
Sequence analysis

Designing efficient randstrobes for sequence
similarity analyses
Moein Karami1, Aryan Soltani Mohammadi1, Marcel Martin 2, Barış Ekim3,4, Wei Shen 5,
Lidong Guo6, Mengyang Xu 7, Giulio Ermanno Pibiri8,9, Rob Patro 10, Kristoffer Sahlin 1,�

1Department of Mathematics, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
2Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm
University, Solna SE-17121, Sweden
3Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, MA 02139,
United States
4Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
5Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral
Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
6BGI Research, Qingdao 266555, China
7BGI Research, Shenzhen 518083, China
8Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice 30172, Italy
9ISTI-CNR, Pisa 56124, Italy
10Department of Computer Science and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD
20742, United States
�Corresponding author. Department of Mathematics, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden. E-mail: ksahlin@math.su.se (K.S.)
Associate Editor: Alfonso Valencia

Abstract
Motivation: Substrings of length k, commonly referred to as k-mers, play a vital role in sequence analysis. However, k-mers are limited to exact
matches between sequences leading to alternative constructs. We recently introduced a class of new constructs, strobemers, that can match
across substitutions and smaller insertions and deletions. Randstrobes, the most sensitive strobemer proposed in Sahlin (Effective sequence
similarity detection with strobemers. Genome Res 2021a;31:2080–94. https://doi.org/10.1101/gr.275648.121), has been used in several bioin-
formatics applications such as read classification, short-read mapping, and read overlap detection. Recently, we showed that the more pseudo-
random the behavior of the construction (measured in entropy), the more efficient the seeds for sequence similarity analysis. The level of
pseudo-randomness depends on the construction operators, but no study has investigated the efficacy.
Results: In this study, we introduce novel construction methods, including a Binary Search Tree-based approach that improves time complexity
over previous methods. To our knowledge, we are also the first to address biases in construction and design three metrics for measuring bias.
Our evaluation shows that our methods have favorable speed and sampling uniformity compared to existing approaches. Lastly, guided by our
results, we change the seed construction in strobealign, a short-read mapper, and find that the results change substantially. We suggest com-
bining the two results to improve strobealign’s accuracy for the shortest reads in our evaluated datasets. Our evaluation highlights sampling
biases that can occur and provides guidance on which operators to use when implementing randstrobes.
Availability and implementation: All methods and evaluation benchmarks are available in a public Github repository at https://github.com/
Moein-Karami/RandStrobes. The scripts for running the strobealign analysis are found at https://github.com/NBISweden/strobealign-evaluation.

1 Introduction
In sequence analyses, k-mers play an important role in vari-
ous algorithms and approaches. For example, k-mers can be
used as seeds for sequence similarity search, where a seed
shared between two sequences acts as an anchor to identify
similar regions between, e.g. DNA, RNA, or protein sequen-
ces. When used as seeds, k-mers enable rapid identification of
shared regions and are used in a large number of short and
long-read mapping algorithms (Alser et al. 2021, Sahlin et al.
2023), and other approaches for querying large sequence
datasets (Marchet et al. 2021, Fan et al. 2024).

Both a feature and a limitation of using k-mers as seeds is
that sequences must be identical for the seed to match. In
biological data, it is common that mutations in DNA occur
in the form of substituted, deleted, and inserted nucleoti-
des. In addition, common DNA and RNA sequencing
techniques are noisy and introduce additional altering of
the nucleic acids. In order to provide anchors also in
regions with high divergence, seeds are allowed to
anchor over mutations. Alternatives to k-mers have there-
fore been explored extensively in the literature, such as
spaced k-mers (Ma et al. 2002). See Sahlin et al. (2023) for

Received: 18 October 2023; Revised: 23 February 2024; Editorial Decision: 1 April 2024; Accepted: 4 April 2024
The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40(4), btae187
https://doi.org/10.1093/bioinformatics/btae187
Advance Access Publication Date: 5 April 2024
Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/4/btae187/7641534 by guest on 09 June 2024

https://orcid.org/0000-0002-0680-200X
https://orcid.org/0000-0002-8099-8258
https://orcid.org/0000-0002-4487-7088
https://orcid.org/0000-0001-8463-1675
https://orcid.org/0000-0001-7378-2320
https://doi.org/10.1101/gr.275648.121
https://github.com/Moein-Karami/RandStrobes
https://github.com/Moein-Karami/RandStrobes
https://github.com/NBISweden/strobealign-evaluation

an overview of several other seeding constructs used in
read mapping.

1.1 Strobemers
Recently, we introduced strobemers, a novel class of seed
constructs (Sahlin 2021a). Strobemers can produce seed
matches across substitutions, insertions, and deletions,
expanding on ideas from neighboring minimizer pairs (Chin
and Khalak 2019, Sahlin and Medvedev 2021) and k-min-
mers (Ekim et al. 2021) that link neighboring minimizers
(Roberts et al. 2004) into a seed. Strobemers generalize this
linking by considering downstream k-mers as potential candi-
dates to link, offering various methods such as minstrobes,
randstrobes, and hybridstrobes (Sahlin 2021a), with randst-
robes being the most effective. Randstrobes have been used,
e.g. in for short-read mapping (Sahlin 2022), transcriptomic
long-read normalization (Nip et al. 2023), and read classifi-
cation (Xu et al. 2023). Our recent study also demonstrates
that randstrobes provide accurate sequence similarity ranking
using the Jaccard distance (Maier and Sahlin 2023). This
study also revealed a strong correlation between strobemers’
sensitivity and the pseudo-randomness of the seed construct,
measured through entropy (Maier and Sahlin 2023). While
additional strobemer variants have been introduced (Maier
and Sahlin 2023), randstrobes remain the simplest and most
widely used construct. Constructing randstrobes involves
converting strings to integers using a hash function and
selecting candidate k-mers for linking through a link function
and comparator operator. Sampling biases (Fig. 1) in this
process can affect sequence matching efficiency (Maier and
Sahlin 2023). So far, the underlying operators to produce
randstrobes have not been evaluated.

