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Abstract 
Motivation: Substrings of length k, commonly referred to as k-mers, play a vital role in sequence analysis. However, k-mers are limited to exact 
matches between sequences leading to alternative constructs. We recently introduced a class of new constructs, strobemers, that can match 
across substitutions and smaller insertions and deletions. Randstrobes, the most sensitive strobemer proposed in Sahlin (Effective sequence 
similarity detection with strobemers. Genome Res 2021a;31:2080–94. https://doi.org/10.1101/gr.275648.121), has been used in several bioin-
formatics applications such as read classification, short-read mapping, and read overlap detection. Recently, we showed that the more pseudo- 
random the behavior of the construction (measured in entropy), the more efficient the seeds for sequence similarity analysis. The level of 
pseudo-randomness depends on the construction operators, but no study has investigated the efficacy.
Results: In this study, we introduce novel construction methods, including a Binary Search Tree-based approach that improves time complexity 
over previous methods. To our knowledge, we are also the first to address biases in construction and design three metrics for measuring bias. 
Our evaluation shows that our methods have favorable speed and sampling uniformity compared to existing approaches. Lastly, guided by our 
results, we change the seed construction in strobealign, a short-read mapper, and find that the results change substantially. We suggest com-
bining the two results to improve strobealign’s accuracy for the shortest reads in our evaluated datasets. Our evaluation highlights sampling 
biases that can occur and provides guidance on which operators to use when implementing randstrobes.
Availability and implementation: All methods and evaluation benchmarks are available in a public Github repository at https://github.com/ 
Moein-Karami/RandStrobes. The scripts for running the strobealign analysis are found at https://github.com/NBISweden/strobealign-evaluation.

1 Introduction
In sequence analyses, k-mers play an important role in vari-
ous algorithms and approaches. For example, k-mers can be 
used as seeds for sequence similarity search, where a seed 
shared between two sequences acts as an anchor to identify 
similar regions between, e.g. DNA, RNA, or protein sequen-
ces. When used as seeds, k-mers enable rapid identification of 
shared regions and are used in a large number of short and 
long-read mapping algorithms (Alser et al. 2021, Sahlin et al. 
2023), and other approaches for querying large sequence 
datasets (Marchet et al. 2021, Fan et al. 2024).

Both a feature and a limitation of using k-mers as seeds is 
that sequences must be identical for the seed to match. In 
biological data, it is common that mutations in DNA occur 
in the form of substituted, deleted, and inserted nucleoti-
des. In addition, common DNA and RNA sequencing 
techniques are noisy and introduce additional altering of 
the nucleic acids. In order to provide anchors also in 
regions with high divergence, seeds are allowed to 
anchor over mutations. Alternatives to k-mers have there-
fore been explored extensively in the literature, such as 
spaced k-mers (Ma et al. 2002). See Sahlin et al. (2023) for 
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an overview of several other seeding constructs used in 
read mapping.

1.1 Strobemers
Recently, we introduced strobemers, a novel class of seed 
constructs (Sahlin 2021a). Strobemers can produce seed 
matches across substitutions, insertions, and deletions, 
expanding on ideas from neighboring minimizer pairs (Chin 
and Khalak 2019, Sahlin and Medvedev 2021) and k-min- 
mers (Ekim et al. 2021) that link neighboring minimizers 
(Roberts et al. 2004) into a seed. Strobemers generalize this 
linking by considering downstream k-mers as potential candi-
dates to link, offering various methods such as minstrobes, 
randstrobes, and hybridstrobes (Sahlin 2021a), with randst-
robes being the most effective. Randstrobes have been used, 
e.g. in for short-read mapping (Sahlin 2022), transcriptomic 
long-read normalization (Nip et al. 2023), and read classifi-
cation (Xu et al. 2023). Our recent study also demonstrates 
that randstrobes provide accurate sequence similarity ranking 
using the Jaccard distance (Maier and Sahlin 2023). This 
study also revealed a strong correlation between strobemers’ 
sensitivity and the pseudo-randomness of the seed construct, 
measured through entropy (Maier and Sahlin 2023). While 
additional strobemer variants have been introduced (Maier 
and Sahlin 2023), randstrobes remain the simplest and most 
widely used construct. Constructing randstrobes involves 
converting strings to integers using a hash function and 
selecting candidate k-mers for linking through a link function 
and comparator operator. Sampling biases (Fig. 1) in this 
process can affect sequence matching efficiency (Maier and 
Sahlin 2023). So far, the underlying operators to produce 
randstrobes have not been evaluated.

