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Abstract

Motivation Substrings of length k, commonly referred to as k-mers, play a vital role in sequence analysis. However,
k-mers are limited to exact matches between sequences leading to alternative constructs. We recently introduced a class
of new constructs, strobemers, that can match across substitutions and smaller insertions and deletions. Randstrobes, the
most sensitive strobemer proposed in [Sahlin, 2021a], has been used in several bioinformatics applications such as read
classification, short read mapping, and read overlap detection. Recently, we showed that the more pseudo-random the
behavior of the construction (measured in entropy), the more efficient the seeds for sequence similarity analysis. The level
of pseudo-randomness depends on the construction operators, but no study has investigated the efficacy.
Results In this study, we introduce novel construction methods, including a Binary Search Tree (BST)-based approach
that improves time complexity over previous methods. To our knowledge, we are also the first to address biases in
construction and design three metrics for measuring bias. Our evaluation shows that our methods have favorable speed
and sampling uniformity compared to existing approaches. Lastly, guided by our results, we change the seed construction
in strobealign, a short-read mapper, and find that the results change substantially. We suggest combining the two results
to improve strobealign’s accuracy for the shortest reads in our evaluated datasets. Our evaluation highlights sampling
biases that can occur and provides guidance on which operators to use when implementing randstrobes.
Availability and implementation All methods and evaluation benchmarks are available in a public Github repository
at https://github.com/Moein-Karami/RandStrobes. The scripts for running the strobealign analysis are found at https:
//github.com/NBISweden/strobealign-evaluation.
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Introduction

In sequence analyses, k-mers play an important role in various

algorithms and approaches. For example, k-mers can be used

as seeds for sequence similarity search, where a seed shared

between two sequences acts as an anchor to identify similar

regions between, e.g., DNA, RNA, or protein sequences. When

used as seeds, k-mers enable rapid identification of shared

regions and are used in a large number of short and long-read

mapping algorithms [Alser et al., 2021, Sahlin et al., 2023], and

other approaches for querying large sequence datasets [Marchet

et al., 2021, Fan et al., 2024].

Both a feature and a limitation with using k-mers as seeds

is that sequences must be identical for the seed to match. In

biological data, it is common that mutations in DNA occur in
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the form of substituted, deleted, and inserted nucleotides. In

addition, common DNA and RNA sequencing techniques are

noisy and introduce additional altering of the nucleic acids. In

order to provide anchors also in regions with high divergence,

seeds are allowed to anchor over mutations. Alternatives to k-

mers have therefore been explored extensively in the literature,

such as spaced k-mers [Ma et al., 2002]. See [Sahlin et al., 2023]

for an overview of several other seeding constructs used in read

mapping.

Strobemers
Recently, we introduced strobemers, a novel class of seed

constructs [Sahlin, 2021a]. Strobemers can produce seed

matches across substitutions, insertions, and deletions,

expanding on ideas from neighboring minimizer pairs [Chin

and Khalak, 2019, Sahlin and Medvedev, 2021] and

k-min-mers [Ekim et al., 2021] that link neighboring

minimizers [Roberts et al., 2004] into a seed. Strobemers

generalize this linking by considering downstream k-mers as

potential candidates to link, offering various methods such

as minstrobes, randstrobes, and hybridstrobes [Sahlin, 2021a],

with randstrobes being the most effective. Randstrobes have

been used, e.g., in for short-read mapping [Sahlin, 2022],

transcriptomic long-read normalization [Nip et al., 2023],

and read classification [Xu et al., 2023]. Our recent study

also demonstrates that randstrobes provide accurate sequence

similarity ranking using the Jaccard distance [Maier and

Sahlin, 2023]. This study also revealed a strong correlation

between strobemers’ sensitivity and the pseudo-randomness

of the seed construct, measured through entropy [Maier

and Sahlin, 2023]. While additional strobemer variants have

been introduced [Maier and Sahlin, 2023], randstrobes remain

the simplest and most widely used construct. Constructing

randstrobes involves converting strings to integers using a hash

function and selecting candidate k-mers for linking through a

link function and comparator operator. Sampling biases (Fig. 1)

in this process can affect sequence matching efficiency [Maier

and Sahlin, 2023]. So far, the underlying operators to produce

randstrobes have not been evaluated.