1.2 Our contribution
We design metrics suitable for detecting and measuring sev-
eral types of bias in randstrobe construction methods (Fig. 1).
Using the new evaluation metrics, we uncovered biases and
limitations in previous randstrobe methods (Sahlin 2021a,
2022, Xu et al. 2023). We propose new methods to enhance
the core operations (hashing, linking, and comparison),
which improve seed uniqueness, sampling uniformity, and
construction runtime. We also introduce a Binary Search
Tree (BST)-based construction method, reducing time com-
plexity and achieving comparable randomness but is much

faster for some parametrizations. This is valuable for time-
critical bioinformatics applications.

Additionally, we identify that the link function and com-
parator in the short-read mapper strobealign (Sahlin 2022)
underperform in seed uniqueness compared to other meth-
ods. As a result, we modified strobealign to enhance accu-
racy. Although the modification does not improve the overall
accuracy, an approach that selects the best alignment score
per read from the modified and default versions of strobea-
lign improves accuracy substantially. This finding can be
used to further increase strobealign’s accuracy. In summary,
our evaluation uncovers linking biases and offers guidance on
operator selection for randstrobe implementations.

2 Materials and methods
2.1 Definitions
We use 0-indexed notation. We typically use S and T to de-
note strings, and we use the notation S½i : j�, i< j to refer to a
substring starting at position i and ending (and including) the
character at position j in S. We let the j � j operator denote the
length of strings. Here, our alphabet consists of the letters (or
nucleotides) Σ ¼ fA;G;C;Tg. We use hðxÞ ! z, where x and
z are integers to denote a hash function without specifying
the underlying function. As for representation in memory,
DNA strings shorter or equal to 32 nucleotides (nt) can be
stored with 64-bit integers by encoding A, C, G, and T as 00,
01, 10, and 11, respectively. Other letters, such as N for
“unknown” nucleotide, are ignored. For k-mers longer than
32 nt, we represent them as structs of (concatenated) 64-bit
integers. We use the variable x to represent the integer value
of the encoding. Finally, we use & for bitwise AND, � for
bitwise XOR, | for concatenation (e.g. concatenating two 64-
bit integers into a 128-bit representation), and\% for the
modulo operator. We also use BðxÞ to represent the function
that returns the number of set bits in x.

2.2 An overview of constructing strobemers
A k-mer is a substring of k nucleotides in a biological se-
quence S. Consequently, a k-mer only needs the length of the
substring, k, as a parameter to be specified. A strobemer is a
set of linked k-mers. Specifically, a strobemer consist of
n l-mers l0; . . . ; ln−1, denoted strobes, where the first strobe l0

has a determined position i in S. Downstream strobe lm, m 2
½1;n − 1� is selected in an interval S½iþwminþðm − 1Þwmax :

Figure 1. Illustration of a desired random sampling of the second strobe for strobemers consisting of two strobes (case A). Whenever a pseudo-random
method is used to select the downstream strobe based on the first strobe, it generates some sampling bias. Cases B–E show different biases we
observed in the sampling. The metrics we propose to measure the bias are displayed under each of the illustrations of cases B–E.

2 Karami et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/4/btae187/7641534 by guest on 09 June 2024

iþmwmax� in S, and linked (appending the strobe to previous
strobes) to the m previous strobes. Here, wmin and wmax spec-
ify the range of the sampling window. For example, strobe l1

is sampled in S½iþwmin : iþwmax� and linked to l0.
Since we consider 64-bit integer representations of the

strobes in this study, we will from now on refer to the strobes
as x0;x1; . . . xn−1 and, when clear from context, we alternate
x to mean either the strobe itself or its integer representation.
This is also the reason we use the more general term linking
instead of appending (strobes to the seed), as the linking
method will vary with the strobe representation, as we dis-
cuss in detail in the next section.

The methods to select strobes differ (Sahlin 2021a). For ex-
ample, Minstrobes have been used for long-read overlap de-
tection (Firtina et al. 2023) and alternating strobe lengths
have also been explored (Maier and Sahlin 2023). However,
randstrobes were shown to be more sensitive for sequence
matching than other methods using fixed strobe lengths (min-
strobes and hybridstrobes) (Sahlin 2021a), and simpler to
construct than alternating strobe lengths (altstrobes and mul-
tistrobes) (Maier and Sahlin 2023), and is so far most com-
monly implemented in practice (Sahlin 2022, Nip et al. 2023,
Xu et al. 2023). Therefore, we will consider only the randst-
robes method in this study. Randstrobes are parameterized
by ðn; l;wmin;wmaxÞ. The novelty compared to, e.g. k-mers
and spaced k-mers is that strobemers allow flexibility in the
strobes’ spacing and can produce matches between two
sequences in a region with insertions or deletions.

2.3 Strobemer construction: constraints
and objectives
Let Mwmax

wmin
ðxijxi−1; . . . ;x0Þ, or simply M when context is clear,

be a method to sample a strobe xi in a window given by
its parametrization ðn; l;wmin;wmaxÞ. We put the following
constraints on M.

1) M selects xi based only on the sequence information
of xi−1; . . . ;x0.

2) M is deterministic. That is, for two identical strings S
and T, the same strobes are produced.

We want to find a method M such that

1) Maximize HðMðxijxi−1; . . . ;x0ÞÞ, where H denotes the
entropy. Intuitively, M should sample xi as uniform as
possible within the window, regardless of previous
strobes and the sequence in the window.