1.2 Our contribution
We design metrics suitable for detecting and measuring sev-
eral types of bias in randstrobe construction methods (Fig. 1). 
Using the new evaluation metrics, we uncovered biases and 
limitations in previous randstrobe methods (Sahlin 2021a, 
2022, Xu et al. 2023). We propose new methods to enhance 
the core operations (hashing, linking, and comparison), 
which improve seed uniqueness, sampling uniformity, and 
construction runtime. We also introduce a Binary Search 
Tree (BST)-based construction method, reducing time com-
plexity and achieving comparable randomness but is much 

faster for some parametrizations. This is valuable for time- 
critical bioinformatics applications.

Additionally, we identify that the link function and com-
parator in the short-read mapper strobealign (Sahlin 2022) 
underperform in seed uniqueness compared to other meth-
ods. As a result, we modified strobealign to enhance accu-
racy. Although the modification does not improve the overall 
accuracy, an approach that selects the best alignment score 
per read from the modified and default versions of strobea-
lign improves accuracy substantially. This finding can be 
used to further increase strobealign’s accuracy. In summary, 
our evaluation uncovers linking biases and offers guidance on 
operator selection for randstrobe implementations.

2 Materials and methods
2.1 Definitions
We use 0-indexed notation. We typically use S and T to de-
note strings, and we use the notation S½i : j�, i< j to refer to a 
substring starting at position i and ending (and including) the 
character at position j in S. We let the j � j operator denote the 
length of strings. Here, our alphabet consists of the letters (or 
nucleotides) Σ ¼ fA;G;C;Tg. We use hðxÞ ! z, where x and 
z are integers to denote a hash function without specifying 
the underlying function. As for representation in memory, 
DNA strings shorter or equal to 32 nucleotides (nt) can be 
stored with 64-bit integers by encoding A, C, G, and T as 00, 
01, 10, and 11, respectively. Other letters, such as N for 
“unknown” nucleotide, are ignored. For k-mers longer than 
32 nt, we represent them as structs of (concatenated) 64-bit 
integers. We use the variable x to represent the integer value 
of the encoding. Finally, we use & for bitwise AND, � for 
bitwise XOR, | for concatenation (e.g. concatenating two 64- 
bit integers into a 128-bit representation), and\% for the 
modulo operator. We also use BðxÞ to represent the function 
that returns the number of set bits in x.

2.2 An overview of constructing strobemers
A k-mer is a substring of k nucleotides in a biological se-
quence S. Consequently, a k-mer only needs the length of the 
substring, k, as a parameter to be specified. A strobemer is a 
set of linked k-mers. Specifically, a strobemer consist of 
n l-mers l0; . . . ; ln−1, denoted strobes, where the first strobe l0 

has a determined position i in S. Downstream strobe lm, m 2
½1;n − 1� is selected in an interval S½iþwminþðm − 1Þwmax :

Figure 1. Illustration of a desired random sampling of the second strobe for strobemers consisting of two strobes (case A). Whenever a pseudo-random 
method is used to select the downstream strobe based on the first strobe, it generates some sampling bias. Cases B–E show different biases we 
observed in the sampling. The metrics we propose to measure the bias are displayed under each of the illustrations of cases B–E.
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iþmwmax� in S, and linked (appending the strobe to previous 
strobes) to the m previous strobes. Here, wmin and wmax spec-
ify the range of the sampling window. For example, strobe l1 

is sampled in S½iþwmin : iþwmax� and linked to l0.
Since we consider 64-bit integer representations of the 

strobes in this study, we will from now on refer to the strobes 
as x0;x1; . . . xn−1 and, when clear from context, we alternate 
x to mean either the strobe itself or its integer representation. 
This is also the reason we use the more general term linking 
instead of appending (strobes to the seed), as the linking 
method will vary with the strobe representation, as we dis-
cuss in detail in the next section.

The methods to select strobes differ (Sahlin 2021a). For ex-
ample, Minstrobes have been used for long-read overlap de-
tection (Firtina et al. 2023) and alternating strobe lengths 
have also been explored (Maier and Sahlin 2023). However, 
randstrobes were shown to be more sensitive for sequence 
matching than other methods using fixed strobe lengths (min-
strobes and hybridstrobes) (Sahlin 2021a), and simpler to 
construct than alternating strobe lengths (altstrobes and mul-
tistrobes) (Maier and Sahlin 2023), and is so far most com-
monly implemented in practice (Sahlin 2022, Nip et al. 2023, 
Xu et al. 2023). Therefore, we will consider only the randst-
robes method in this study. Randstrobes are parameterized 
by ðn; l;wmin;wmaxÞ. The novelty compared to, e.g. k-mers 
and spaced k-mers is that strobemers allow flexibility in the 
strobes’ spacing and can produce matches between two 
sequences in a region with insertions or deletions.

2.3 Strobemer construction: constraints 
and objectives
Let Mwmax

wmin
ðxijxi−1; . . . ;x0Þ, or simply M when context is clear, 

be a method to sample a strobe xi in a window given by 
its parametrization ðn; l;wmin;wmaxÞ. We put the following 
constraints on M.