Our contribution
We design metrics suitable for detecting and measuring several

types of bias in randstrobe construction methods (Fig. 1). Using

the new evaluation metrics, we uncovered biases and limitations

in previous randstrobe methods [Sahlin, 2021a, 2022, Xu et al.,

2023]. We propose new methods to enhance the core operations

(hashing, linking, and comparison), which improve seed

uniqueness, sampling uniformity, and construction runtime. We

also introduce a Binary Search Tree (BST) based construction

method, reducing time complexity and achieving comparable

randomness but is much faster for some parametrizations. This

is valuable for time-critical bioinformatics applications.

Additionally, we identify that the link function and

comparator in the short-read mapper strobealign [Sahlin,

2022] underperform in seed uniqueness compared to other

methods. As a result, we modified strobealign to enhance

accuracy. Although the modification does not improve the

overall accuracy, an approach that selects the best alignment

score per read from the modified and default versions of

strobealign improves accuracy substantially. This finding can

be used to further increase strobealign’s accuracy. In summary,

our evaluation uncovers linking biases and offers guidance on

operator selection for randstrobe implementations.

Fig. 1. Illustration of desired random sampling of the second strobe for

strobemers consisting of two strobes (case A). Whenever a pseudo-random

method is used to select the downstream strobe based on the first strobe,

it generates some sampling bias. Case B to E show different biases we

observed in the sampling. The metrics we propose to measure the bias is

displayed under each of the illustrations of cases B to E.

Methods

Definitions
We use 0-indexed notation. We typically use S and T to denote

strings, and we use the notation S[i : j], i < j to refer to

a substring starting at position i and ending (and including)

the character at position j in S. We let the | · | operator

denote the length of strings. Here, our alphabet consists of the

letters (or nucleotides) Σ = {A,G,C, T}. We use h(x) → z,

where x and z are integers to denote a hash function without

specifying the underlying function. As for representation in

memory, DNA strings shorter or equal to 32 nucleotides (nt)

can be stored with 64-bit integers by encoding A, C, G, and

T as 00, 01, 10, and 11, respectively. Other letters, such as

N for “unknown” nucleotide, are ignored. For k-mers longer

than 32nt, we represent them as structs of (concatenated) 64-

bit integers. We use variable x to represent the integer value

of the encoding. Finally, we use & for bitwise AND, ⊕ for

bitwise XOR, || for concatenation (e.g., concatenating two 64-

bit integers into a 128-bit representation), and % for the modulo

operator. We also use B(x) to represent the function that

returns the number of set bits in x.

An overview of constructing strobemers
A k-mer is a substring of k nucleotides in a biological sequence

S. Consequently, a k-mer only needs the length of the substring,

k, as a parameter to be specified. A strobemer is a set of

linked k-mers. Specifically, a strobemer consist of n l-mers

l0, . . . , ln−1, denoted strobes, where the first strobe l0 has

a determined position i in S. Downstream strobe lm, m ∈
[1, n− 1] is selected in an interval S[i+wmin + (m− 1)wmax :

i+mwmax] in S, and linked (appending the strobe to previous

strobes) to the m previous strobes. Here, wmin and wmax

specify the range of the sampling window. For example, strobe

l1 is sampled in S[i + wmin : i + wmax] and linked to l0.

Since we consider 64-bit integer representations of the

strobes in this study, we will from now on refer to the strobes as

x0, x1, . . . xn−1 and, when clear from context, we alternate x to

mean either the strobe itself or its integer representation. This

is also the reason we use the more general term linking instead

of appending (strobes to the seed), as the linking method will

vary with the strobe representation, as we discuss in detail in

the next section.
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The methods to select strobes differ [Sahlin, 2021a]. For

example, Minstrobes have been used for long-read overlap

detection [Firtina et al., 2023] and alternating strobe lengths

has also been explored [Maier and Sahlin, 2023]. However,

randstrobes were shown to be more sensitive for sequence

matching than other methods using fixed strobe lengths

(minstrobes and hybridstrobes) [Sahlin, 2021a], and simpler

to construct than alternating strobe lengths (altstrobes and

multistrobes) [Maier and Sahlin, 2023], and is so far most

commonly implemented in practice [Sahlin, 2022, Nip et al.,

2023, Xu et al., 2023]. Therefore, we will consider only

the randstrobes method in this study. Randstrobes are

parameterized by (n, l, wmin, wmax). The novelty compared

to, e.g., k-mers and spaced k-mers is that strobemers allow

flexibility in the strobes’ spacing and can produce matches

between two sequences in a region with insertions or deletions.