2) M constructs randstrobes as fast as possible.

The first constraint is essential to eliminate high-entropy
but impractical solutions in sequence matching. For instance,
using a (pseudo) random number generator (RNG) like rand
() in Cþþ may seem to have good entropy. However, in sce-
narios involving similar strings S and T, where one has a dele-
tion, the RNG is likely to generate different numbers upon
encountering the deletion, making it unsuitable for string
matching. Therefore, the method’s decision should solely rely
on the underlying sequence.

The first objective, instead, involves conditional entropy,
which is challenging to measure. Merely assessing entropy by
the uniformity of sampling sites within a sequence window is
insufficient. For instance, if a method prefers selecting a
strobe if it is identical to the previous strobe, and the distance

between two identical strobes happens to be uniformly dis-
tributed across a sequence, the method may falsely appear to
have perfect entropy. It is also worth noting that achieving
high entropy is easier in randomly generated sequences, but
the focus here is on repetitive regions common in biological
sequences, where achieving sampling uniformity is more
challenging.

2.4 Constructing randstrobes
The process of creating randstrobes can be separated into
four modular components:

1) Hashing the strobes;
2) Linking the strobes;
3) Comparing the strobes during linking;
4) Construction of the final seed hash value.

We discuss each of the components below and suggest differ-
ent methods to perform them.

2.4.1 Hashing strobes
Since each strobe is represented as a 64-bit integer using the
binary encoding, the integers can further be hashed. The rea-
son for hashing a strobe x as z ¼ hðxÞ is that it can improve
the pseudo-randomness. We evaluate the following hash
functions for the strobes:

� hNOðxÞ: The original 2-bit encoding of nucleotides is used
without applying a hash function.

� hTWðxÞ: Thomas Wang hash (http://web.archive.org/web/
20071223173210/http://www.concentric.net/�Ttwang/
tech/inthash.htm), an invertible hash function used, e.g. in
minimap2 (Li 2018).

� hXXðxÞ: xxHash (https://xxhash.com/).
� hWYðxÞ: wyhash (https://github.com/wangyi-fudan/wy

hash).

Previously, hNOðxÞ was used in Sahlin (2021a) and hTWðxÞ
was used (Sahlin 2022). This is the first study using hXXðxÞ
and hWYðxÞ as hash functions to construct randstrobes. The
hash functions xxHash and wyhash are general-purpose non-
cryptographic pseudo-random hash functions that hash bytes
into an integer range of size 2b for some b>0 (here, b ¼ 64).

2.4.2 Linking strobes
The second strobe x1 is linked to the first strobe x0 by select-
ing the candidate strobe x01 in the window that minimizes or
maximizes the link function ‘. For example, in the first stro-
bemers study (Sahlin 2021a), two link functions were used.
The first was ‘ðx0;x01Þ ¼ ðx0þx01Þ mod p, p 2 Z [originally
proposed in the preprint (Sahlin 2021b)]. The second one
was ‘ðx0; x01Þ ¼ ðx0þx01Þ&q, where q is a bitmask of 16 ones’
on the lowest significant bits and remaining 0s [proposed
as faster alternative in the final publication (Sahlin 2021a)].
We call these functions ‘MOD and ‘AND, respectively.
Furthermore, two additional link functions were described in
Sahlin (2022) and Xu et al. (2023) that we denote ‘BC and
‘XOR. Here we propose three more alternatives: ‘XV, ‘CC, and
‘MAMD. We provide formal definitions of all the link func-
tions below.

� ‘MODðx0; x1Þ ¼ ðhðx0Þþhðx1ÞÞmod p, p 2 N (see
Sahlin 2021a)

Efficient randstrobes 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/4/btae187/7641534 by guest on 09 June 2024

http://web.archive.org/web/20071223173210/http://www.concentric.net/%7ETtwang/tech/inthash.htm
http://web.archive.org/web/20071223173210/http://www.concentric.net/%7ETtwang/tech/inthash.htm
http://web.archive.org/web/20071223173210/http://www.concentric.net/%7ETtwang/tech/inthash.htm
https://xxhash.com/
https://github.com/wangyi-fudan/wyhash
https://github.com/wangyi-fudan/wyhash

� ‘ANDðx0;x1Þ ¼ ðhðx0Þþ hðx1ÞÞ&q; q 2 N (see
Sahlin 2021a)

� ‘BCðx0;x1Þ ¼ Bðhðx0Þ� hðx1ÞÞ (see Sahlin 2022)
� ‘XORðx0;x1Þ ¼ hðx0Þ� hðx1Þ (see Xu et al. 2023)
� ‘XVðx0; x1Þ ¼ hðx0 � x1Þ (proposed in this study)
� ‘CCðx0;x1Þ ¼ hðx0jjx1Þ [described in the pseudo code in

Sahlin (2021a) but never studied]
� ‘MAMDðx0;x1Þ ¼ ðhðx0Þmod pÞþðhðx1Þmod pÞmod p,

p 2 N. Similar to ‘MOD but uses a BST (proposed in
this study)

The ‘MAMD and ‘MOD are theoretically nearly identical (see
Supplementary Section 1). However, ‘MAMD uses a BST to
lower the time complexity. Consider a window of hash val-
ues. Roughly stated, the ‘MAMD link function only needs four
operations as we are sweeping the window over the sequence;
find minimum element (no modulo wrap-around), find the
closest element to a specific value (modulo wrap-around),
add incoming element, and remove outgoing element. These
operations can all be performed in logarithmic time with a
BST. The ‘MAMD link function is described in detail in
Supplementary Section 1. We will discuss the computational
complexity of all methods in Section 2.6. In this section, we
only discussed linking the first two strobes. Linking addi-
tional strobes can be done recursively by applying the same
link function between the previous resulting randstrobe hash
value b with the next candidate downstream strobes xm,
m> 2 as ‘ðb; xmÞ.