1) M selects xi based only on the sequence information 
of xi−1; . . . ;x0. 

2) M is deterministic. That is, for two identical strings S 
and T, the same strobes are produced. 

We want to find a method M such that

1) Maximize HðMðxijxi−1; . . . ;x0ÞÞ, where H denotes the 
entropy. Intuitively, M should sample xi as uniform as 
possible within the window, regardless of previous 
strobes and the sequence in the window. 

2) M constructs randstrobes as fast as possible. 

The first constraint is essential to eliminate high-entropy 
but impractical solutions in sequence matching. For instance, 
using a (pseudo) random number generator (RNG) like rand 
() in Cþþ may seem to have good entropy. However, in sce-
narios involving similar strings S and T, where one has a dele-
tion, the RNG is likely to generate different numbers upon 
encountering the deletion, making it unsuitable for string 
matching. Therefore, the method’s decision should solely rely 
on the underlying sequence.

The first objective, instead, involves conditional entropy, 
which is challenging to measure. Merely assessing entropy by 
the uniformity of sampling sites within a sequence window is 
insufficient. For instance, if a method prefers selecting a 
strobe if it is identical to the previous strobe, and the distance 

between two identical strobes happens to be uniformly dis-
tributed across a sequence, the method may falsely appear to 
have perfect entropy. It is also worth noting that achieving 
high entropy is easier in randomly generated sequences, but 
the focus here is on repetitive regions common in biological 
sequences, where achieving sampling uniformity is more 
challenging.

2.4 Constructing randstrobes
The process of creating randstrobes can be separated into 
four modular components:

1) Hashing the strobes; 
2) Linking the strobes; 
3) Comparing the strobes during linking; 
4) Construction of the final seed hash value. 

We discuss each of the components below and suggest differ-
ent methods to perform them.

2.4.1 Hashing strobes
Since each strobe is represented as a 64-bit integer using the 
binary encoding, the integers can further be hashed. The rea-
son for hashing a strobe x as z ¼ hðxÞ is that it can improve 
the pseudo-randomness. We evaluate the following hash 
functions for the strobes:

� hNOðxÞ: The original 2-bit encoding of nucleotides is used 
without applying a hash function. 

� hTWðxÞ: Thomas Wang hash (http://web.archive.org/web/ 
20071223173210/http://www.concentric.net/�Ttwang/ 
tech/inthash.htm), an invertible hash function used, e.g. in 
minimap2 (Li 2018). 

� hXXðxÞ: xxHash (https://xxhash.com/). 
� hWYðxÞ: wyhash (https://github.com/wangyi-fudan/wy 

hash). 

Previously, hNOðxÞ was used in Sahlin (2021a) and hTWðxÞ
was used (Sahlin 2022). This is the first study using hXXðxÞ
and hWYðxÞ as hash functions to construct randstrobes. The 
hash functions xxHash and wyhash are general-purpose non- 
cryptographic pseudo-random hash functions that hash bytes 
into an integer range of size 2b for some b>0 (here, b ¼ 64).

2.4.2 Linking strobes
The second strobe x1 is linked to the first strobe x0 by select-
ing the candidate strobe x01 in the window that minimizes or 
maximizes the link function ‘. For example, in the first stro-
bemers study (Sahlin 2021a), two link functions were used. 
The first was ‘ðx0;x01Þ ¼ ðx0þx01Þ mod p, p 2 Z [originally 
proposed in the preprint (Sahlin 2021b)]. The second one 
was ‘ðx0; x01Þ ¼ ðx0þx01Þ&q, where q is a bitmask of 16 ones’ 
on the lowest significant bits and remaining 0s [proposed 
as faster alternative in the final publication (Sahlin 2021a)]. 
We call these functions ‘MOD and ‘AND, respectively. 
Furthermore, two additional link functions were described in 
Sahlin (2022) and Xu et al. (2023) that we denote ‘BC and 
‘XOR. Here we propose three more alternatives: ‘XV, ‘CC, and 
‘MAMD. We provide formal definitions of all the link func-
tions below.