Strobemer construction: constraints and objectives
Let Mwmax

wmin
(xi|xi−1, . . . , x0), or simply M when context is

clear, be a method to sample a strobe xi in a window given

by its parametrization (n, l, wmin, wmax). We put the following

constraints on M .

1. M selects xi based only on the sequence information of

xi−1, . . . , x0.

2. M is deterministic. That is, for two identical strings S and

T , the same strobes are produced.

We want to find a method M such that

1. Maximize H(M(xi|xi−1, . . . , x0)), where H denotes the

entropy. Intuitively, M should sample xi as uniform as

possible within the window, regardless of previous strobes

and the sequence in the window.

2. M constructs randstrobes as fast as possible.

The first constraint is essential to eliminate high-entropy

but impractical solutions in sequence matching. For instance,

using a (pseudo) random number generator (RNG) like rand()

in C++ may seem to have good entropy. However, in

scenarios involving similar strings S and T , where one has

a deletion, the RNG is likely to generate different numbers

upon encountering the deletion, making it unsuitable for string

matching. Therefore, the method’s decision should solely rely

on the underlying sequence.

The first objective, instead, involves conditional entropy,

which is challenging to measure. Merely assessing entropy by

the uniformity of sampling sites within a sequence window is

insufficient. For instance, if a method prefers selecting a strobe

if it is identical to the previous strobe, and the distance between

two identical strobes happens to be uniformly distributed across

a sequence, the method may falsely appear to have perfect

entropy. It is also worth noting that achieving high entropy

is easier in randomly generated sequences, but the focus here

is on repetitive regions common in biological sequences, where

achieving sampling uniformity is more challenging.

Constructing randstrobes
The process of creating randstrobes can be separated into four

modular components:

1. Hashing the strobes;

2. Linking the strobes;

3. Comparing the strobes during linking;

4. Construction of the final seed hash value.

We discuss each of the components below and suggest different

methods to perform them.

Hashing strobes

Since each strobe is represented as a 64-bit integer using the

binary encoding, the integers can further be hashed. The reason

for hashing a strobe x as z = h(x) is that it can improve the

pseudo-randomness. We evaluate the following hash functions

for the strobes.

• hNO(x): The original 2-bit encoding of nucleotides is used

without applying a hash function.

• hTW(x): Thomas Wang hash (http://web.archive.org/

web/20071223173210/http://www.concentric.net/~Ttwang/tech/

inthash.htm), an invertible hash function used, e.g., in

minimap2 [Li, 2018].

• hXX(x): xxHash (https://xxhash.com/).

• hWY(x): wyhash (https://github.com/wangyi-fudan/wyhash).

Previously, hNO(x) was used in [Sahlin, 2021a] and hTW(x)

was used [Sahlin, 2022]. This is the first study using hXX(x)

and hWY(x) as hash functions to construct randstrobes. The

hash functions xxHash and wyhash are general-purpose non-

cryptographic pseudo-random hash functions that hash bytes

into an integer range of size 2b for some b > 0 (here, b = 64).

Linking strobes

The second strobe x1 is linked to the first strobe x0 by

selecting the candidate strobe x′
1 in the window that minimizes

or maximizes the link function ℓ. For example, in the first

strobemers study [Sahlin, 2021a], two link functions were used.

The first was ℓ(x0, x
′
1) = (x0 + x′

1) mod p, p ∈ Z (originally

proposed in the preprint [Sahlin, 2021b]). The second one was

ℓ(x0, x
′
1) = (x0 + x′

1)&q, where q is a bitmask of 16 ones’ on

the lowest significant bits and remaining 0’s (proposed as faster

alternative in the final publication [Sahlin, 2021a]). We call

these function ℓMOD and ℓAND, respectively. Furthermore, two

additional link functions were described in [Sahlin, 2022, Xu

et al., 2023] that we denote ℓBC and ℓXOR. Here we propose

three more alternatives: ℓXV, ℓCC, and ℓMAMD. We provide

formal definitions of all the link functions below.

• ℓMOD(x0, x1) = (h(x0)+h(x1)) mod p, p ∈ N . (See [Sahlin,

2021a].)

• ℓAND(x0, x1) = (h(x0) + h(x1))&q, q ∈ N . (See [Sahlin,

2021a].)

• ℓBC(x0, x1) = B(h(x0) ⊕ h(x1)). (See [Sahlin, 2022].)

• ℓXOR(x0, x1) = h(x0) ⊕ h(x1). (See [Xu et al., 2023].)

