
Groot Koerkamp et al. 
Algorithms for Molecular Biology            (2025) 20:4  
https://doi.org/10.1186/s13015-025-00270-0

RESEARCH Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

Algorithms for
Molecular Biology

The open‑closed mod‑minimizer algorithm
Ragnar Groot Koerkamp1*, Daniel Liu2 and Giulio  Ermanno Pibiri3,4* 

Abstract 

Sampling algorithms that deterministically select a subset of k-mers are an important building block in bioinformat-
ics applications. For example, they are used to index large textual collections, like DNA, and to compare sequences 
quickly. In such applications, a sampling algorithm is required to select one k-mer out of every window of w consecu-
tive k-mers. The folklore and most used scheme is the random minimizer that selects the smallest k-mer in the win-
dow according to some random order. This scheme is remarkably simple and versatile, and has a density (expected 
fraction of selected k-mers) of 2/(w + 1) . In practice, lower density leads to faster methods and smaller indexes, and it 
turns out that the random minimizer is not the best one can do. Indeed, some schemes are known to approach 
optimal density 1/w when k → ∞ , like the recently introduced mod-minimizer (Groot Koerkamp and Pibiri, WABI 
2024). In this work, we study methods that achieve low density when k ≤ w . In this small-k regime, a practical method 
with provably better density than the random minimizer is the miniception (Zheng et al., Bioinformatics 2021). This 
method can be elegantly described as sampling the smallest closed sycnmer (Edgar, PeerJ 2021) in the window 
according to some random order. We show that extending the miniception to prefer sampling open syncmers 
yields much better density. This new method—the open-closed minimizer—offers improved density for small 
k ≤ w while being as fast to compute as the random minimizer. Compared to methods based on decycling sets, 
that achieve very low density in the small-k regime, our method has comparable density while being computation-
ally simpler and intuitive. Furthermore, we extend the mod-minimizer to improve density of any scheme that works 
well for small k to also work well when k > w is large. We hence obtain the open-closed mod-minimizer, a practical 
method that improves over the mod-minimizer for all k.

Keywords  Minimizers, Randomized algorithms, Sketching, Hashing

Introduction
Efficient indexing of large textual collections is critical in 
bioinformatics, and k-mer sampling methods play a piv-
otal role in this [1, 2] as they permit to design sparse, i.e. 
space-efficient, data structures [3–7]. A popular sampling 
method is the minimizer, simultaneously introduced by 
Roberts et  al. [8] and Schleimer et  al. [9]. A minimizer 

scheme is defined by a triple (k ,w,O) and operates as 
follows: from a window of w consecutive k-mers of the 
string to be sampled, the (leftmost) smallest k-mer 
according to the order O is elected as the “minimizer” of 
the window. Since the scheme tends to sample the same k
-mer from consecutive windows, the set of distinct sam-
pled k-mers is a sparse subset of all k-mers in the string. 
Several different sampling algorithms have been pro-
posed in the literature [8–13].

Recently, Groot Koerkamp and Pibiri introduced the 
mod-minimizer [12]. The core idea behind the mod-min-
imizer is as follows. The position x of the smallest t-mer 
in the window is determined and the k-mer at position 
x mod w is then sampled, where t is some small integer 
parameter ( ≤ k).

*Correspondence:
Ragnar Groot Koerkamp
ragnar.grootkoerkamp@inf.ethz.ch
Giulio  Ermanno Pibiri
giulioermanno.pibiri@unive.it
1 ETH Zurich, Zurich, Switzerland
2 University of California, Los Angeles, California, USA
3 Ca’ Foscari University of Venice, Venice, Italy
4 ISTI-CNR, Pisa, Italy

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-025-00270-0&domain=pdf


Page 2 of 17Groot Koerkamp et al. Algorithms for Molecular Biology            (2025) 20:4 

This approach is intuitive for several reasons. 
First, the smallest t-mer within the window acts as 
an “anchor” across potentially many more consecu-
tive windows than the smallest k-mer does (hence 
improving over the random minimizer). If this small-
est t-mer does not change across these windows, the 
algorithm exhibits a predictable behavior: either the 
same k-mer is sampled from consecutive windows, or 
they are spaced apart by exactly w positions. This is 
locally optimal, and indeed it has been mathematically 
proven that as k → ∞ and w is fixed, the density of the 
method, that is, the ratio between the expected number 
of sampled k-mers and the total number of k-mers in 
the string, approaches 1/w. This effect can be graphi-
cally visualized in Fig.  1a, that shows an example for 
(w, k) = (4, 31) and t = 4 . Furthermore, Kille et al. [14] 
showed that the mod-minimizer has optimal density 
when k ≡ 1 (mod w) and the string’s alphabet is large.

We remark that, regardless of the choice of t, k needs 
to be large compared to w for the mod-minimizer to 
achieve good density. To intuitively see why, let us con-
sider the example in Fig. 1b. Let ℓ := w + k − 1 so that 
an ℓ-mer covers w consecutive k-mers. The example 
in Fig. 1b uses the same value of ℓ and the same value 
of t as Fig. 1a, hence both figures show a region of an 
hypothetical string where the smallest t-mer is maxi-
mally conserved (i.e., for a group of ℓ− t + 1 consecu-
tive windows) and, as argued above, the behavior of 
the mod-minimizer is optimal in such region. The two 
pictures differ only in the choice of the parameters w 
and k: a much smaller k is used in Fig.  1b, namely 
(w, k) = (27, 8) . On the left, we see that a single pre-
served t-mer induces many sampled k-mers that are 
exactly w = 4 steps apart, so that in this region the 
optimal density of 1/w = 1/4 is approached. On the 
right, the t-mer only induces a single jump of w = 27 
steps, so that only a small fraction of adjacent k-mers 
have optimal distance w. This intuitively shows that we 
cannot use the mod-minimizer with a small value of k, 
and instead we need a different method.

Contributions This work introduces the open-closed 
mod-minimizer—a sampling algorithm that has lower 
density than the best known schemes for k > w , like the 
mod-minimizer, and also generally works for any value of 
k (Figs. 3 and 5). This new scheme is achieved by combin-
ing two main ingredients: 

1.	 The open-closed minimizer. Among the methods 
that improve the random minimizer for k ≤ w , the 
miniception by Zheng et al. [10] stands out for its ele-
gance: it samples the smallest closed syncmer accord-
ing to some random order. (A closed syncmer is a k-
mer whose smallest substring of length s ≤ k appears 
either at the beginning or at the end [15].) We extend 
the miniception to also consider open syncmers—k-
mers whose smallest contained s-mer is in the middle 
position [15, 16]. Specifically, the smallest open sync-
mer in the window is preferred, with respect to a ran-
dom order on k-mers. If there are none, the smallest 
closed syncmer is preferred. Lastly, if no closed syn-
cmer is present either, the smallest k-mer is consid-
ered. We show that this method – that we name the 
open-closed minimizer—significantly improves the 
density of the miniception to be comparable with the 
double decycling method of Pellow et al. [11], making 
it a practical and useful method when k ≤ w . As an 
example application, we used the open-closed mini-
mizer as a replacement of the random minimizer in 
SSHash [3, 4], a recent k-mer dictionary based on 
minimizers. For default parameters (w, k) = (11, 21) , 
the open-closed minimizer consistently yields 
SSHash indexes that are 14% smaller across several 
datasets.

