well as the

successful termination of the training algorithm.

As it is customary for tree-based models, we deal with hyper-

parameter tuning by means of grid search, i.e., we try out all the

possible combinations of specific hyper-parameter values to identify

the one performing best on a validation set including 20% of the

training data, extracted via stratified random sampling. Specifically,

we look for the combination of hyper-parameters optimizing the

average between accuracy and robustness on the validation set,

and we perform a grid search by considering the following possible

values for the hyper-parameters:

• 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 ∈ {100, 500}
• 𝑀𝑈𝐿𝑇 ∈ {2, 4, 6}
• 𝐼𝑁𝑇𝑉 ∈ {[0.5𝑘, 𝑘], [𝑘, 1.5𝑘]}
• 𝑙 ∈ {1, 2, 3, 4, 5, 6}

Table 6 reports for each dataset, model size (trees and depth) and

perturbation 𝑘 the value of the hyper-parameters leading to the best

performance on the validation set. By looking at the results, we can

catch some insights about the influence of each hyper-parameter

on training the large-spread ensembles.

We first examine the values of𝑀𝐴𝑋_𝐼𝑇𝐸𝑅, the number of itera-

tions needed to train the best-performing large-spread ensembles.

We observe that the chosen value of 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 depends on the

size of the model: typically, only 100 iterations are needed to train

the best-performing large-spread ensembles of 25 trees, while 500

iterations are needed for training the best-performing large-spread

ensembles of 101 trees. The intuitive reason is that more iterations

are needed for successfully training large-spread ensembles with

many trees, since more thresholds need to be adjusted to fulfill the

large-spread condition. Large-spread ensembles with fewer trees

can be trained even with 100 iterations, instead, and a lower number

of iterations is often beneficial there, since less noise needs to be

applied to adjust the original thresholds.

As to the size of the feature partition 𝑙 , the results show that 𝑙 = 1

is the value leading to more than half of the best-performing large-

spread ensembles. In particular, 𝑙 = 1 is used for training almost

all the best large-spread ensembles on MNIST, Fashion-MNIST and

REWEMA. This suggests that avoiding partitioning the features

is the best choice for training the best large-spread ensembles on

most datasets: an ensemble trained on all the available features may

exhibit better accuracy and robustness than the ones of an ensemble

built of sub-forests trained on subsets of features, since the sub-

forests have only a partial view of the set of available features and

some patterns might not be learned. Nevertheless, partitioning the

features can be useful for training the best-performing large-spread

ensembles in some cases. For example, when training the best-

performing large-spread ensembles with 101 trees and maximum

depth six, the best choice is 𝑙 = 4 on the MNIST dataset when

considering the perturbation 𝑘 = 0.0150, while 𝑙 ∈ {5, 6} for all the
models trained on the Webspam dataset. The result highlights the
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Table 6: Grid search results for large-spread ensembles trained using the LSE tool. For each dataset, model size (number of trees
& maximum depth) and perturbation 𝑘 , the table reports the value of the hyper-parameters leading to the highest accuracy on
the validation set. The large-spread ensembles are trained with norm 𝑝 = ∞.

Dataset Trees Depth 𝑘 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 𝑀𝑈𝐿𝑇 𝐼𝑁𝑇𝑉 𝑙 Accuracy Robustness

Fashion-MNIST

25 4

0.0050 100 4 [0.5𝑘, 𝑘] 1 0.92 0.90

0.0100 100 4 [0.5𝑘, 𝑘] 1 0.92 0.87

0.0150 100 6 [𝑘, 1.5𝑘] 1 0.91 0.88

101 6

0.0050 500 2 [0.5𝑘, 𝑘] 1 0.96 0.93

0.0100 500 6 [0.5𝑘, 𝑘] 1 0.94 0.91

0.0150 100 4 [0.5𝑘, 𝑘] 5 0.92 0.89

MNIST

25 4

0.0050 100 6 [0.5𝑘, 𝑘] 1 0.97 0.96

0.0100 100 2 [0.5𝑘, 𝑘] 1 0.97 0.90

0.0150 100 2 [0.5𝑘, 𝑘] 1 0.97 0.83

101 6

0.0050 100 6 [0.5𝑘, 𝑘] 1 0.99 0.97

0.0100 500 6 [0.5𝑘, 𝑘] 1 0.99 0.97

0.0150 500 2 [0.5𝑘, 𝑘] 4 0.99 0.94

REWEMA

25 4

0.0050 100 2 [0.5𝑘, 𝑘] 1 0.88 0.87

0.0100 100 6 [𝑘, 1.5𝑘] 1 0.88 0.87

0.0150 100 6 [𝑘, 1.5𝑘] 1 0.88 0.85

101 6

0.0050 500 2 [0.5𝑘, 𝑘] 1 0.89 0.89

0.0100 500 4 [0.5𝑘, 𝑘] 1 0.89 0.88

0.0150 500 4 [𝑘, 1.5𝑘] 2 0.88 0.88

Webspam

25 4

0.0002 100 2 [𝑘, 1.5𝑘] 1 0.90 0.87

0.0004 100 2 [0.5𝑘, 𝑘] 1 0.89 0.86

0.0006 100 2 [𝑘, 1.5𝑘] 1 0.89 0.85

101 6

0.0002 500 4 [0.5𝑘, 𝑘] 5 0.91 0.90

0.0004 500 4 [0.5𝑘, 𝑘] 6 0.89 0.86

0.0006 500 4 [0.5𝑘, 𝑘] 6 0.85 0.82

potential benefits of hierarchical training: training smaller large-

spread ensembles on subsets of features and then merging them

can enable the training of bigger large-spread ensembles.

Finally, we observe that the values of𝑀𝑈𝐿𝑇 and 𝐼𝑁𝑇𝑉 used for

training the best-performing large-spread ensembles are strongly

dependent on the specific experiment and do not show particularly

insightful patterns. It is common to identify different optimal values

of𝑀𝑈𝐿𝑇 and 𝐼𝑁𝑇𝑉 even for the same dataset and model size. Grid

search is a standard practice to deal with the unpredictable nature

of these hyper-parameters.
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