• ℓXV(x0, x1) = h(x0 ⊕ x1). (Proposed in this study.)

• ℓCC(x0, x1) = h(x0||x1). (Described in the pseudo code

in [Sahlin, 2021a] but never studied.)

• ℓMAMD(x0, x1) = (h(x0) mod p) + (h(x1) mod p) mod p,

p ∈ N . Similar to ℓMOD but uses a BST. (Proposed in this

study.)

The ℓMAMD and ℓMOD are theoretically nearly identical (See

Suppl. Section 1). However, ℓMAMD uses a BST to lower the

time complexity. Consider a window of hash values. Roughly

stated, the ℓMAMD link function only needs four operations as

we are sweeping the window over the sequence; find minimum

element (no modulo wrap-around), find the closest element to

a specific value (modulo wrap-around), add incoming element,

and remove outgoing element. These operations can all be
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performed in logarithmic time with a BST. The ℓMAMD link

function is described in detail in Suppl. Section 1. We will

discuss the computational complexity of all methods in the

Time complexity section. In this section, we only discussed

linking the first two strobes. Linking additional strobes can be

done recursively by applying the same link function between

the previous resulting randstrobe hash value b with the next

candidate downstream strobes xm, m > 2 as ℓ(b, xm).

Sampling comparator

The comparator function, here denoted c(·), specifies the

criteria for which we select strobe x1 among candidates x′
1.

To our knowledge, the only sampling comparator that has

been proposed is cmin(x0, x
′
1) = argminx′

1
∈W ℓ·(x0, x

′
1) [Sahlin,

2021a, 2022, Xu et al., 2023], where W is the collection of

strobes in the window defined by wmin and wmax. In this

study we propose cmax(x0, x
′
1) = argmaxx′

1
∈W ℓ(x0, x1). The

comparator can influence the result for some hash and link

constructions as we will see in our benchmark.

The final seed hash value

We have so far discussed only how to select strobes. However,

once the strobes have been decided, we need to represent

the randstrobe with a final hash value. The final hash value

is what should be indexed and queried, for e.g., a seed-

and-extend mapping framework. We denote the function to

produce the final seed hash value as f(x0, . . . , xn). We need

the function f to be as uncorrelated with the link-function as

possible. If we would use the hash value that comes out of

ℓ(x0, x1), with, e.g., cmin, we are projecting hash values to the

minimum value in each window. This leads to unnecessary hash

collisions compared to a uniform hash function. Furthermore, as

mentioned in [Sahlin, 2021a], it is important to avoid symmetric

functions f(x0, x1) = f(x1, x0) (e.g, f(x0, x1) = x0 + x1)

if distinguishing direction from, e.g., inversions is important

(although a symmetric function is used to forward and reverse

complements seeds in, e.g., read mapping [Sahlin, 2022]. Taking

into consideration the above we use

f(x0, x1, . . . , xn−1) =

2x0 − x1 if n = 2,

2f(x0, x1, . . . , xn−2) − xn−1 if n > 2.

This formulation allows f not to have any apparent correlation

with any of the benchmarked link-functions, as we will see in

the results.

Linking more than two strobes

Generally, to link xm, to x0, . . . xm−1, m ∈ [2, n − 1], we use

ℓ(b, x′
m), where x′

m are the candidate strobes in the window,

and b denotes a base value calculated from the previous m

strobes. We set the b equal to the previous strobes’ final hash

value, e.g., b = f(x0, x1) and ℓ(b, x′
2) in the case of three

strobes. This method can be applied recursively.

Time complexity

Before discussing computational complexity we make the

following classifications of our link functions:

• Cheap computation: This group includes ℓMOD, ℓAND,

ℓBC, ℓXOR and ℓMAMD. We denote them as computationally

cheap because the hashing and linking can be separated.

That is, we only need to calculate hash values once for each

strobe, and the link function can be applied after.

• Expensive computation: This group includes ℓCC, and

ℓXV. For these methods we need to evaluate the hash value

for the combination of x0 and all its candidate downstream

strobes, for each new x0.

The time complexity of constructing randstrobes from a

string of length |S| varies with the link-function class. Let th

be the time complexity for the hash function, n the number of

strobes, and W = wmax −wmin +1 be the window size. Then,

S−nwmax − l+1 the number of randstrobes constructed from

S. We assume that the linking operators (i.e., +, &, ⊕, mod ,

||) can be performed in constant time, although the practical

runtime varies among the operators with ⊕ being cheaper to

perform while || being relatively expensive.