� ‘MODðx0; x1Þ ¼ ðhðx0Þþhðx1ÞÞmod p, p 2 N (see 
Sahlin 2021a) 
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� ‘ANDðx0;x1Þ ¼ ðhðx0Þþ hðx1ÞÞ&q; q 2 N (see 
Sahlin 2021a) 

� ‘BCðx0;x1Þ ¼ Bðhðx0Þ� hðx1ÞÞ (see Sahlin 2022) 
� ‘XORðx0;x1Þ ¼ hðx0Þ� hðx1Þ (see Xu et al. 2023) 
� ‘XVðx0; x1Þ ¼ hðx0 � x1Þ (proposed in this study) 
� ‘CCðx0;x1Þ ¼ hðx0jjx1Þ [described in the pseudo code in 

Sahlin (2021a) but never studied] 
� ‘MAMDðx0;x1Þ ¼ ðhðx0Þmod pÞþðhðx1Þmod pÞmod p, 

p 2 N. Similar to ‘MOD but uses a BST (proposed in 
this study) 

The ‘MAMD and ‘MOD are theoretically nearly identical (see 
Supplementary Section 1). However, ‘MAMD uses a BST to 
lower the time complexity. Consider a window of hash val-
ues. Roughly stated, the ‘MAMD link function only needs four 
operations as we are sweeping the window over the sequence; 
find minimum element (no modulo wrap-around), find the 
closest element to a specific value (modulo wrap-around), 
add incoming element, and remove outgoing element. These 
operations can all be performed in logarithmic time with a 
BST. The ‘MAMD link function is described in detail in 
Supplementary Section 1. We will discuss the computational 
complexity of all methods in Section 2.6. In this section, we 
only discussed linking the first two strobes. Linking addi-
tional strobes can be done recursively by applying the same 
link function between the previous resulting randstrobe hash 
value b with the next candidate downstream strobes xm, 
m> 2 as ‘ðb; xmÞ.

2.4.3 Sampling comparator
The comparator function, here denoted cð�Þ, specifies the cri-
teria for which we select strobe x1 among candidates x01. To 
our knowledge, the only sampling comparator that has been 
proposed is cminðx0;x01Þ ¼ argminx012W‘�ðx0;x01Þ (Sahlin 
2021a, 2022, Xu et al. 2023), where W is the collection of 
strobes in the window defined by wmin and wmax. In this 
study, we propose cmaxðx0;x01Þ ¼ argmaxx012W‘ðx0;x1Þ. The 
comparator can influence the result for some hash and link 
constructions as we will see in our benchmark.

2.4.4 The final seed hash value
We have so far discussed only how to select strobes. 
However, once the strobes have been decided, we need to 
represent the randstrobe with a final hash value. The final 
hash value is what should be indexed and queried, e.g. a 
seed-and-extend mapping framework. We denote the func-
tion to produce the final seed hash value as f ðx0; . . . ;xnÞ. 
We need the function f to be as uncorrelated with the link 
function as possible. If we would use the hash value that 
comes out of ‘ðx0;x1Þ, with, e.g. cmin, we are projecting hash 
values to the minimum value in each window. This leads to 
unnecessary hash collisions compared to a uniform hash 
function. Furthermore, as mentioned in Sahlin (2021a), it is 
important to avoid symmetric functions f ðx0;x1Þ ¼ f ðx1;x0Þ

(e.g. f ðx0; x1Þ ¼ x0þx1) if distinguishing direction from, e.g. 
inversions is important [although a symmetric function is 
used to forward and reverse complements seeds in, e.g. read 
mapping (Sahlin 2022)]. Taking into consideration the 
above we use 

f ðx0;x1; . . . ;xn−1Þ ¼
2x0−x1 if n ¼ 2;
2f ðx0;x1; . . . ;xn−2Þ−xn−1 if n>2:

�

This formulation allows f not to have any apparent correla-
tion with any of the benchmarked link functions, as we will 
see in Section 3.

2.5 Linking more than two strobes
Generally, to link xm, to x0; . . . xm−1, m 2 ½2;n−1�, we use 
‘ðb; x0mÞ, where x0m are the candidate strobes in the window, 
and b denotes a base value calculated from the previous m 
strobes. We set the b equal to the previous strobes’ final hash 
value, e.g. b ¼ f ðx0;x1Þ and ‘ðb; x02Þ in the case of three 
strobes. This method can be applied recursively.

2.6 Time complexity
Before discussing computational complexity, we make the 
following classifications of our link functions:

� Cheap computation: This group includes ‘MOD, ‘AND, ‘BC, 
‘XOR, and ‘MAMD. We denote them as computationally 
cheap because the hashing and linking can be separated. 
That is, we only need to calculate hash values once for 
each strobe, and the link function can be applied after. 

� Expensive computation: This group includes ‘CC, and 
‘XV. For these methods, we need to evaluate the hash 
value for the combination of x0 and all its candidate 
downstream strobes, for each new x0. 

The time complexity of constructing randstrobes from a 
string of length jSj varies with the link-function class. Let th 
be the time complexity for the hash function, n the number of 
strobes, and W ¼ wmax − wminþ1 be the window size. Then, 
S − nwmax − lþ1 the number of randstrobes constructed 
from S. We assume that the linking operators (i.e. þ, &, �, 
mod , |) can be performed in constant time, although the prac-
tical runtime varies among the operators with � being 
cheaper to perform while | being relatively expensive.