2.	 The extended mod-minimizer. We then general-
ize the mod-minimizer [12] to accommodate any 
anchoring mechanism, not just the random mini-
mizer on t-mers. In this way, the mod-minimizer can 
be seen as a general method to improve the density 
of any scheme for k > w . In particular, instead of 
using the smallest t-mer, one could use the open-

Fig. 1  An illustration of the behavior of the mod-minimizer for w + k − 1 = 34 , and t = 4 . Rows indicate consecutive windows. The thick outlined 
boxes mark the minimal t -mer in each window and the regions highlighted in red indicate the sampled k-mer
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closed minimizer of length t as introduced above, 
hence obtaining the so-called open-closed mod-
minimizer. Furthermore, the new schemes obtained 
by this extended mod-minimizer framework retain 
the benefit of being computationally efficient, making 
them practical for large-scale applications. Again, for 
parameters (w, k) = (11, 21) , the open-closed mod-
minimizer makes SSHash 18% smaller when indexing 
the whole human genome (GRCh38), reducing space 
usage from 8.70 bits/k-mer to 7.13 bits/k-mer. One 
drawback is that a formal analysis of the density of 
the extended mod-minimizer tends to be more dif-
ficult than for the mod-minimizer based on random 
minimizers.

Software Both C++ and Rust implementations of the 
proposed algorithms are publicly available on GitHub at

•	 https://​github.​com/​jermp/​minim​izers, and
•	 https://​github.​com/​Ragna​rGroo​tKoer​kamp/​minim​

izers, respectively.

Organization The rest of the article is organized as fol-
lows. Section "Preliminaries" fixes the notation used 
throughout the article and gives preliminary definitions. 
In Sect. "The small-k case: the open-closed minimizer", 
we study the case where k ≤ w and introduce an open-
closed minimizer. In Sect. "The large-k case: the extended 
mod-minimizer", we extend the mod-minimizer to 
improve the density of the methods discussed in Sect. 
"The small-k case: the open-closed minimizer" to k > w , 
culminating in the open-closed mod-minimizer. We con-
clude in Sect. "Conclusions and future work" where we 
also discuss some promising future work.

Experimental results are presented directly in Sects. 
"The small-k case: the open-closed minimizer" and  "The 
large-k case: the extended mod-minimizer" respectively, 
instead of postponing them to the end of the paper. We 
believe this is a good way to guide the reader through 

solutions of incremental sophistication. Thus, we report 
here some details about our experimental setup.

For all experiments we use the C++ implementation of 
the algorithms, compiled with gcc 11.1.0 under Ubuntu 
18.04.6. Whenever we need to hash k-mers, we use the 
128-bit pseudorandom hash function CityHash [17]. We 
do not explicitly consider the time required to compute 
the methods (i.e., to sample the k-mers from a string) 
because all of them can be implemented efficiently, and 
thus have comparable runtime.

Preliminaries
Following Groot Koerkamp and Pibiri [12], we here fix 
some preliminary notions and precisely define the prob-
lem under study. Table 1 summarizes the most common 
notation that we will use throughout the paper.

Basic notation Let [n] := {0, . . . , n− 1} , for any n ∈ N . 
We fix an alphabet � = [σ ] of size σ = 2O(1) . Let S ∈ �∗ 
be a string. We refer to S[i..j) as its sub-string of length 
j − i starting at index i and ending at index j (excluded). 
When j − i = k for some k ≥ 1 , we call S[i..j) a k-mer of 
S. In the following, let w > 0 be an integer, so that any 
string of length ℓ = w + k − 1 defines a window W of w 
consecutive k-mers. Each k-mer in W can be uniquely 
identified with an integer in [w], corresponding to its 
starting position in W. A window is always implicitly 
assumed to be a substring of a hypothetical long string 
S. We say that two windows W and W ′ are consecutive 
when W [1..ℓ) = W ′

[0..ℓ− 1).
We write a mod m for the remainder of a after division 

by m and a ≡ b (mod m) to say that a and b have the 
same remainder modulo m.

Orders and hashes An order Ok on k-mers is a func-
tion Ok : �k

→ R , such that x ≤Ok
y if and only if 

Ok(x) ≤ Ok(y) . We do not necessarily require Ok to be 
random, although practitioners often use a (pseudo-)
random hash function h : �k

→ [U ] to define the order, 

Table 1  Notation used in this article

[n] := {0, . . . , n− 1} The first n integers starting from 0

� := [σ ] The alphabet of size σ := |�|

S ∈ �∗ A long string of i.i.d. random characters drawn from �

k Number of characters in a k-mer X of S

w Number of k-mers in a window W of S

ℓ = w + k − 1 = |W | Number of characters in a window W

ℓ+ 1 = w + k Number of characters in a context, consisting of two consecutive windows

f : �ℓ
→ [w] A sampling function

t ≤ k Length of an anchor for the extended mod-minimizer

A : �ℓ
→ [ℓ− t + 1] A sampling function to use as anchor for the extended mod-minimizer

r ≤ s ≤ t Parameter s used to define syncmers; it must be at least some integer lower bound r

https://github.com/jermp/minimizers
https://github.com/RagnarGrootKoerkamp/minimizers
https://github.com/RagnarGrootKoerkamp/minimizers
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where [U] is a sufficiently large range, like U = 2128 . We 
therefore make the standard assumption [18, 19] that h 
is drawn from a family of fully random hash functions 
that can be evaluated in O(1) time on a machine word. 
Unless otherwise specified, all the orders we consider in 
this work are random.

Since σ = 2O(1) , it follows that any k-mer x ∈ �k fits in 
O(k) words and h(x) is computed in O(k) time. Further-
more, using a rolling hash function [20], we can compute 
w hashes for the w consecutive k-mers in a window in 
O(w + k − 1) rather than the naive O(wk). We implicitly 
assume this linear bound when discussing the complexi-
ties of the algorithms.

Sampling functions and their densities All methods we 
consider in this article can be expressed as a function 
f : �w+k−1

→ [w] that, given a window W, samples the 
k-mer starting at position f(W) in W. We call such func-
tion f a sampling function and, sometimes, we colloqui-
ally refer to f as a “scheme”.