Expensive computation methods perform (1 + nW ) hash

calculations, and nW other operations (such as +, &, ⊕,

mod , ||), per randstrobe. So the total complexity is O((|S| −
nwmax − l + 1)((1 + nW )th + nW )). Cheap computation

methods spend at most (|S| − l + 1) hash calculations and

(|S|−nwmax− l+1)(nW ) on other operations, in total. So the

total complexity is O((|S|−l+1)th+(|S|−nwmax−l+1)(nW )).

If we assume that |S| ≫ nwmax − l + 1 and th = Ω(1) (i.e.,

the complexity of th is at least a constant), we can simplify

the expression of the time complexity of expensive computation

methods and cheap computation methods to O(|S|nWth), and

O(|S|th + |S|nW ), respectively.

Lastly, the ℓMAMD link function is part of the cheap

computation category. However, the time complexity is further

reduced to O(|S|th + |S|n logW ) through the logarithmic time

complexity of searching for elements (see Suppl. Section 1 for

details). While the BST implementation increases the constant

coefficient through the BST overhead, we will see that the

speed-up is substantial for large windows. We have abstracted

over the exact time complexity of the hash functions. The

cheapest computation is hNO which only streams over the

sequence without performing hashing. Some hash functions also

support streaming [Mohamadi et al., 2016] and can lower th.

Evaluation Metrics
There are different sampling biases that can arise as illustrated

in Fig 1. We were not able to find a singular metric that

captured all of these biases, instead we propose four suitable

metrics that would capture cases B-E in Fig 1. A desirable

result is that the selection of the second (or any downstream)

strobe is performed as uniformly in the window and as

independently of previous seed as possible. Several seed-based

applications also requires fast construction; therfore, we also

benchmark construction runtime.

Notation for evaluation metrics

Let N be the total number of seeds constructed from a string

S, and M the number of seeds with distinct final seed hash

value in S. We let i and j be index variables over the set of

randstrobes seeds sorted by their first strobe position. Since

we here sample one randstrobe per position in S, the index

variables are equivalent to the start position of the seed, and

the N seeds can be ordered with respect to the start position

on S. We let sik refer to the k-th strobe in seed i and pik to

its position in S.

E-hits

The E-hits metric was introduced in [Sahlin, 2022]. It provides

a number between 1 and |S|, which is the expected number
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of times a seed occurs in the reference. The E-hits metric was

used as a measure for expected seed repetitiveness in S when

sampling reads uniformly at random from a reference string S,

assuming S is much larger than the span of the seed [Sahlin,

2022]. We restate the E-hits metric here for self-containment.

Let i ∈ [1,M ] be an index variable over the set of distinct

seeds in S and N > M be the total number of seeds in S

(multiset). Let xi denote the number of times seed i occurs in

S. Let qi be the probability of producing seed i when selecting

a seed randomly from the N seeds. The E-hits metric is then

the expected value over seed hits E[X] computed as

E[X] =
M∑
i=1

qixi =
M∑
i=1

xi

N
xi =

1

N

m∑
i=1

x
2
i . (1)

In this study, seeds are represented as hash values. The

above formula is equivalent if we replace the notion of a seed

with the hash value representation of a seed. In this case, E-hits

measures the expected number of identical hash values, which

includes both repetitive seeds and non-desired hash collisions.

We will measure the E-hits for the final seed hash values

produced with f , and denote this quantity Ef . This is the same

use of E-hits as in [Sahlin, 2022].

E-hits of inter-strobe distance and strobe position

The idea and formulation of E-hits can be used to measure the

repetitiveness of other quantities. To measure strobe-distance

clumping (bias B) and periodicity clumping (bias D) in Fig 1,

we look at the distribution of inter-strobe distances within a

randstrobe. Let djk be the distance between the first strobe

and the kth strobe in seed j. We let xi in Eq. 1 be the number

of times we observe distance djk. Eq. 1 then measures the

expected number of times we observe the distance djk when

randomly drawing a seed from S. We denote this quantity as

Ed and omit index variable k when it is clear from the context.

We measure second-strobe clumping (bias C) by computing

the repetitiveness of the position of kth strobes in S. Let xi in

Eq. 1 represent the number of times we observe the kth strobe

selected at position p in S. Then, the E-hits formula measures

the expected number of times position p was sampled as the

kth strobe when drawing a seed uniformly at random from S.