Expensive computation methods perform ð1þnWÞ hash 
calculations, and nW other operations (such as þ, &, �, 
mod , |), per randstrobe. So the total complexity is 
OððjSj− nwmax−lþ1Þðð1þnWÞthþnWÞÞ. Cheap computa-
tion methods spend at most ðjSj− lþ1Þ hash calculations and 
ðjSj− nwmax − lþ1ÞðnWÞ on other operations, in total. So 
the total complexity is OððjSj− lþ 1ÞthþðjSj− nwmax − 
lþ1ÞðnWÞÞ. If we assume that jSj � nwmax − lþ 1 and th ¼

Ωð1Þ (i.e. the complexity of th is at least a constant), we can 
simplify the expression of the time complexity of expensive 
computation methods and cheap computation methods to 
OðjSjnWthÞ, and OðjSjthþ jSjnWÞ, respectively.

Lastly, the ‘MAMD link function is part of the cheap compu-
tation category. However, the time complexity is further re-
duced to OðjSjthþjSjn log WÞ through the logarithmic time 
complexity of searching for elements (see Supplementary 
Section 1 for details). While the BST implementation 
increases the constant coefficient through the BST overhead, 
we will see that the speed-up is substantial for large windows. 
We have abstracted over the exact time complexity of the 
hash functions. The cheapest computation is hNO which only 
streams over the sequence without performing hashing. Some 
hash functions also support streaming (Mohamadi et al. 
2016) and can lower th.
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2.7 Evaluation metrics
There are different sampling biases that can arise as illus-
trated in Fig. 1. We were not able to find a singular metric 
that captured all of these biases, instead, we propose four 
suitable metrics that would capture cases B–E in Fig. 1. A de-
sirable result is that the selection of the second (or any down-
stream) strobe is performed as uniformly in the window and 
as independently of the previous seed as possible. Several 
seed-based applications also require fast construction; there-
fore, we also benchmark construction runtime.

2.8 Notation for evaluation metrics
Let N be the total number of seeds constructed from a string 
S, and M the number of seeds with distinct final seed hash 
values in S. We let i and j be index variables over the set of 
randstrobes seeds sorted by their first strobe position. Since 
we here sample one randstrobe per position in S, the index 
variables are equivalent to the start position of the seed, and 
the N seeds can be ordered with respect to the start position 
on S. We let sik refer to the kth strobe in seed i and pik to its 
position in S.

2.9 E-hits
The E-hits metric was introduced in Sahlin (2022). It provides 
a number between 1 and jSj, which is the expected number of 
times a seed occurs in the reference. The E-hits metric was 
used as a measure for expected seed repetitiveness in S when 
sampling reads uniformly at random from a reference string 
S, assuming S is much larger than the span of the seed (Sahlin 
2022). We restate the E-hits metric here for self-containment. 
Let i 2 ½1;M� be an index variable over the set of distinct 
seeds in S and N>M be the total number of seeds in S (multi-
set). Let xi denote the number of times seed i occurs in S. Let 
qi be the probability of producing seed i when selecting a seed 
randomly from the N seeds. The E-hits metric is then the 
expected value over seed hits E[X] computed as 

E½X� ¼
XM

i¼1

qixi ¼
XM

i¼1

xi

N
xi ¼

1
N

Xm

i¼1

x2
i : (1) 

In this study, seeds are represented as hash values. The 
above formula is equivalent if we replace the notion of a seed 
with the hash value representation of a seed. In this case, 
E-hits measure the expected number of identical hash values, 
which includes both repetitive seeds and non-desired hash 
collisions. We will measure the E-hits for the final seed hash 
values produced with f, and denote this quantity Ef . This is 
the same use of E-hits as in Sahlin (2022).

2.10 E-hits of inter-strobe distance and 
strobe position
The idea and formulation of E-hits can be used to measure 
the repetitiveness of other quantities. To measure strobe- 
distance clumping (bias B) and periodicity clumping (bias D) 
in Fig 1, we look at the distribution of inter-strobe distances 
within a randstrobe. Let djk be the distance between the first 
strobe and the kth strobe in seed j. We let xi in Equation (1) 
be the number of times we observe distance djk. Equation (1) 
then measures the expected number of times we observe the 
distance djk when randomly drawing a seed from S. We de-
note this quantity as Ed and omit index variable k when it is 
clear from the context.

We measure second-strobe clumping (bias C) by comput-
ing the repetitiveness of the position of kth strobes in S. Let xi 

in Equation (1) represent the number of times we observe the 
kth strobe selected at position p in S. Then, the E-hits formula 
measures the expected number of times position p was sam-
pled as the kth strobe when drawing a seed uniformly at ran-
dom from S. We denote this quantity as Ep (omitting index 
variable k when clear from context).