2.4.3 Sampling comparator
The comparator function, here denoted cð�Þ, specifies the cri-
teria for which we select strobe x1 among candidates x01. To
our knowledge, the only sampling comparator that has been
proposed is cminðx0;x01Þ ¼ argminx012W‘�ðx0;x01Þ (Sahlin
2021a, 2022, Xu et al. 2023), where W is the collection of
strobes in the window defined by wmin and wmax. In this
study, we propose cmaxðx0;x01Þ ¼ argmaxx012W‘ðx0;x1Þ. The
comparator can influence the result for some hash and link
constructions as we will see in our benchmark.

2.4.4 The final seed hash value
We have so far discussed only how to select strobes.
However, once the strobes have been decided, we need to
represent the randstrobe with a final hash value. The final
hash value is what should be indexed and queried, e.g. a
seed-and-extend mapping framework. We denote the func-
tion to produce the final seed hash value as f ðx0; . . . ;xnÞ.
We need the function f to be as uncorrelated with the link
function as possible. If we would use the hash value that
comes out of ‘ðx0;x1Þ, with, e.g. cmin, we are projecting hash
values to the minimum value in each window. This leads to
unnecessary hash collisions compared to a uniform hash
function. Furthermore, as mentioned in Sahlin (2021a), it is
important to avoid symmetric functions f ðx0;x1Þ ¼ f ðx1;x0Þ

(e.g. f ðx0; x1Þ ¼ x0þx1) if distinguishing direction from, e.g.
inversions is important [although a symmetric function is
used to forward and reverse complements seeds in, e.g. read
mapping (Sahlin 2022)]. Taking into consideration the
above we use

f ðx0;x1; . . . ;xn−1Þ ¼
2x0−x1 if n ¼ 2;
2f ðx0;x1; . . . ;xn−2Þ−xn−1 if n>2:

�

This formulation allows f not to have any apparent correla-
tion with any of the benchmarked link functions, as we will
see in Section 3.

2.5 Linking more than two strobes
Generally, to link xm, to x0; . . . xm−1, m 2 ½2;n−1�, we use
‘ðb; x0mÞ, where x0m are the candidate strobes in the window,
and b denotes a base value calculated from the previous m
strobes. We set the b equal to the previous strobes’ final hash
value, e.g. b ¼ f ðx0;x1Þ and ‘ðb; x02Þ in the case of three
strobes. This method can be applied recursively.

2.6 Time complexity
Before discussing computational complexity, we make the
following classifications of our link functions:

� Cheap computation: This group includes ‘MOD, ‘AND, ‘BC,
‘XOR, and ‘MAMD. We denote them as computationally
cheap because the hashing and linking can be separated.
That is, we only need to calculate hash values once for
each strobe, and the link function can be applied after.

� Expensive computation: This group includes ‘CC, and
‘XV. For these methods, we need to evaluate the hash
value for the combination of x0 and all its candidate
downstream strobes, for each new x0.

The time complexity of constructing randstrobes from a
string of length jSj varies with the link-function class. Let th
be the time complexity for the hash function, n the number of
strobes, and W ¼ wmax − wminþ1 be the window size. Then,
S − nwmax − lþ1 the number of randstrobes constructed
from S. We assume that the linking operators (i.e. þ, &, �,
mod , |) can be performed in constant time, although the prac-
tical runtime varies among the operators with � being
cheaper to perform while | being relatively expensive.

Expensive computation methods perform ð1þnWÞ hash
calculations, and nW other operations (such as þ, &, �,
mod , |), per randstrobe. So the total complexity is
OððjSj− nwmax−lþ1Þðð1þnWÞthþnWÞÞ. Cheap computa-
tion methods spend at most ðjSj− lþ1Þ hash calculations and
ðjSj− nwmax − lþ1ÞðnWÞ on other operations, in total. So
the total complexity is OððjSj− lþ 1ÞthþðjSj− nwmax −
lþ1ÞðnWÞÞ. If we assume that jSj � nwmax − lþ 1 and th ¼

Ωð1Þ (i.e. the complexity of th is at least a constant), we can
simplify the expression of the time complexity of expensive
computation methods and cheap computation methods to
OðjSjnWthÞ, and OðjSjthþ jSjnWÞ, respectively.

Lastly, the ‘MAMD link function is part of the cheap compu-
tation category. However, the time complexity is further re-
duced to OðjSjthþjSjn log WÞ through the logarithmic time
complexity of searching for elements (see Supplementary
Section 1 for details). While the BST implementation
increases the constant coefficient through the BST overhead,
we will see that the speed-up is substantial for large windows.
We have abstracted over the exact time complexity of the
hash functions. The cheapest computation is hNO which only
streams over the sequence without performing hashing. Some
hash functions also support streaming (Mohamadi et al.
2016) and can lower th.

4 Karami et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/4/btae187/7641534 by guest on 09 June 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data

2.7 Evaluation metrics
There are different sampling biases that can arise as illus-
trated in Fig. 1. We were not able to find a singular metric
that captured all of these biases, instead, we propose four
suitable metrics that would capture cases B–E in Fig. 1. A de-
sirable result is that the selection of the second (or any down-
stream) strobe is performed as uniformly in the window and
as independently of the previous seed as possible. Several
seed-based applications also require fast construction; there-
fore, we also benchmark construction runtime.

2.8 Notation for evaluation metrics
Let N be the total number of seeds constructed from a string
S, and M the number of seeds with distinct final seed hash
values in S. We let i and j be index variables over the set of
randstrobes seeds sorted by their first strobe position. Since
we here sample one randstrobe per position in S, the index
variables are equivalent to the start position of the seed, and
the N seeds can be ordered with respect to the start position
on S. We let sik refer to the kth strobe in seed i and pik to its
position in S.