We denote this quantity as Ep (omitting index variable k when

clear from context).

The conflict metric

To study complex dependencies (termed other clumping; Case

E) as depicted in Fig 1, we introduce the conflict metric, which

aims to measure the size of the overlaps of strobes from a set of

neighbouring randstrobes with start positions in [i, j], i < j. An

overlap higher than what is expected under random sampling

indicates selection bias. Let o(i, j, k) = max(0, l − |pjk − pik|)
measuring the number of overlapping positions of the kth strobe

between two randstrobes i and j. Then
∑n−1

k=0 o(i, j, k) is the

total number of overlapping positions between two randstrobes.

The conflict metric for randstrobe i is then defined as

Ci = max
j∈[i+1,min(N,i+m)]

n−1∑
k=0

o(i, j, k).

In other words, Ci is the largest observed overlap with any

of the m consecutive downstream randstrobe seeds. We let the

conflict metric (C) be the value of Ci averaged over all seeds in

S. The above formula does not take into account that strobes

of different orders (k) between neighboring randstrobes might

Fig. 2. Results for metrics Ed (upper panels), Ep (middle panels),

and C (lower panels) for randstrobes with parameter settings (n =

2, l = 20, wmin = 21, wmax = 100) for the repetitive sequence dataset.

The x-axis shows the different linking methods, and the min and max

comparators are shown in left and right panels, respectively. We have

normalized the values with a near ideal result produced by simulating

strobes uniformly at random in the window with rand(). Therefore, a

value of 1.0 indicates best possible outcome (indicated by black dashed

line).

overlap. However, even if this is possible for some values of

wmin, it does not originate from the bias that we want to

measure, and can therefore be omitted.

Results

We evaluated all compatible combinations of ℓ, c and h.

Some combinations, such as hTW with ℓCC , are incompatible

with strobes larger than 16 nucleotides (32 bits) because

hTW is designed for 64-bit integers. We use a simulated

highly repetitive sequence (SIM), a set of twenty E. coli

genomes (E20), and the CHM13 human chromosome Y from

the T2T assembly [Nurk et al., 2022] (ChrY) to evaluate

pseudo randomness for randstrobes with n = 2. For runtime

experiments we used a simulated string of length 15 million. We

also evaluated randstrobes n = 3 on the SIM dataset. Details

of the experiment design and rationale are found in the Suppl.

Section 2.

Pseudo-randomness
As for pseudo-randomness, we observed similar trends for the

methods across the SIM, E20 and ChrY datasets. We also

observed that the three hash functions (hWY , hTW , hXX) had

very similar results, we therefore focus on presenting the data

for the SIM dataset using only hWY compared to not hashing

(hNO) here. Results with all hash functions for SIM, E20, and

ChrY are found in supplementary materials. Our benchmark

highlights the following takeaways.

Hashing strobes: Always use a hash function to hash the

strobes before linking (applicable to all link functions except

ℓCC), otherwise most link functions will be subject to some

form of severe bias (Fig. 2, Fig. S1-S3).

Link function: The two expensive methods (ℓXV , ℓCC)

achieve the best pseudo-randomness (Fig. 2, Fig. S1-S3). As

for the computationally cheap methods, different methods have

different bias (Table 1).

Comparator: Comparator choice is only important for

some link functions. Cheap computation XOR-based methods

ℓXOR and ℓBC exhibit high bias with the cmin comparator.

This is because the cmin comparator will select a candidate

strobe to be identical to the previous strobe if present in the
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Category ℓ c Introduced Bias Speed Uniqueness Comment (strength/weakness)

Expen- ℓCC Any This study∗ - Slow High Slow but supreme randomness.

sive ℓXV Any This study - Slow High Slow but supreme randomness.

ℓXOR cmin [Xu et al., 2023] Ep, Ed, Ec Fast Low XOR with cmin collapse similar regions leading to

repetitiveness. Application determines if desired.

cmax This study Ep Fast High Fastest method with good randomness.

Cheap ℓMAMD Any This study Ep Fast∗∗ High Only method to scale for very large windows (> 1000).

ℓAND Any [Sahlin, 2021a] Ep Fast High Fast but higher Ep than ℓXOR.

ℓMOD Any [Sahlin, 2021b] Ep Medium High Slower than ℓXOR but not sensitive to comparator.

ℓBC cmin [Sahlin, 2022] Ep, Ed, Ec Slow High Designed to be biased. sampling in beginning of

cmax This study Ep, Ed Slow High the window more often. As slow as expensive methods.