What is a “good” scheme? The performance met-
ric we focus on in this work is the density of a scheme, 
defined as follows. Given a string S of length n, let 
Wi := S[i..i + ℓ) for i ∈ [n− ℓ+ 1] . A sampling 
function f selects the k-mers starting at positions 
{i + f (Wi) | i ∈ [n− ℓ+ 1]} . The particular density of f 
on S is |{i + f (Wi) | i ∈ [n− ℓ+ 1]}| / (n− k + 1) .  The 
density of f is defined as the expected particular density 
on a string S consisting of i.i.d. random characters of � 
in the limit where n → ∞ . We remark that, in practice, 
we use a finite but sufficiently-long random string S to 
approximate the density of a scheme in this work.

Problem statement With these initial remarks in mind, 
we can state precisely the problem addressed in this 
article.

Problem 1  Given integers w ≥ 2 and k ≥ 1 , implement 
a function f : �w+k−1

→ [w] in O(1) space with as low 
density as possible.

The small‑k case: the open‑closed minimizer
In this section, we study methods that perform well when 
k ≤ w . We refer to this case as the “small-k” case. This 
scenario is particularly relevant to implement, e.g., sparse 
data structures for ℓ-mers [3–5] and building of De Bruijn 
graphs [21–23] just to mention two example applications. 
In these applications, the high-level idea is to “cluster” 
similar ℓ-mers together to accelerate queries and improve 
compression. In particular, this is done using minimizers, 
as follows. For each ℓ-mer, its minimizer is computed, 
and all ℓ-mers having the same minimizer belong to 
the same cluster. In these cases, k is typically fixed (e.g., 
k = 20 ) and w increases, so that usually k is less than w.

The open‑closed minimizer
The “classic” random minimizer is the simplest minimizer 
algorithm: it selects the smallest k-mer of the window 
according to some random order Ok . (We remind the reader 
that all orders used in this article are random.) If two or 
more k-mers have the same smallest rank, then the leftmost 
k-mer is considered. Computing a minimizer thus takes 
O(w + k − 1) time and it has density 2/(w + 1)+ o(1/w) 
(when k is not too small1) [10]. Efforts spent in improving 
its density spurred many research results [10, 12, 13, 25–28] 
and it is the default choice in practical algorithm engineer-
ing [3–7, 21, 23]. For these reasons, we give the correspond-
ing pseudocode in Algorithm 1.

Algorithm 1  Pseudocode for the random minimizer algorithm. 

1  It was recently shown that the density is slightly below 2/(w + 1) when 
k ≥ w and w is not too small [24].
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Among the methods that perform better than a ran-
dom minimizer, the miniception by Zheng et al. [10] has 
provably lower density, even when k ∼ w . The minicep-
tion can be elegantly described in terms of closed sync-
mers. Hence we first describe those.

Closed and open syncmers The definitions of closed and 
open syncmers were first given by Edgar [15]. For a given 
parameter 1 ≤ s ≤ k , a k-mer is a closed syncmer if its 
smallest contained s-mer is either in first or last position, 
i.e., in position 0 or k − s respectively. Note that this defi-
nition is context free, in that whether a k-mer is a closed 
syncmer does not depend on surrounding characters. 
Closed syncmers satisfy a window guarantee of k − s , 
meaning that there is at least one closed syncmer in any 
window of w ≥ k − s consecutive k-mers. Closed sync-
mers have a density of 2/(k − s + 1) (assuming a random 
order on s-mers), which is the same as that of a random 
minimizer when s = k − w for k > w . Indeed, syncmers 
were designed to improve the conservation metric rather 
than density compared to minimizers (see the original 
paper by Edgar [15] for details).

A variation on the closed syncmer is the open syncmer, 
where the smallest contained s-mer is required to be at a 
specified offset v ∈ [k − s + 1] . Shaw and Yu [16] showed 
that choosing v = ⌊(k − s)/2⌋ is best for conservation, so 
we assume this choice too. Unlike closed syncmers, open 
syncmers have a distance guarantee: two consecutive 
open syncmers are always at least ⌊(k − s)/2⌋ + 1 posi-
tions apart.

Algorithm 2  Pseudocode for the miniception (left) and the open-closed (“OC”, right) minimizer methods. The differences are highlighted in blue. 

1: function miniception(W,w, k,Ok, s,Os)
2: w′ = k − s+ 1
3: omin = (2,+∞)
4: p = 0
5: for i = 0; i < w; i = i+ 1 do
6: X = W [i..i+ k)
7: h = Ok(X)
8: p′ = rand-mini(X,w′, s,Os)

9: if p′ = 0 or p′ = w′ − 1 then
10: o = (1, h) � closed syncmer
11: else
12: o = (2, h)
13: if o < omin then
14: omin = o
15: p = i
16: return p

1: function oc-mini(W,w, k,Ok, s,Os)
2: w′ = k − s+ 1
3: omin = (2,+∞)
4: p = 0
5: for i = 0; i < w; i = i+ 1 do
6: X = W [i..i+ k)
7: h = Ok(X)
8: p′ = rand-mini(X,w′, s,Os)
9: if p′ = �(w′ − 1)/2� then

10: o = (0, h) � open syncmer
11: else if p′ = 0 or p′ = w′ − 1 then
12: o = (1, h) � closed syncmer
13: else
14: o = (2, h)
15: if o < omin then
16: omin = o
17: p = i
18: return p

The miniception With these definitions in mind, it is 
easy to describe the miniception. The term miniception 
stands for “minimizer inception” and the method samples 
the smallest closed syncmer from the window, according 
to a random order Ok . Algorithm  2 (left) illustrates the 
method.

At a high level, the idea of this method (as well as 
other methods, e.g., the decycling set based method by 
Pellow et  al. [11]) is to first use a context-free scheme 
to sample some fraction of k-mers. Then, in windows 
with none or multiple sampled k-mers, a random order 
is used as a tiebreaker. It is clear that such schemes fall 
back to a random minimizer when almost all or almost 
no k-mers are sampled. Thus, intuitively, they perform 
best when the sampled fraction is on the order of 1/w.

Note that when w < k − s , a window may not con-
tain any closed syncmer. In fact, while positions 
{0, . . . ,w − 1} and {k − s, . . . , k − s + w − 1} of the small-
est s-mer in a window induce closed syncmers respec-
tively at positions {0, . . . ,w − 1} , the k − s − w positions 
in between these two sets, i.e., {w, . . . , k − s − 1} , do not 
induce any closed syncmers. Note that a s-mer starting 
at any of such “middle” positions is a substring of all k
-mers in the window. Thus, if it is the smallest in the 
window, it is also the smallest for all k-mers, preventing 
all k-mers to be closed syncmers. Assuming no dupli-
cate s-mers in a window and a random order Os , the 
probability that a window contains no closed syncmers 
is therefore k−s−w

k−s+w for w < k − s . This is the probability 
with which the miniception samples the smallest k-mer.
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The open-closed minimizer Inspired by the mini-
ception, we here propose a natural extension of the 
method to open syncmers. The method is illustrated in 
Algorithm  2 (right), with the differences to the mini-
ception highlighted. Specifically, the open-closed mini-
mizer prefers sampling the smallest open syncmer (line 
9-10). If no open syncmer is found in the window, then 
the smallest closed syncmer is considered (line 11-12), 
like in miniception. Lastly, if no closed syncmer is 
found either, the smallest k-mer is sampled. We call this 
new method of sampling syncmers the “open-closed 
minimizer”.