2.9 E-hits
The E-hits metric was introduced in Sahlin (2022). It provides
a number between 1 and jSj, which is the expected number of
times a seed occurs in the reference. The E-hits metric was
used as a measure for expected seed repetitiveness in S when
sampling reads uniformly at random from a reference string
S, assuming S is much larger than the span of the seed (Sahlin
2022). We restate the E-hits metric here for self-containment.
Let i 2 ½1;M� be an index variable over the set of distinct
seeds in S and N>M be the total number of seeds in S (multi-
set). Let xi denote the number of times seed i occurs in S. Let
qi be the probability of producing seed i when selecting a seed
randomly from the N seeds. The E-hits metric is then the
expected value over seed hits E[X] computed as

E½X� ¼
XM

i¼1

qixi ¼
XM

i¼1

xi

N
xi ¼

1
N

Xm

i¼1

x2
i : (1)

In this study, seeds are represented as hash values. The
above formula is equivalent if we replace the notion of a seed
with the hash value representation of a seed. In this case,
E-hits measure the expected number of identical hash values,
which includes both repetitive seeds and non-desired hash
collisions. We will measure the E-hits for the final seed hash
values produced with f, and denote this quantity Ef . This is
the same use of E-hits as in Sahlin (2022).

2.10 E-hits of inter-strobe distance and
strobe position
The idea and formulation of E-hits can be used to measure
the repetitiveness of other quantities. To measure strobe-
distance clumping (bias B) and periodicity clumping (bias D)
in Fig 1, we look at the distribution of inter-strobe distances
within a randstrobe. Let djk be the distance between the first
strobe and the kth strobe in seed j. We let xi in Equation (1)
be the number of times we observe distance djk. Equation (1)
then measures the expected number of times we observe the
distance djk when randomly drawing a seed from S. We de-
note this quantity as Ed and omit index variable k when it is
clear from the context.

We measure second-strobe clumping (bias C) by comput-
ing the repetitiveness of the position of kth strobes in S. Let xi

in Equation (1) represent the number of times we observe the
kth strobe selected at position p in S. Then, the E-hits formula
measures the expected number of times position p was sam-
pled as the kth strobe when drawing a seed uniformly at ran-
dom from S. We denote this quantity as Ep (omitting index
variable k when clear from context).

2.11 The conflict metric
To study complex dependencies (termed other clumping;
Case E) as depicted in Fig. 1, we introduce the conflict metric,
which aims to measure the size of the overlaps of strobes
from a set of neighboring randstrobes with start positions in
[i, j], i< j. An overlap higher than what is expected under
random sampling indicates selection bias. Let oði; j;kÞ ¼
maxð0; l − jpjk − pikjÞ measuring the number of overlapping
positions of the kth strobe between two randstrobes i and j.
Then

Pn−1
k¼0 oði; j; kÞ is the total number of overlapping posi-

tions between two randstrobes. The conflict metric for
randstrobe i is then defined as

Ci ¼ max
j2½iþ1;minðN;iþmÞ�

Xn−1

k¼0

oði; j; kÞ:

In other words, Ci is the largest observed overlap with any
of the m consecutive downstream randstrobe seeds. We let
the conflict metric (C) be the value of Ci averaged over all
seeds in S. The above formula does not take into account that
strobes of different orders (k) between neighboring randst-
robes might overlap. However, even if this is possible for
some values of wmin, it does not originate from the bias that
we want to measure, and can therefore be omitted.

3 Results
We evaluated all compatible combinations of ‘; c, and h.
Some combinations, such as hTW with ‘CC, are incompatible
with strobes larger than 16 nucleotides (32 bits) because hTW

is designed for 64-bit integers. We use a simulated highly re-
petitive sequence (SIM), a set of 20 Escherichia coli genomes
(E20), and the CHM13 human chromosome Y from the T2T
assembly (Nurk et al. 2022) (ChrY) to evaluate pseudo ran-
domness for randstrobes with n ¼ 2. For runtime experi-
ments, we used a simulated string of length 15 million. We
also evaluated randstrobes n ¼ 3 on the SIM dataset. Details
of the experiment design and rationale are found in the
Supplementary Section 2.

3.1 Pseudo-randomness
As for pseudo-randomness, we observed similar trends for
the methods across the SIM, E20 and ChrY datasets. We also
observed that the three hash functions (hWY ;hTW ;hXX) had
very similar results, we therefore focus on presenting the data
for the SIM dataset using only hWY compared to not hashing
(hNO) here. Results with all hash functions for SIM, E20, and
ChrY are found in Supplementary Materials. Our benchmark
highlights the following takeaways.

Hashing strobes: Always use a hash function to hash the
strobes before linking (applicable to all link functions except
‘CC), otherwise most link functions will be subject to some
form of severe bias (Fig. 2 and Supplementary Figs S1–S3).

Efficient randstrobes 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/4/btae187/7641534 by guest on 09 June 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data

Link function: The two expensive methods (‘XV ; ‘CC)
achieve the best pseudo-randomness (Fig. 2 and
Supplementary Figs S1–S3)). As for the computationally
cheap methods, different methods have different
bias (Table 1).

Comparator: Comparator choice is only important for
some link functions. Cheap computation XOR-based meth-
ods ‘XOR and ‘BC exhibit high bias with the cmin comparator.
This is because the cmin comparator will select a candidate
strobe to be identical to the previous strobe if present in the
window (XOR value of 0) while cmax will have the opposite
behavior. Since our repeats in the SIM dataset have reoccur-
ring distances between them (which also happens in biologi-
cal sequences), it causes distance clumping (bias B) and
negative positional clumping (bias C).