Table 1. Overview of link functions and comparator functions based on the results from our experiments. Results are described under the

assumption that a hash function is used to hash the strobes (applicable to all link functions except ℓCC). ∗Mentioned in [Sahlin, 2021a] but

neither used nor studied. ∗∗Too much overhead to be used for small windows.

window (XOR value of 0) while cmax will have the opposite

behavior. Since our repeats in the SIM dataset have reoccurring

distances between them (which also happens in biological

sequences), it causes distance clumping (bias B) and negative

positional clumping (bias C).

Fig. 3. Normalized E-hits of seed hash values for various to construct

randstrobes with parameters (n = 2, l = 20, wmin = 21, wmax = 100)

compared to k-mers of size 40. Lower value is better.

Seed repetitiveness
Seed repetitiveness in the reference is crucial for applications

such as read mapping Sahlin [2022], Shaw and Yu [2023], Ekim

et al. [2023], Maier and Sahlin [2023]. We use k-mers of length

40nt, corresponding to the same number of sampled positions in

the randstrobes, as a reference method in this benchmark. The

k-mers are stored as two strobes with the same final function

as the randstrobes, f(x0, x1) = 2x0 − x1. We first verified

that using our final hash function f for seed representation

resulted in minimal hash collisions (Suppl. Fig. S4). Since

hash collisions were not significant, we computed the E-hits

of the final seed hash value (Ef ), for all methods. As with

randomness, it is important to use a hash function before

linking strobes (Fig. 3, Fig. S1-S3). Additionally, we observed

that randstrobes generally have lower Ef than k-mers for most

hash and link functions, but repetitiveness can increase with

specific combinations (Fig. 3).

Runtime performance
Figure 4 shows the construction time for window sizes using

wmax = 100 and wmax = 1000, respectively. Expensive-

computation methods (ℓCC and ℓXV ) are performing a factor of

nW more hash computations. However, they are only about 2.5
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Fig. 4. Runtime (seconds) on 45 instances for each combination on a

15 million nt simulated string. Each combination generates randstrobes

with n = 2, l = 20, wmin = 21, and wmax = 100 (Upper panel) and

wmax = 1000 (Lower panel).

to 4 times slower than the average cheap computation methods

when using hWY as hash function (Fig. 4). One explanation

could be cache efficiency. We also observe that the ℓBC and

ℓMOD are substantially slower than other methods in the cheap-

computation class. Finally, when constructing randstrobes with

large windows, ℓMAMD is much faster than other methods

(Fig 4, lower panels). This is due to the BST implementation

instead of a linear search across each window. However, due to

its special updating technique utilizing arithmetic properties of

the modulo operator, the method can only be used with the

modulo link function. As for the hash functions, hWY performs

better than hXX and hTW on our data for the expensive

computation class, where strobes are represented by a struct

of two 64-bit integer strobes.

Randstrobes in large windows
The ℓMAMD link function enables efficient construction of

randstrobes in large windows. We were interested in the

uniqueness of seeds that ℓMAMD produced compared to one
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Efficient randstrobes 7

Fig. 5. A comparison between ℓMAMD and ℓCC with parameters (n =

2, l = 128, wmin = 129, wmax = x), where x is plotted on the x-axis.

Left panel shows E-hits on Chromosome Y from the CHM13 human

assembly [Nurk et al., 2022]. The right panel shows median runtime out

of 10 runs on an E. coli genome of 5.5 million nucleotides.

of the best-performing methods ℓCC (using cmax). We used

p = 100, 001 in the previous analysis. For this analysis, we

set p = 19, 019, 684, 767, 739, 993. The value of p needs to be

significantly larger than the window size but smaller than the

maximum hash value to guarantee high pseudo-randomness. To

our knowledge, the value of p has no specific influence beyond

that. We investigated the expected uniqueness (E-Hits) of the

seeds computed across chromosome Y of the CHM13 assembly

(Fig. 5, left panel). In the figure, a window size of 0 corresponds

to k-mers of size 256. We make two key observations about the

uniqueness of seeds. First, we note that there is no substantial

difference between the two link functions on chromosome Y

from the CHM13 assembly, including telomere regions and

many repetitive multigene families. Second, we observe that

the E-hits function is not linearly decreasing, which we initially

expected. Minimum repetitiveness occurs at wmax = 2, 000

instead of the largest evaluated window at wmax = 10, 000.