The rationale behind this method is that open syncmers 
have a distance lower bound, i.e., we know that two con-
secutive open syncmers must be at least ⌊(k − s)/2⌋ + 1 
positions apart. This is in contrast to closed syncmers 
that do not have a similar guarantee (but instead have an 
upper bound on the distance between them). As it turns 
out, the distance lower bound of open syncmers should 
be preferred over closed syncmers.

As already discussed for the miniception, 
the smallest s-mer positions {0, . . . ,w − 1} and 
{k − s, . . . , k − s + w − 1} induce closed sync-
mers. Further, the positions i in the middle, i.e., 
i ∈ {w, . . . , k − s − 1} , induce an open syncmer when 
0 ≤ i − ⌊(k − s)/2⌋ < w . From this, we can infer that it is 
possible that no open nor closed syncmer is present in a 
window when w < (k − s)/2 or equivalently, k > 2w + s.

Analysis
To obtain the exact density of the open-closed minimizer, 
like for any other forward scheme, one could compute 
the number of sampled k-mers on a De Bruijn sequence 
of order w + k (a cyclic string where each possible sub-
string of length w + k occurs once) [29]. However, this 
takes exponential time as the sequence has length σw+k , 
and thus quickly becomes infeasible. Here, we present a 
polynomial method to compute the density.

Instead, it is possible to consider a context of w + k 
characters, containing two consecutive windows. The 
density then equals the probability that the two windows 
sample a different k-mer. For minimizer schemes spe-
cifically, this corresponds to the probability that either 
the first k-mer (that in position 0) or the last k-mer in 
the context (that in position w) is sampled [9, 10]. For 
convenience, we will call these two k-mers at the edges 
charged k-mers.

Let us consider some simple examples before present-
ing the case of the open-closed minimizer. We assume 
that all k-mers and s-mers in a window are distinct2.

Example 1:  the random minimizer. For the random 
minimizer, there are always w + 1 k-mers in the con-
text of length w + k among which to pick the smallest 
one, hence the probability that the context is charged is 
2/(w + 1) , assuming all k-mers are distinct.

Example 2:  the miniception. Now, generalizing it to 
the miniception, first we have to count the number of 
closed syncmers in a context. Call this quantity C. Nat-
urally we have 0 ≤ C ≤ w + 1 . Note that when C = 0 , 
i.e., there are no closed syncmers in the context, then 
miniception “falls back” to random minimizers and 
thus the context is charged with probability 2/(w + 1) . 
Assume now that C > 0 . Among those C k-mers that 
are closed syncmers, let Cc be the number of charged 
ones, i.e., those at position 0 or w in the context. Clearly, 
0 ≤ Cc ≤ min(2,C) . The probability that the context is 
charged is then Cc/C . Of course, not all configurations 
(C ,Cc) are equally probable. For example, it is far more 
likely to have 2 closed syncmers in a context rather than 
w + 1 . Therefore, we would like to compute the probabil-
ity distribution of the count configurations (C ,Cc) , i.e., 
P{a context has configuration (C ,Cc)} for all (C ,Cc) . The 
density of miniception is then

Table 3 in Appendix A shows the distribution of the con-
figurations (C ,Cc) for w = 5 , k = 11 , and s = 6 , under the 
assumption that there are no duplicate s-mers in a con-
text. In this case, the computed density is 0.2929, which 
exactly matches what is measured in practice over a long 
random string.

The open-closed minimizer Now, to extend the analysis 
to the open-closed minimizer, we have to also take into 
account the number of open syncmers, say O, and the 
number of those that are charged in a context, say Oc . In 
other words, we have to compute the probability distribu-
tion of the count configurations (O,C ,Oc,Cc) . Note that 
as soon as there is at least one open syncmer ( O > 0 ), 
then the counts (C ,Cc) are irrelevant for computing the 

2/(w + 1) ·P{context has configuration (0, 0)}+
∑

(C>0,Cc)

Cc/C ·P{context has configuration (C ,Cc)}.

2  From a technical point of view, we cannot avoid completely that there are 
duplicate s-mers in a window. Indeed, when s > (3+ ǫ) logσ (w + k − 1) , 
the probability that a random window of w + k − s s-mers contains two 
identical s-mers is o(1/(w + k − 1)) [12, Lemma 9]. The density is therefore 
not affected when (w + k − 1) → ∞.
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density. Table 4 in Appendix A shows the distribution of 
the configurations (O,C ,Oc,Cc) for w = 5 , k = 11 , and 
s = 6 , where we omit for conciseness the configurations 
whose probability is 0. In this case, the computed density 
is 0.2864.

Computing the probability distribution: brute force We 
now address the problem of computing the probabil-
ity distribution of the configurations (O,C ,Oc,Cc) . One 
straightforward way to do so is to consider each possible 
permutation of (the hashes of) the s-mers in a context and 
derive the corresponding configuration (O,C ,Oc,Cc).

Let us consider an example. Assume w = 6 , k = 7 , and 
s = 3 , so that there are w + k − s + 1 = 11 distinct s-
mers in a context. To infer an order between the s-mers 
we can think of each of them as having a distinct hash. 
For example, assume that the hashes are [1, 0, 10, 4, 2, 8
, 9, 6, 5, 7, 3], as in Fig. 2. This order induces three closed 
syncmers, at (zero-based) positions 1, 4, and 6. Spe-
cifically, we have a closed syncmer at position 1 because 
among the k − s + 1 = 5 s-mers within the k-mer at 
position 2 in the context, i.e., with hashes [0, 10, 4, 2, 8] , 
the smallest s-mer (underlined) is in the first position. 
Among those 3 closed syncmers, the one at position 

6 is charged. There is a single (uncharged) open sync-
mer at position 2, since it contains s-mers with hashes 
[10, 4, 2, 8, 9] , the smallest of which is in the middle, at off-
set ⌊(k − s)/2⌋ = 2 . Summing up, the configuration of the 
context is (O,C ,Oc,Cc) = (1, 3, 0, 1).

By enumerating and analyzing all possible orders of s
-mers in this way, we keep track of how many orders 
have configuration (O,C ,Oc,Cc) , say N, and com-
pute P{context has configuration (O,C ,Oc,Cc)} as 
N/(w + k − s + 1)! . As the number of orders to consider 
is (w + k − s + 1)! , this approach is feasible for only very 
small values of w and k.

Computing the probability distribution: recursion We 
now introduce a recursive method to compute the prob-
ability distribution of the configurations (O,C ,Oc,Cc) 
and, hence, the density of open-closed minimizers. We 
assume that there are no duplicate s-mers in a context. 
Pseudocode is shown in Algorithm 3.