3.2 Seed repetitiveness
Seed repetitiveness in the reference is crucial for applications
such as read mapping (Sahlin 2022, Ekim et al. 2023, Maier
and Sahlin 2023, Shaw and Yu 2023). We use k-mers of
length 40 nt, corresponding to the same number of sampled
positions in the randstrobes, as a reference method in this
benchmark. The k-mers are stored as two strobes with the
same final function as the randstrobes, f ðx0;x1Þ ¼ 2x0−x1.
We first verified that using our final hash function f for seed
representation resulted in minimal hash collisions
(Supplementary Fig. S4). Since hash collisions were not signif-
icant, we computed the E-hits of the final seed hash value
(Ef), for all methods. As with randomness, it is important to
use a hash function before linking strobes (Fig. 3 and
Supplementary Figs S1–S3). Additionally, we observed that

Figure 2. Results for metrics Ed (upper panels), Ep (middle panels), and C (lower panels) for randstrobes with parameter settings
ðn ¼ 2; l ¼ 20;wmin ¼ 21;wmax ¼ 100Þ for the repetitive sequence dataset. The x-axis shows the different linking methods, and the min and max
comparators are shown in left and right panels, respectively. We have normalized the values with a near ideal result produced by simulating strobes
uniformly at random in the window with rand(). Therefore, a value of 1.0 indicates best possible outcome (indicated by black dashed line).

Table 1. Overview of link functions and comparator functions based on the results from our experiments.a

Category ‘ c Introduced Bias Speed Uniqueness Comment
(strength/weakness).

Expensive ‘CC Any This studyb — Slow High Slow but supreme
randomness.

‘XV Any This study — Slow High Slow but supreme
randomness.

‘XOR cmin (Xu et al. 2023) Ep;Ed;Ec Fast Low XOR with cmin collapse simi-
lar regions leading to

repetitiveness. Application
determines if desired.

cmax This study Ep Fast High Fastest method with
good randomness.

Cheap ‘MAMD Any This study Ep Fastc High Only method to scale for very
large windows ð>1000Þ.

‘AND Any (Sahlin 2021a) Ep Fast High Fast but higher Ep than ‘XOR.
‘MOD Any (Sahlin 2021b) Ep Medium High Slower than ‘XOR but not sen-

sitive to the comparator.
‘BC cmin (Sahlin 2022) Ep;Ed;Ec Slow High Designed to be biased.

sampling at the beginning of
cmax This study Ep;Ed Slow High The window more often. As

slow as expensive methods.

a Results are described under the assumption that a hash function is used to hash the strobes (applicable to all link functions except ‘CC).
b Mentioned in Sahlin (2021a) but neither used nor studied.
c Too much overhead to be used for small windows.

6 Karami et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/4/btae187/7641534 by guest on 09 June 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data

randstrobes generally have lower Ef than k-mers for most
hash and link functions, but repetitiveness can increase with
specific combinations (Fig. 3).

3.3 Runtime performance
Figure 4 shows the construction time for window sizes using
wmax ¼ 100 and wmax ¼ 1000, respectively. Expensive com-
putation methods (‘CC and ‘XV) are performing a factor of

nW more hash computations. However, they are only about
2.5–4 times slower than the average cheap computation
methods when using hWY as hash function (Fig. 4). One ex-
planation could be cache efficiency. We also observe that the
‘BC and ‘MOD are substantially slower than other methods in
the cheap-computation class. Finally, when constructing
randstrobes with large windows, ‘MAMD is much faster than
other methods (Fig. 4, lower panels). This is due to the BST

Figure 3. Normalized E-hits of seed hash values for various to construct randstrobes with parameters ðn ¼ 2; l ¼ 20;wmin ¼ 21;wmax ¼ 100Þ compared
to k-mers of size 40. Lower value is better.

Figure 4. Runtime (seconds) on 45 instances for each combination on a 15 million nt simulated string. Each combination generates randstrobes with
n ¼ 2, l ¼ 20, wmin ¼ 21, and wmax ¼ 100 (upper panel) and wmax ¼ 1000 (lower panel).

Efficient randstrobes 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/4/btae187/7641534 by guest on 09 June 2024

implementation instead of a linear search across each win-
dow. However, due to its special updating technique utilizing
arithmetic properties of the modulo operator, the method can
only be used with the modulo link function. As for the hash
functions, hWY performs better than hXX and hTW on our
data for the expensive computation class, where strobes are
represented by a struct of two 64-bit integer strobes.

3.4 Randstrobes in large windows
The ‘MAMD link function enables efficient construction of
randstrobes in large windows. We were interested in the
uniqueness of seeds that ‘MAMD produced compared to one of
the best-performing methods ‘CC (using cmax). We used p ¼
100;001 in the previous analysis. For this analysis, we set
p ¼ 19; 019;684;767; 739;993. The value of p needs to be
significantly larger than the window size but smaller than the
maximum hash value to guarantee high pseudo-randomness.
To our knowledge, the value of p has no specific influence be-
yond that. We investigated the expected uniqueness (E-Hits)
of the seeds computed across chromosome Y of the CHM13
assembly (Fig. 5, left panel). In the figure, a window size of 0
corresponds to k-mers of size 256. We make two key obser-
vations about the uniqueness of seeds. First, we note that
there is no substantial difference between the two link func-
tions on chromosome Y from the CHM13 assembly, includ-
ing telomere regions and many repetitive multigene families.
Second, we observe that the E-hits function is not linearly de-
creasing, which we initially expected. Minimum repetitive-
ness occurs at wmax ¼ 2;000 instead of the largest evaluated
window at wmax ¼ 10; 000. This is likely explained by the ob-
servation that, beyond a certain window size, the more likely
it is that the same pair of strobes is found and linked. We also
looked at how the runtime scaled with window size. Figure 5
(right panel) shows the median runtime from 10 runs on the
E.coli genome of 5.5 million nucleotides. Our BST implemen-
tation greatly outperforms ‘CC.