This is likely explained by the observation that, beyond a

certain window size, the more likely it is that the same pair

of strobes is found and linked. We also looked at how the

runtime scaled with window size. Figure 5 (right panel) shows

the median runtime from 10 runs on the E. coli genome

of 5.5 million nucleotides. Our BST implementation greatly

outperforms ℓCC .

Implementing cmax in strobealign
Strobealign is a read mapper that use randstrobes created from

syncmers [Edgar, 2021] using cmin together with ℓBC , which

we observed were particularly bad in terms of seed uniqueness

and randomness (Fig. 2 and 3). Guided by our benchmark,

we wanted to investigate whether cmax would result in better

mapping results. The experiment is described in detail in

Suppl. Section 4. We did not observe a direct improvement

in strobealign’s accuracy when run with cmax compared to

the default version that uses cmin (Suppl. Tab. S1 and S2).

However, we observed a large improvement in accuracy for the

shorter read lengths when combining the results of the two runs

of strobealign (details in Suppl. Section 4).

Discussion and conclusions

Constructing randstrobes involves four modular operations:

computing individual strobe hash values (hash function),

determining hash values for linked strobes (link function),

selecting the final randstrobe from multiple candidates using

a comparator function, and computing the hash value for the

chosen randstrobe. The initial three operations (hash, link,

and comparator functions) yield diverse results based on the

combination of functions used. Our study introduced and

benchmarked both novel and previously used hash, link, and

comparator methods for randstrobe construction, accompanied

by metrics to evaluate method biases. Our benchmark revealed

biases in existing techniques and can offer general guidance

for which methods to use when utilizing randstrobes as

sequence comparison seeds. From our evaluation we conclude

the following.

• Hashing: Always hash the strobes before linking with a

computationally cheap link method. It does not result in

a large overhead in construction time (Fig. 4) while being

beneficial for pseudo-randomness (Fig. 2 and 3). The

hash functions have roughly the same pseudo-randomness

performance, but the hWY function had the best runtime.

A downside with hashing compared to the 2-bit encoding

is that nucleotide level information of the seed is lost. This

should be factored into the decision for the application at

hand.

• Linking: In short, we believe ℓCC or ℓXV should be used

when highest pseudo-randomness is desired, ℓXOR (with

cmax) should be used when speed is important, and ℓMAMD

for use cases with very large windows (Table 1). We do not

see any benefit with using ℓAND and ℓMOD over ℓXOR.

Finally, ℓBC is a special function designed for when biased

sampling is desired, as in Sahlin [2022].

• Comparator: The comparator matters for some link

functions (Table 1). For example, an XOR based link-

function projects identical hash values to 0. Therefore,

a min comparator will select identical strobes if present,

while a max comparator will be inclined to select differing

strobes. Consequently, In repetitive regions with occasional

variations (e.g., SIM dataset) where the window is larger

than the repeat length, the min comparator will tend to

collapse seeds while a max comparator has the opposite

behaviour. This however implies that in such regions, the

max comparator will be less robust to sequencing errors in

reads. These two effects pull in different directions when

it comes to read mapping. We observed no substantial

difference between them in strobealign (Suppl. Tab. S1 and

S2) but combining their results led to large improvement for

shorter reads (Suppl. Tab. S1 and S2).

• Final seed hash value function: Choose a final seed hash

value function that is uncorrelated to the link function to

avoid hash collisions. For example, we used 2x0−x1 for two

strobes that did not show any apparent correlation with the

link-functions we benchmarked (Suppl. Fig. S4).

Future work
Efficiently applying hash and link functions can benefit

cheap computation methods. A rolling hash function, like

ntHash [Mohamadi et al., 2016], can enhance hash computation

in these methods. This optimization proves valuable when

hashing is relatively more expensive than linking, particularly

for larger window sizes. Additionally, a link function ℓMAMD

was designed using arithmetic reasoning to reduce construction

time complexity. Further investigation is needed to determine

if the rolling hash approach allows for arithmetic operations

permitting efficient linking methods.
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We observed improved accuracy when combining results

from min and max comparators in strobealign. Our proof-

of-concept approach involved running strobealign twice and

post-processing the alignments, resulting in slightly more than

twice the runtime compared to a single run. To mitigate an

increase in runtime, integrating seeds from both comparators

into strobealign is a solution. This increases memory usage but

may not affect runtime since costly rescue-alignment calls may

lowered due to fewer regions without seed matches.
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