Fig. 2  Example of finding all open (blue) and closed (red) syncmers in a context of size w + k , for s = 3 , k = 7 , and w = 6 . One of the closed 
syncmers is charged because it is the rightmost k-mer
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Algorithm 3  Pseudocode to compute the density of the open-closed (mod-) minimizer in polynomial time. For the open-closed minimizer, simply set 
t = k . To compute the density of the closed minimizer (a.k.a., miniception) or open minimizer, ignore the if statements at line 6 or 8.

Call the smallest s-mer in the context, S. The method 
first considers the position i of S. Since the order on s-
mers is random, i is uniform in {0, . . . ,w + k − s} . Once 
i is fixed, we can determine for all k-mers containing S 
whether they are a (charged) open or closed syncmers. 
Further, S splits the remaining k-mers into those on the 
left and right of it. These two groups are independent of 
each other: the probability that a k-mer to the left of S 
is a syncmer is independent of a k-mer to the right of S 

being a syncmer. This allows us to recurse on these two 
halves independent from each other. We then add (the 
probability distributions of ) the counts of the left and 
right part, and take the average over all choices of i.

Now, consider the recursion in more detail. First, a 
range of less than k characters can not contain any sync-
mers, and hence has probability 1 for counts (0, 0, 0, 0). 
Otherwise, consider the position 0 ≤ i ≤ w + k − s . 
Then, one of the following three events can happen: 
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1.	 When i is sufficiently far away from the boundaries, 
the k-mer containing the minimal s-mer as its mid-
dle s-mer is fully contained in the range, and hence is 
an open syncmer. When this k-mer is the first or last 
in the window, we additionally count it as a charged 
open syncmer.

2.	 Otherwise, we consider closed syncmers. If we can 
extend the chosen s-mer left and/or right by k − s 
characters, then those (up to two) k-mers are closed 
syncmers. And as before, we also count how many of 
the two are charged.

3.	 If the chosen s-mer does not induce an open or 
closed syncmer, we simply do not increase the 
counts.

After counting the open/closed syncmers containing 
the s-mer at position i, we use recursion to count the 
number of open/closed syncmers in W [0..i + s − 1) 
and W [i + 1..w + k) , with the modification that for 
the recursive steps, the leftmost and/or rightmost k-
mer in the remaining interval may not be the leftmost/
rightmost k-mer in the full window, and hence not be 
charged.

The algorithm can be implemented to run in O(x7) 
using dynamic programming, where x = w + k − s + 1 
is the number of s-mers in the context, by caching the 
results of the invocations to the SYNCMER-COUNT 
function: There are O(x2) calls to SYNCMER-COUNT 
for the values of l and r. Each invocation iterates over 
O(x) values of i, and in each iteration calls ADD-DISTRI-
BUTIONS which takes O(x4) to merge two distributions 

Fig. 3  Density for w = 24 and varying k, measured on a random string of ten million i.i.d. random characters for σ = 4 . For the methods OC, O, 
and C, we use s = 4 for the solid lines. The dashed lines, instead, use the best choice of s 

Table 2  Space usage for SSHash indexes in bits/k-mer across different datasets and for the minimizer types proposed in this article

The used parameters are (w, k) = (11, 21) for all datasets. We show percentages relative to the random minimizer, which is the default option to build SSHash indexes

Minimizer Human Chr. 13 Whole human Salmonella-100 Axolotl

Random 7.53 8.70 7.55 9.91

Open-closed (Sect. The open-
closed minimizer)

6.45
(−14.35%)

7.44
(−14.48%)

6.69
(−11.39%)

8.54
(−13.80%)

Open-closed mod (Sect. The 
extended mod-minimizer)

6.18
(−17.90%)

7.13
(−18.05%)

6.46
(−14.42%)

8.22
(−17.05%)
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of size O(x2) . A more efficient implementation that 
counts the number of open and closed (charged) k-mers 
independently runs in O(x5).

In conclusion, the algorithm described here can be 
used to compute exactly the density of the open-closed 
minimizer. However, we lack a tight approximation or 
closed-form formula for its density, which we hypoth-
esize does not exist. We leave this question for future 
work. Thus, while this algorithm is not particularly prac-
tical nor efficient, its analysis does provide insight into 
why the open-closed minimizer achieves good density.

Density
Figure 3 compares the density of the described schemes 
for w = 24 and by varying k, over a string of ten mil-
lion i.i.d. random characters drawn from alphabet 
of size σ = 4 (we choose this value of σ as it is used 
when sampling DNA sequences; Fig.  6a in Appen-
dix B shows the same plot for σ = 256 ). The curve 
named “lower bound” corresponds to the (simpli-
fied) lower bound proved by Kille et  al. [14], which is 
max(⌈(w + k)/w⌉/(w + k), ⌈(w + k ′)/w⌉/(w + k ′)) 
where k ′ is the smallest integer ≥ k such that 
k ′ ≡ 1 (mod w).

In the legend and remaining text, we use the following 
abbreviations:

•	 M: the random minimizer.
•	 C: closed syncmer minimizer, corresponding to the 

miniception;
•	 O: open syncmer minimizer, where open syncmers 

are preferred over k-mers;
•	 OC: the open-closed minimizer from Sect. "The 

open-closed minimizer";
•	 D and DD: the  decycling and  double decycling set 

based methods introduced by Pellow et al. [11].

For details on the decycling methods, we refer to the 
original paper and to Section 3 of [12] for a review of the 
method. These schemes map each k-mer to a complex 
number and prefer those with argument between 0 and 
2π/k , and in our implementation the arithmetic involved 
tends to be slightly less efficient than the other discussed 
methods. Nevertheless, double decycling often has the 
lowest density of all schemes as also evident from Fig. 3.

As apparent, the OC scheme performs remarkably 
better than the other two variants of miniception when 
k approaches w, and indeed has a similar shape to the 
density of the decycling set based methods, D and DD. 
In fact, this similarity is even closer when the alphabet 
is large and s = 1 , Fig. 6a. However, compared to D and 
DD, OC is faster to compute, in amortized O(1) per k-mer 
rather than the O(k) algorithm as reported in the original 

paper by Pellow et al. [11]3, and OC provides some theo-
retical understanding of the sampled k-mers in the form 
of Algorithm 1. All the solid lines in the plot use s = 4 . 
The dashed lines are instead obtained by taking the best 
choice of s for each k. It is interesting to note that, for 
very small k (say, in the range [5..10]) and the best choice 
of s, the methods O and OC achieve better density than 
the decycling set based methods.