2.11 The conflict metric
To study complex dependencies (termed other clumping; 
Case E) as depicted in Fig. 1, we introduce the conflict metric, 
which aims to measure the size of the overlaps of strobes 
from a set of neighboring randstrobes with start positions in 
[i, j], i< j. An overlap higher than what is expected under 
random sampling indicates selection bias. Let oði; j;kÞ ¼
maxð0; l − jpjk − pikjÞ measuring the number of overlapping 
positions of the kth strobe between two randstrobes i and j. 
Then 

Pn−1
k¼0 oði; j; kÞ is the total number of overlapping posi-

tions between two randstrobes. The conflict metric for 
randstrobe i is then defined as 

Ci ¼ max
j2½iþ1;minðN;iþmÞ�

Xn−1

k¼0

oði; j; kÞ:

In other words, Ci is the largest observed overlap with any 
of the m consecutive downstream randstrobe seeds. We let 
the conflict metric (C) be the value of Ci averaged over all 
seeds in S. The above formula does not take into account that 
strobes of different orders (k) between neighboring randst-
robes might overlap. However, even if this is possible for 
some values of wmin, it does not originate from the bias that 
we want to measure, and can therefore be omitted.

3 Results
We evaluated all compatible combinations of ‘; c, and h. 
Some combinations, such as hTW with ‘CC, are incompatible 
with strobes larger than 16 nucleotides (32 bits) because hTW 

is designed for 64-bit integers. We use a simulated highly re-
petitive sequence (SIM), a set of 20 Escherichia coli genomes 
(E20), and the CHM13 human chromosome Y from the T2T 
assembly (Nurk et al. 2022) (ChrY) to evaluate pseudo ran-
domness for randstrobes with n ¼ 2. For runtime experi-
ments, we used a simulated string of length 15 million. We 
also evaluated randstrobes n ¼ 3 on the SIM dataset. Details 
of the experiment design and rationale are found in the 
Supplementary Section 2.

3.1 Pseudo-randomness
As for pseudo-randomness, we observed similar trends for 
the methods across the SIM, E20 and ChrY datasets. We also 
observed that the three hash functions (hWY ;hTW ;hXX) had 
very similar results, we therefore focus on presenting the data 
for the SIM dataset using only hWY compared to not hashing 
(hNO) here. Results with all hash functions for SIM, E20, and 
ChrY are found in Supplementary Materials. Our benchmark 
highlights the following takeaways.

Hashing strobes: Always use a hash function to hash the 
strobes before linking (applicable to all link functions except 
‘CC), otherwise most link functions will be subject to some 
form of severe bias (Fig. 2 and Supplementary Figs S1–S3).
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Link function: The two expensive methods (‘XV ; ‘CC) 
achieve the best pseudo-randomness (Fig. 2 and 
Supplementary Figs S1–S3)). As for the computationally 
cheap methods, different methods have different 
bias (Table 1).

Comparator: Comparator choice is only important for 
some link functions. Cheap computation XOR-based meth-
ods ‘XOR and ‘BC exhibit high bias with the cmin comparator. 
This is because the cmin comparator will select a candidate 
strobe to be identical to the previous strobe if present in the 
window (XOR value of 0) while cmax will have the opposite 
behavior. Since our repeats in the SIM dataset have reoccur-
ring distances between them (which also happens in biologi-
cal sequences), it causes distance clumping (bias B) and 
negative positional clumping (bias C).

3.2 Seed repetitiveness
Seed repetitiveness in the reference is crucial for applications 
such as read mapping (Sahlin 2022, Ekim et al. 2023, Maier 
and Sahlin 2023, Shaw and Yu 2023). We use k-mers of 
length 40 nt, corresponding to the same number of sampled 
positions in the randstrobes, as a reference method in this 
benchmark. The k-mers are stored as two strobes with the 
same final function as the randstrobes, f ðx0;x1Þ ¼ 2x0−x1. 
We first verified that using our final hash function f for seed 
representation resulted in minimal hash collisions 
(Supplementary Fig. S4). Since hash collisions were not signif-
icant, we computed the E-hits of the final seed hash value 
(Ef ), for all methods. As with randomness, it is important to 
use a hash function before linking strobes (Fig. 3 and 
Supplementary Figs S1–S3). Additionally, we observed that 

Figure 2. Results for metrics Ed (upper panels), Ep (middle panels), and C (lower panels) for randstrobes with parameter settings 
ðn ¼ 2; l ¼ 20;wmin ¼ 21;wmax ¼ 100Þ for the repetitive sequence dataset. The x-axis shows the different linking methods, and the min and max 
comparators are shown in left and right panels, respectively. We have normalized the values with a near ideal result produced by simulating strobes 
uniformly at random in the window with rand(). Therefore, a value of 1.0 indicates best possible outcome (indicated by black dashed line).