3.5 Implementing cmax in strobealign
Strobealign is a read mapper that use randstrobes created
from syncmers (Edgar 2021) using cmin together with ‘BC,
which we observed were particularly bad in terms of seed
uniqueness and randomness (Figs 2 and 3). Guided by our
benchmark, we wanted to investigate whether cmax would re-
sult in better mapping results. The experiment is described in

detail in Supplementary Section 4. We did not observe a di-
rect improvement in strobealign’s accuracy when run with
cmax compared to the default version that uses cmin

(Supplementary Tables S1 and S2). However, we observed a
large improvement in accuracy for the shorter read lengths
when combining the results of the two runs of strobealign
(details in Supplementary Section 4).

4 Discussion and conclusions
Constructing randstrobes involves four modular operations:
computing individual strobe hash values (hash function), de-
termining hash values for linked strobes (link function),
selecting the final randstrobe from multiple candidates using
a comparator function, and computing the hash value for the
chosen randstrobe. The initial three operations (hash, link,
and comparator functions) yield diverse results based on the
combination of functions used. Our study introduced and
benchmarked both novel and previously used hash, link, and
comparator methods for randstrobe construction, accompa-
nied by metrics to evaluate method biases. Our benchmark
revealed biases in existing techniques and can offer general
guidance for which methods to use when utilizing randst-
robes as sequence comparison seeds. From our evaluation,
we conclude the following.

� Hashing: Always hash the strobes before linking with a
computationally cheap link method. It does not result in a
large overhead in construction time (Fig. 4) while being
beneficial for pseudo-randomness (Figs 2 and 3). The
hash functions have roughly the same pseudo-randomness
performance, but the hWY function had the best runtime.
A downside with hashing compared to the 2-bit encoding
is that nucleotide level information of the seed is lost. This
should be factored into the decision for the application
at hand.

� Linking: In short, we believe ‘CC or ‘XV should be used
when highest pseudo-randomness is desired, ‘XOR (with
cmax) should be used when speed is important, and ‘MAMD

for use cases with very large windows (Table 1). We do
not see any benefit with using ‘AND and ‘MOD over ‘XOR.
Finally, ‘BC is a special function designed for when biased
sampling is desired, as in Sahlin (2022).

Figure 5. A comparison between ‘MAMD and ‘CC with parameters ðn ¼ 2; l ¼ 128;wmin ¼ 129;wmax ¼ xÞ, where x is plotted on the x-axis. Left panel
shows E-hits on Chromosome Y from the CHM13 human assembly (Nurk et al. 2022). The right panel shows median runtime out of 10 runs on an E.coli
genome of 5.5 million nucleotides.

8 Karami et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/4/btae187/7641534 by guest on 09 June 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data

� Comparator: The comparator matters for some link func-
tions (Table 1). For example, an XOR-based link-func-
tion projects identical hash values to 0. Therefore, a min
comparator will select identical strobes if present, while a
max comparator will be inclined to select differing
strobes. Consequently, in repetitive regions with occa-
sional variations (e.g. SIM dataset) where the window is
larger than the repeat length, the min comparator will
tend to collapse seeds while a max comparator has the op-
posite behavior. This however implies that in such
regions, the max comparator will be less robust to se-
quencing errors in reads. These two effects pull in differ-
ent directions when it comes to read mapping. We
observed no substantial difference between them in stro-
bealign (Supplementary Tables S1 and S2) but combining
their results led to large improvement for shorter reads
(Supplementary Tables S1 and S2).

� Final seed hash value function: Choose a final seed hash
value function that is uncorrelated to the link function to
avoid hash collisions. For example, we used 2x0−x1 for two
strobes that did not show any apparent correlation with the
link functions we benchmarked (Supplementary Fig. S4).

5 Future work
Efficiently applying hash and link functions can benefit cheap
computation methods. A rolling hash function, like ntHash
(Mohamadi et al. 2016), can enhance hash computation in
these methods. This optimization proves valuable when hash-
ing is relatively more expensive than linking, particularly for
larger window sizes. Additionally, a link function ‘MAMD was
designed using arithmetic reasoning to reduce construction
time complexity. Further investigation is needed to determine
if the rolling hash approach allows for arithmetic operations
permitting efficient linking methods.

We observed improved accuracy when combining results
from min and max comparators in strobealign. Our proof-of-
concept approach involved running strobealign twice and
post-processing the alignments, resulting in slightly more
than twice the runtime compared to a single run. To mitigate
an increase in runtime, integrating seeds from both compara-
tors into strobealign is a solution. This increases memory us-
age but may not affect runtime since costly rescue-alignment
calls may lowered due to fewer regions without seed matches.

Acknowledgements
We thank Daniel Liu and Heng Li for useful feedback on the
linking methods.

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest
R.P. is a co-founder of Ocean Genomics Inc.

Funding
Kristoffer Sahlin was supported by the Swedish Research
Council (SRC, Vetenskapsrådet) [2021–04000]. Marcel
Martin was financially supported by the Knut and Alice

Wallenberg Foundation as part of the National
Bioinformatics Infrastructure Sweden at SciLifeLab.
Mengyang Xu was supported by National Natural Science
Foundation of China [32100514]. Giulio Ermanno Pibiri was
partially supported by DAIS—Ca’ Foscari University of
Venice within the IRIDE program.

Data availability
The human Y chromosome from the CHM13 genome was
downloaded from https://github.com/marbl/CHM13?tab=
readme-ov-file#downloads and the 20 E. coli strains used in
the E20 benchmark is found in supplementary materials and
can be downloaded from RefSeq (https://www.ncbi.nlm.nih.
gov/refseq/). The code for generating the simulated dataset is
available at https://github.com/Moein-Karami/RandStrobes.