SSHash indexes To give a concrete idea of how open-
closed minimizers can be useful in practice, we use them 
to build SSHash indexes [3, 4], across some different data-
sets. (We remark that the SSHash data structure can use 
any sampling scheme that respects a window guarantee. 
The default choice in SSHash is to use the classic random 
minimizer.) We test the chromosome 13 of the human 
genome, the whole human genome (GRCh38), a small 
pangenome of 100 Salmonella Enterica genomes [30], 
and the whole genome of the the Ambystoma Mexica-
num (the “axolotl”), which has one of the largest genomes 
(more than 18 billion distinct k-mers for k = 31 ). Table 2 
reports space usage of SSHash in bits/k-mer on these 
datasets, for (w, k) = (11, 21) : the open-closed minimizer 
makes SSHash consistently smaller, improving its space 
usage by at least 11% and up to 14.5%.

Behaviour for large k Lastly in this section, we observe 
that all methods discussed so far cease to work well when 
k grows (with s fixed) and their density worsens towards 
that of a random minimizer. The reason is that as k grows, 
fewer and fewer k-mers are an open/closed syncmer. 
Thus, more and more windows of w k-mers will not con-
tain a single “special” k-mer, and thus fall back to the ran-
dom minimizer. A larger value of s can be used to prevent 
this, but will still not allow density to improve beyond a 
constant as k → ∞.

For example, the C method (miniception4 ) has a sharp 
increase in the density when k − s > w , which is exactly 
when a window is not guaranteed to contain a closed sync-
mer anymore. A similar effect is observed for the OC method, 
where for k − s > 2w no open nor closed syncmer might be 
found in a window. For the O method, instead, the probabil-
ity that a window contains no open syncmer already starts to 
increase already before k reaches w.

The decycling set based methods (D, DD), instead, do 
not perform well for large k as the universal hitting sets 

4  Zheng et al. [10] proved that the density achieved by miniception can be 
upper bounded by 1.67/w + o(1/w) , when k ≥ w and s = k − w + 1 . But 
even then, the density is only dependent on w and therefore cannot improve 
when k grows.

3  We note that Algorithm  1 of Pellow et  al. [11] can be implemented in 
amortized constant time per k-mer too. However, that is likely to run into 
floating point issues due to complex numbers’ arithmetic. Practical perfor-
mance comparisons are omitted here since the performance of all methods 
heavily depends on the exact implementation used.
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contain roughly 1/k of k-mers and hence become too 
sparse to ensure most windows contain a k-mer in these 
sets.

To compensate for this drop in effectiveness, we need 
another method which is the subject of the next section. 

Fig. 4  Example of the open-closed mod-minimizer for s = 3 , t = 7 , k = 15 , and w = 8

Algorithm 4  Pseudocode for the mod-sampling and the extended mod-minimizer methods. For the extended mod-minimizer, 
A : �w+k−1

→ [w + k − t] is any sampling scheme for parameters w + k − t and t used to define the anchor. We assume that A defines an order 
between t -mers and that its definition might use additional parameters to define the sampling, like s ≤ t in case A is the open-closed minimizer 
from Sect. The open-closed minimizer. We slightly abuse notation and call A as A(W ,w

′
, k

′) . 

The large‑k case: the extended mod‑minimizer
In this section we consider methods tailored for the case 
where k is larger than w, which we refer to as the “large-k” 
case.

Recently, Groot Koerkamp and Pibiri [12] introduced 
the mod-sampling method—a framework to obtain 
minimizer schemes that have low density when k > w . 
The method is illustrated in Algorithm  4 (left). It sim-
ply determines the position x of the smallest t-mer in 
the window for some t ≤ k . It then samples the k-mer 
at position x mod w . The complexity of the method is 
clearly O(w + k − 1).

As we argued in Sect. "Introduction", the method 
works intuitively well because the smallest t-mer acts as 
an “anchor” for potentially many more than w consecu-
tive, making the mod-sampling exhibit a locally optimal 
behavior when the smallest t-mer does not change: either 
it samples the same k-mer from consecutive windows or 
it samples the k-mer that it w positions apart from the 
last sampled k-mer. This effect is depicted in Fig. 1a.

In this section we extend this method to work with any 
anchoring mechanism, and not just the smallest t-mer 
found by a random minimizer.

The extended mod‑minimizer
We first fix the choice of the parameter t for mod-
sampling as t = r + ((k − r) mod w) , for some lower 
bound r ≤ t . (We use r = 4 in our experiments.) Groot 
Koerkamp and Pibiri [12] showed that this choice of 
t minimizes the density of mod-sampling and it gives a 
minimizer scheme named the mod-minimizer. Further-
more, when r > (3+ ε) logσ (w + k − 1) for some ε > 0 
and the order Ot is random, the density of the mod-mini-
mizer tends to the optimal 1/w as k → ∞ . Kille et al. [14] 
also showed that, for large alphabets, the mod-minimizer 
has near-optimal density when k ≡ 1 (mod w) , and not 
just when k is large.

Let us call anchor of length t the t-mer that is selected 
by the mod-minimizer to determine the position of the 
sampled k-mer. Here we note that the mod-minimizer 
can be further extended to consider any arbitrary sam-
pling function A : �w+k−1

→ [w + k − t] to deter-
mine the anchor, where A can be a minimizer, a more 
general forward scheme, or even a local scheme. This 
extended mod-minimizer algorithm is shown in Algo-
rithm  4 (right). In fact, while the anchor can simply be 
determined by taking the random minimizer of length 
t [12], this is just one among many possible choices. 
For example, we showed in Sect. "The small-k case: the 
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open-closed minimizer" that closed and open syncmers 
improve over random minimizers for small k. Thus, it 
makes sense to use the open-closed minimizer of length 
t as anchor in the extended mod-minimizer. We call this 
new scheme the open-closed mod-minimizer. An exam-
ple is shown in Fig. 4.

This scheme converges to optimal density 1/w for 
k → ∞ (see Sect. "Analysis") like the mod-minimizer that 
uses a random minimizer as anchor but, as we will see in 
Sect. "Density", it achieves even lower density for many 
practical values of k.

Analysis
As explained, the extended mod-minimizer generally 
works with any anchor A : �w+k−1

→ [w + k − t] that 
samples a t-mer from a window. The following theorem 
shows how the density of the extended mod-minimizer 
relates to the density of A when A is a minimizer scheme.

Theorem  1  Let A : �w+k−1
→ [w + k − t] be a mini-

mizer scheme that selects the smallest t-mer according 
to the order Ot , with t = r + ((k − r) mod w) for some 
lower bound r ≤ t . Then the density of the mod-minimizer 
is given by the probability that A samples a t-mer in a 

position p ≡ 0 (mod w) in a context of two consecutive 
windows, whose total length is w + k characters and con-
tains w + k − t + 1 t-mers.

Proof  Consider two consecutive windows W and W ′ 
of length w + k − 1 of a uniform random string. Let x 
and x′ be the position of the smallest t-mer in W and W ′ 
respectively, and let p = x mod w and p′ = x′ mod w be 
the positions of the sampled k-mers. Let y ∈ {x, x′ + 1} 
be the absolute position of the smallest t-mer in the two 
windows.