Table 1. Overview of link functions and comparator functions based on the results from our experiments.a

Category ‘ c Introduced Bias Speed Uniqueness Comment 
(strength/weakness).

Expensive ‘CC Any This studyb — Slow High Slow but supreme  
randomness.

‘XV Any This study — Slow High Slow but supreme  
randomness.

‘XOR cmin (Xu et al. 2023) Ep;Ed;Ec Fast Low XOR with cmin collapse simi-
lar regions leading to

repetitiveness. Application 
determines if desired.

cmax This study Ep Fast High Fastest method with 
good randomness.

Cheap ‘MAMD Any This study Ep Fastc High Only method to scale for very 
large windows ð>1000Þ.

‘AND Any (Sahlin 2021a) Ep Fast High Fast but higher Ep than ‘XOR.
‘MOD Any (Sahlin 2021b) Ep Medium High Slower than ‘XOR but not sen-

sitive to the comparator.
‘BC cmin (Sahlin 2022) Ep;Ed;Ec Slow High Designed to be biased. 

sampling at the beginning of
cmax This study Ep;Ed Slow High The window more often. As 

slow as expensive methods.

a Results are described under the assumption that a hash function is used to hash the strobes (applicable to all link functions except ‘CC).
b Mentioned in Sahlin (2021a) but neither used nor studied.
c Too much overhead to be used for small windows.
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randstrobes generally have lower Ef than k-mers for most 
hash and link functions, but repetitiveness can increase with 
specific combinations (Fig. 3).

3.3 Runtime performance
Figure 4 shows the construction time for window sizes using 
wmax ¼ 100 and wmax ¼ 1000, respectively. Expensive com-
putation methods (‘CC and ‘XV) are performing a factor of 

nW more hash computations. However, they are only about 
2.5–4 times slower than the average cheap computation 
methods when using hWY as hash function (Fig. 4). One ex-
planation could be cache efficiency. We also observe that the 
‘BC and ‘MOD are substantially slower than other methods in 
the cheap-computation class. Finally, when constructing 
randstrobes with large windows, ‘MAMD is much faster than 
other methods (Fig. 4, lower panels). This is due to the BST 

Figure 3. Normalized E-hits of seed hash values for various to construct randstrobes with parameters ðn ¼ 2; l ¼ 20;wmin ¼ 21;wmax ¼ 100Þ compared 
to k-mers of size 40. Lower value is better.

Figure 4. Runtime (seconds) on 45 instances for each combination on a 15 million nt simulated string. Each combination generates randstrobes with 
n ¼ 2, l ¼ 20, wmin ¼ 21, and wmax ¼ 100 (upper panel) and wmax ¼ 1000 (lower panel).
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implementation instead of a linear search across each win-
dow. However, due to its special updating technique utilizing 
arithmetic properties of the modulo operator, the method can 
only be used with the modulo link function. As for the hash 
functions, hWY performs better than hXX and hTW on our 
data for the expensive computation class, where strobes are 
represented by a struct of two 64-bit integer strobes.

3.4 Randstrobes in large windows
The ‘MAMD link function enables efficient construction of 
randstrobes in large windows. We were interested in the 
uniqueness of seeds that ‘MAMD produced compared to one of 
the best-performing methods ‘CC (using cmax). We used p ¼
100;001 in the previous analysis. For this analysis, we set 
p ¼ 19; 019;684;767; 739;993. The value of p needs to be 
significantly larger than the window size but smaller than the 
maximum hash value to guarantee high pseudo-randomness. 
To our knowledge, the value of p has no specific influence be-
yond that. We investigated the expected uniqueness (E-Hits) 
of the seeds computed across chromosome Y of the CHM13 
assembly (Fig. 5, left panel). In the figure, a window size of 0 
corresponds to k-mers of size 256. We make two key obser-
vations about the uniqueness of seeds. First, we note that 
there is no substantial difference between the two link func-
tions on chromosome Y from the CHM13 assembly, includ-
ing telomere regions and many repetitive multigene families. 
Second, we observe that the E-hits function is not linearly de-
creasing, which we initially expected. Minimum repetitive-
ness occurs at wmax ¼ 2;000 instead of the largest evaluated 
window at wmax ¼ 10; 000. This is likely explained by the ob-
servation that, beyond a certain window size, the more likely 
it is that the same pair of strobes is found and linked. We also 
looked at how the runtime scaled with window size. Figure 5 
(right panel) shows the median runtime from 10 runs on the 
E.coli genome of 5.5 million nucleotides. Our BST implemen-
tation greatly outperforms ‘CC.