References
Alser M, Rotman J, Deshpande D et al. Technology dictates algorithms:

recent developments in read alignment. Genome Biol 2021;22:249.
Chin C-S, Khalak A. Human genome assembly in 100 minutes. bioRxiv,

https://doi.org/10.1101/705616, 2019, preprint: not peer reviewed.
Edgar R. Syncmers are more sensitive than minimizers for selecting con-

served k-mers in biological sequences. PeerJ 2021;9:e10805. https://
doi.org/10.7717/peerj.10805.

Ekim B, Berger B, Chikhi R. Minimizer-space de Bruijn graphs: whole-
genome assembly of long reads in minutes on a personal computer.
Cell Syst 2021;12:958–68.e6.

Ekim B, Sahlin K, Medvedev P et al. Efficient mapping of accurate long
reads in minimizer space with mapquik. Genome Res 2023;33:
1188–97. https://doi.org/10.1101/gr.277679.123.

Fan J, Khan J, Singh NP et al. Fulgor: a fast and compact k-mer index
for large-scale matching and color queries. Algorithms Mol Biol
2024;19:1–21.

Firtina C, Park J, Alser M et al. Blend: a fast, memory-efficient and ac-
curate mechanism to find fuzzy seed matches in genome analysis.
NAR Genom Bioinform 2023;5:lqad004.

Li H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 2018;34:3094–100.

Ma B, Tromp J, Li M. PatternHunter: faster and more sensitive homol-
ogy search. Bioinformatics 2002;18:440–5. https://doi.org/10.1093/
bioinformatics/18.3.440.

Maier BD, Sahlin K. Entropy predicts sensitivity of pseudo-random
seeds. Genome Res 2023;33:1162–74. https://doi.org/10.1101/gr.
277645.123.

Marchet C, Boucher C, Puglisi SJ et al. Data structures based on k-mers
for querying large collections of sequencing data sets. Genome Res
2021;31:1–12. https://doi.org/10.1101/gr.260604.119.

Mohamadi H, Chu J, Vandervalk BP et al. ntHash: recursive nucleotide
hashing. Bioinformatics 2016;32:3492–4.

Nip KM, Hafezqorani S, Gagalova KK et al. Reference-free assembly of
long-read transcriptome sequencing data with rna-bloom2. Nat
Commun 2023;14:2940.

Nurk S, Koren S, Rhie A, et al. The complete sequence of a human ge-
nome. Science 2022;376:44–53.

Roberts M, Hayes W, Hunt BR et al. Reducing storage requirements
for biological sequence comparison. Bioinformatics 2004;20:
3363–9. https://doi.org/10.1093/bioinformatics/bth408.

Sahlin K. Effective sequence similarity detection with strobemers.
Genome Res 2021a;31:2080–94. https://doi.org/10.1101/gr.
275648.121.

Sahlin K. Strobemers: an alternative to k-mers for sequence compari-
son. bioRxiv, 2021b, preprint: not peer reviewed.

Sahlin K. Strobealign: flexible seed size enables ultra-fast and accurate
read alignment. Genome Biol 2022;23:260.

Sahlin K, Medvedev P. Error correction enables use of Oxford
Nanopore technology for reference-free transcriptome analysis.

Efficient randstrobes 9

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/4/btae187/7641534 by guest on 09 June 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae187#supplementary-data
https://github.com/marbl/CHM13?tab=readme-ov-file#downloads
https://github.com/marbl/CHM13?tab=readme-ov-file#downloads
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/refseq/
https://github.com/Moein-Karami/RandStrobes
https://doi.org/10.1101/705616
https://doi.org/10.7717/peerj.10805
https://doi.org/10.7717/peerj.10805
https://doi.org/10.1101/gr.277679.123
https://doi.org/10.1093/bioinformatics/18.3.440
https://doi.org/10.1093/bioinformatics/18.3.440
https://doi.org/10.1101/gr.277645.123
https://doi.org/10.1101/gr.277645.123
https://doi.org/10.1101/gr.260604.119
https://doi.org/10.1093/bioinformatics/bth408
https://doi.org/10.1101/gr.275648.121
https://doi.org/10.1101/gr.275648.121

Nat Commun 2021;12:2. https://doi.org/10.1038/s41467-020-
20340-8.

Sahlin K, Baudeau T, Cazaux B et al. A survey of mapping algorithms
in the long-reads era. Genome Biol 2023;24:133.

Shaw J, Yu YW. Proving sequence aligners can guarantee accuracy in
almost o(m log n) time through an average-case analysis of the seed-

chain-extend heuristic. Genome Res 2023;33:1175–87. https://doi.
org/10.1101/gr.277637.122.

Xu M, Guo L, Qi Y et al. Symbiont-screener: a reference-free tool
to separate host sequences from symbionts for error-prone long
reads. Front Mar Sci 2023;10. https://doi.org/10.3389/fmars.
2023.1087447.

The Author(s) 2024. Published by Oxford University Press.
Bioinformatics, 2024, 40, 1–10
https://doi.org/10.1093/bioinformatics/btae187
Original Paper

10 Karami et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/4/btae187/7641534 by guest on 09 June 2024

https://doi.org/10.1038/s41467-020-20340-8
https://doi.org/10.1038/s41467-020-20340-8
https://doi.org/10.1101/gr.277637.122
https://doi.org/10.1101/gr.277637.122
https://doi.org/10.3389/fmars.2023.1087447
https://doi.org/10.3389/fmars.2023.1087447

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion and conclusions
	5 Future work
	Acknowledgements
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References