Since A is a forward scheme, we can compute its den-
sity as the probability that a different k-mer is sampled 
from W and W ′ . First note that the two consecutive win-
dows contain a total of w + k − t + 1 t-mers, and thus, 
0 ≤ y ≤ w + k − t , where w + k − t is divisible by w 
since t ≡ k (mod w).

When y  ≡ 0 (mod w) , this implies 0 < y < w + k − t , 
and thus, the two windows share their small-
est t-mer. Thus, p = x mod w = y mod w and 
p′ + 1 = x′ mod w + 1 = (y− 1) mod w + 1 . Since 
y  ≡ 0 (mod w) , this gives p′ + 1 = y mod w , and thus, 
the two windows sample the same k-mer.

Fig. 5  Density for w = 24 and by varying k, measured on a random string of ten million i.i.d. random characters for σ = 4 . We use r = 4 for all 
methods. For the methods mod-OC, mod-O, and mod-C, we use s = 4 for the solid lines. The dashed lines, instead, use the best choice of s 
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When y ≡ 0 (mod w) , there are two cases. 
When y = x (and thus y < w + k − t ), we have 
p = x mod w = y mod w = 0 , and since the k-mer 
starting at position 0 is not part of W ′ , the second win-
dow must necessarily sample a new k-mer. Otherwise, 
we must have y = (x′ + 1) ≡ 0 (mod w) , which implies 
p′ = x′ mod w = (y− 1) mod w = w − 1 , and since the 
k-mer starting at position w − 1 in W ′ is not part of W, 
again the second window must necessarily sample a new 
k-mer.

To conclude, the two windows sample distinct k-mers 
if and only if the smallest t-mer occurs in a position 
y ≡ 0 (mod w) . 	�  �

Using Theorem 1, we can obtain a closed-form formula 
for the density of the extended mod-minimizer when A 
is a random minimizer, because we know that the posi-
tion of the smallest t-mer is uniformly distributed in 
[w + k − t + 1].

Lemma 1  For any ǫ > 0 , if t > (3+ ǫ) logσ (w + k − 1) , 
the probability that a random window of w + k − t t-mers 
contains two identical t-mers is o(1/(w + k − 1)) , which 
tends to 0 for k → ∞.

Theorem  2  If t ≡ k (mod w) satisfies the condition in 
Lemma 1 and A is the random minimizer, then the den-
sity of the extended mod-minimizer is

When w is fixed and k → ∞ , the density tends to 1/w.

Proof  By Theorem  1, we must bound the probability 
that a position y ≡ 0 (mod w) is sampled in a context 
of w + k − t + 1 t-mers. When the smallest t-mer in the 
context is unique, its position is uniformly distributed. 
Since there are 1+ (w + k − t)/w positions y such that 
y ≡ 0 (mod w) , the probability is 1+(w+k−t)/w

w+k−t+1  . Other-
wise, we can bound the probability that a non-unique 
smallest t-mer is in such a position by o(1/(w + k − 1)) 
by Lemma 1. We directly obtain the result. It is immedi-
ate to see that the density goes to 1/w when w is fixed and 
k → ∞ . 	� �

For different anchors A, the position of the small-
est t-mer may not be uniformly distributed in 
{0, . . . ,w + k − t} , and hence they may induce a different 
density for the extended mod-minimizer.

Computing the density of the open-closed mod-min-
imizer While we do not have a closed-form formula 

(1)
2+ k−t

w

w + k − t + 1
+ o(1/(w + k − 1)).

for the probability that A samples a k-mer at position 
p ≡ 0 (mod w) when A is an open-closed minimizer, we 
can extend the analysis made in Sect. "Analysis" for the 
open-closed minimizer to the open-closed mod-mini-
mizer. By Theorem  1, we must compute the probability 
that the sampled k-mer is in a position p ≡ 0 (mod w) . 
Thus, we change the definition of charged k-mer to not 
only be the leftmost and rightmost k-mer, but to include 
any k-mer at a position p ≡ 0 (mod w) . Apart from 
accounting for these additional charged k-mers, the 
recursive algorithm shown in Algorithm 3 stays the same.

Density
Figure  5 shows the density of the same methods com-
pared in Fig.  3, but when they are used as anchors 
(of length t = r + (k − r) mod w , for r = 4 ) for the 
extended mod-minimizer. Thus, we prefix their names 
by “mod”. The plot shows that the extended mod-mini-
mizer can be used as a method to “lift” any method from 
small to large k, i.e., to improve its density when k > w . 
Indeed, all methods have better density than the random 
mod-minimizer (method mod-M) and, among those, the 
open-closed mod-minimizer (method mod-OC) should 
be preferred over mod-DD for reasons already discussed. 
Figure  6b in Appendix B shows the equivalent plot of 
Fig. 5 for σ = 256 , with similar results.

Considering again Table  2, the open-closed mod-
minimizer consistently improves over the open-closed 
minimizer from Sect. "The small-k case: the open-closed 
minimizer" by 3− 4% , resulting in a decrease in SSHash’s 
space of 18% on the whole human genome. We stress 
that this improvement in space usage is obtained without 
modifying the SSHash data structure, but only by chang-
ing the sampling algorithm.

Conclusions and future work
In this work, we introduced the open-closed minimizer, a 
method that achieves very low density for the case when 
k ≤ w . Technically speaking, this is achieved by extend-
ing the miniception method of Zheng et  al. [10] to also 
sample open syncmers (and not just closed syncmers). 
This is based on the intuition that open syncmers should 
be preferred over closed syncmers as they satisfy a dis-
tance lower bound, i.e., that two consecutive open syn-
cmers tend to be well apart from each other. This new 
method thus achieves density that is practically as low as 
the double decycling method by Pellow et al. [11], but is 
simple, intuitive, and computationally efficient.

Then, we also extended the mod-minimizer by Groot 
Koerkamp and Pibiri [12], that works by selecting the 
smallest t-mer inside the window and uses this “anchor” 
to determine the position of the k-mer to sample. We 
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extended this method to consider any arbitrary sampling 
scheme to select the t-mer. This can yield better densi-
ties than the original mod-minimizer, depending on the 
choice of the anchor. The extended mod-minimizer can 
thus be used to improve the density of any method when 
k > w . For example, by combining the open-closed mini-
mizer with the mod-minimizer we obtained the so-called 
open-closed mod-minimizer, which achieves even lower 
density in practice than the random mod-minimizer for k 
where it is not already provably optimal.

To show the direct impact of these results, we replaced 
the random minimizer used in the SSHash data structure 
[3, 4] with the open-closed mod-minimizer. This simple 
change decreases the space usage by up to 18% , e.g., on 
the whole human genome. As future work, it would also 
be interesting to quantify the impact of our new schemes 
on other applications such as read mapping. For example, 
our sampling schemes could be used in the minimap2 
software [31].