3.5 Implementing cmax in strobealign
Strobealign is a read mapper that use randstrobes created 
from syncmers (Edgar 2021) using cmin together with ‘BC, 
which we observed were particularly bad in terms of seed 
uniqueness and randomness (Figs 2 and 3). Guided by our 
benchmark, we wanted to investigate whether cmax would re-
sult in better mapping results. The experiment is described in 

detail in Supplementary Section 4. We did not observe a di-
rect improvement in strobealign’s accuracy when run with 
cmax compared to the default version that uses cmin 

(Supplementary Tables S1 and S2). However, we observed a 
large improvement in accuracy for the shorter read lengths 
when combining the results of the two runs of strobealign 
(details in Supplementary Section 4).

4 Discussion and conclusions
Constructing randstrobes involves four modular operations: 
computing individual strobe hash values (hash function), de-
termining hash values for linked strobes (link function), 
selecting the final randstrobe from multiple candidates using 
a comparator function, and computing the hash value for the 
chosen randstrobe. The initial three operations (hash, link, 
and comparator functions) yield diverse results based on the 
combination of functions used. Our study introduced and 
benchmarked both novel and previously used hash, link, and 
comparator methods for randstrobe construction, accompa-
nied by metrics to evaluate method biases. Our benchmark 
revealed biases in existing techniques and can offer general 
guidance for which methods to use when utilizing randst-
robes as sequence comparison seeds. From our evaluation, 
we conclude the following.

� Hashing: Always hash the strobes before linking with a 
computationally cheap link method. It does not result in a 
large overhead in construction time (Fig. 4) while being 
beneficial for pseudo-randomness (Figs 2 and 3). The 
hash functions have roughly the same pseudo-randomness 
performance, but the hWY function had the best runtime. 
A downside with hashing compared to the 2-bit encoding 
is that nucleotide level information of the seed is lost. This 
should be factored into the decision for the application 
at hand. 

� Linking: In short, we believe ‘CC or ‘XV should be used 
when highest pseudo-randomness is desired, ‘XOR (with 
cmax) should be used when speed is important, and ‘MAMD 

for use cases with very large windows (Table 1). We do 
not see any benefit with using ‘AND and ‘MOD over ‘XOR. 
Finally, ‘BC is a special function designed for when biased 
sampling is desired, as in Sahlin (2022). 

Figure 5. A comparison between ‘MAMD and ‘CC with parameters ðn ¼ 2; l ¼ 128;wmin ¼ 129;wmax ¼ xÞ, where x is plotted on the x-axis. Left panel 
shows E-hits on Chromosome Y from the CHM13 human assembly (Nurk et al. 2022). The right panel shows median runtime out of 10 runs on an E.coli 
genome of 5.5 million nucleotides.
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� Comparator: The comparator matters for some link func-
tions (Table 1). For example, an XOR-based link-func-
tion projects identical hash values to 0. Therefore, a min 
comparator will select identical strobes if present, while a 
max comparator will be inclined to select differing 
strobes. Consequently, in repetitive regions with occa-
sional variations (e.g. SIM dataset) where the window is 
larger than the repeat length, the min comparator will 
tend to collapse seeds while a max comparator has the op-
posite behavior. This however implies that in such 
regions, the max comparator will be less robust to se-
quencing errors in reads. These two effects pull in differ-
ent directions when it comes to read mapping. We 
observed no substantial difference between them in stro-
bealign (Supplementary Tables S1 and S2) but combining 
their results led to large improvement for shorter reads 
(Supplementary Tables S1 and S2). 

� Final seed hash value function: Choose a final seed hash 
value function that is uncorrelated to the link function to 
avoid hash collisions. For example, we used 2x0−x1 for two 
strobes that did not show any apparent correlation with the 
link functions we benchmarked (Supplementary Fig. S4). 

5 Future work
Efficiently applying hash and link functions can benefit cheap 
computation methods. A rolling hash function, like ntHash 
(Mohamadi et al. 2016), can enhance hash computation in 
these methods. This optimization proves valuable when hash-
ing is relatively more expensive than linking, particularly for 
larger window sizes. Additionally, a link function ‘MAMD was 
designed using arithmetic reasoning to reduce construction 
time complexity. Further investigation is needed to determine 
if the rolling hash approach allows for arithmetic operations 
permitting efficient linking methods.

We observed improved accuracy when combining results 
from min and max comparators in strobealign. Our proof-of- 
concept approach involved running strobealign twice and 
post-processing the alignments, resulting in slightly more 
than twice the runtime compared to a single run. To mitigate 
an increase in runtime, integrating seeds from both compara-
tors into strobealign is a solution. This increases memory us-
age but may not affect runtime since costly rescue-alignment 
calls may lowered due to fewer regions without seed matches.
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