Future work The analysis of the extended mod-min-
imizer is more complicated than the version using ran-
dom minimizers and, currently, we lack closed-form 
formulas for its density. Future work could therefore try 
to derive such formulas (or tight approximations) for spe-
cific anchors, like the open-closed minimizer.

More generally, one could investigate how much closer 
to the ⌈w+k

w ⌉/(w + k) lower bound by Kille et  al. [14] 
schemes can get. In particular, forward schemes hav-
ing density equal to the lower bound must never sample 
overlapping k-mers when k is below ≈ w/3 . Compared 
to random minimizers, where k-mers can overlap by 
k − 1 , open syncmers get halfway there by being roughly 
k/2 positions apart. Preliminary results suggest that 
when k is small (up to ≈ w/6 ) it is indeed possible to 
design a scheme where sampled k-mers usually do not 
overlap, and hence to achieve density very close to the 
lower bound. In a recent preprint [32], the GreedyMini 
is introduced as a scheme that uses local search to find 
minimizer schemes. The schemes found by GreedyMini 
have lower density than all existing schemes for k up to 
around 20 and alphabet size 4. It works especially well for 
k = w + 1 and slighly smaller k close to w, whereas our 
methods still suffer a small penalty in density compared 
to the lower bound in such cases. An interesting direc-
tion for future work is therefore to analyze these greedy 
schemes to possibly find algorithms that correspond to 
them and improve their density even further. Thus, the 

schemes introduced in this paper should not be consid-
ered as a definitive word on this important matter.

Appendix A Probability distributions
Tables 3 and  4 report the probability distribution for the 
count configurations (C ,Cc) and (O,C ,Oc,Cc) respec-
tively, as used in the analysis from Sect. "The small-k 
case: the open-closed minimizer".

Appendix B Density plots for σ = 256

Figure 6a and b show the same density plots as, respec-
tively, Figs. 3 and 5, but for a the larger alphabet σ = 256 . 
In this case, we therefore used s = 1 . Note how all meth-
ods exactly match the lower bound by Kille et al. [14] for 
k ≡ 1 (mod w).

Table 3  Probability distribution of the configurations (C , Cc) (as 
used, e.g., by miniception [10]) for w = 5 , k = 11 , and s = 6

In this case, the computed density is 0.2929

(C,Cc) P{context has configuration (C,Cc)} P{context is charged }

(0, 0) 0.0 0.33

(1, 0) 2.65× 10
−1 0.0

(1, 1) 0.0 1.0

(2, 0) 1.76× 10
−1 0.0

(2, 1) 2.31× 10
−1 0.5

(2, 2) 1.11× 10
−1 1.0

(3, 0) 4.11× 10
−2 0.0

(3, 1) 1.09× 10
−1 0.33

(3, 2) 2.56× 10
−2 0.67

(4, 0) 3.37× 10
−3 0.0

(4, 1) 2.25× 10
−2 0.25

(4, 2) 1.21× 10
−2 0.5

(5, 0) 0.0 0.0

(5, 1) 1.73× 10
−3 0.2

(5, 2) 2.50× 10
−3 0.4

(6, 0) 0.0 0.0

(6, 1) 0.0 0.17

(6, 2) 1.92× 10
−4 0.33
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Table 4  Probability distribution of the configurations (O, C ,Oc , Cc) (as used by the open-closed minimizer from Sect. "The open-closed 
minimizer") for w = 5 , k = 11 , and s = 6

(O,C,Oc ,Cc) P{context has configuration (O,C,Oc ,Cc)} P{context is charged }

(1, 0, 0, 0) 1.9481× 10
−1 0

(1, 0, 1, 0) 1.2987× 10
−2 1

(2, 0, 0, 0) 1.2987× 10
−2 0

(2, 0, 1, 0) 7.9004× 10
−2 0.5

(2, 0, 2, 0) 2.4351× 10
−2 1

(1, 1, 0, 0) 9.7763× 10
−2 0

(1, 1, 1, 0) 7.0346× 10
−2 1

(1, 1, 0, 1) 1.3139× 10
−1 0

(1, 1, 1, 1) 2.6948× 10
−2 1

(2, 1, 1, 0) 9.0488× 10
−3 0.5

(2, 1, 2, 0) 5.6818× 10
−3 1

(2, 1, 0, 1) 4.9784× 10
−3 0

(2, 1, 1, 1) 1.3853× 10
−2 0.5

(0, 2, 0, 0) 2.8860× 10
−2 0

(0, 2, 0, 1) 1.5584× 10
−2 0.5

(1, 2, 0, 0) 1.8909× 10
−2 0

(1, 2, 1, 0) 2.0202× 10
−2 1

(1, 2, 0, 1) 4.8641× 10
−2 0

(1, 2, 1, 1) 3.1764× 10
−2 1

(1, 2, 0, 2) 1.5079× 10
−2 0

(2, 2, 2, 0) 2.7056× 10
−4 1

(2, 2, 1, 1) 1.7977× 10
−3 0.5

(2, 2, 0, 2) 5.5315× 10
−4 0

(0, 3, 0, 0) 2.6726× 10
−2 0

(0, 3, 0, 1) 4.2544× 10
−2 0.33

(0, 3, 0, 2) 4.9964× 10
−3 0.67

(1, 3, 0, 0) 1.7436× 10
−3 0

(1, 3, 1, 0) 1.5332× 10
−3 1

(1, 3, 0, 1) 9.0308× 10
−3 0

(1, 3, 1, 1) 4.9964× 10
−3 1

(1, 3, 0, 2) 6.5055× 10
−3 0

(0, 4, 0, 0) 3.3069× 10
−3 0

(0, 4, 0, 1) 1.8025× 10
−2 0.25

(0, 4, 0, 2) 8.1530× 10
−3 0.5

(1, 4, 1, 0) 6.0125× 10
−5 1

(1, 4, 0, 1) 8.1169× 10
−4 0

(1, 4, 1, 1) 1.8038× 10
−4 1

(1, 4, 0, 2) 1.1604× 10
−3 0

(0, 5, 0, 1) 1.7256× 10
−3 0.2

(0, 5, 0, 2) 2.4110× 10
−3 0.4

(1, 5, 1, 1) 6.0125× 10
−6 1

(1, 5, 0, 2) 9.0188× 10
−5 0

(0, 6, 0, 2) 1.9240× 10
−4 0.33

 In this case, the computed density is 0.2864
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Fig. 6  Density for w = 24 and by varying k, measured on a random string of ten million i.i.d. random characters for σ = 256 . For all methods 
that require the parameter s, we use s = 1 for the solid lines. The dashed lines, instead, use the best choice of s. We use r = 1 for all methods



Page 17 of 17Groot Koerkamp et al. Algorithms for Molecular Biology            (2025) 20:4 	

Author contributions
R.G.K.: Conceptualization, Methodology, Software, Validation, Writing – Review 
and Editing; D.L.: Conceptualization, Software; G.E.P.: Conceptualization, Meth-
odology, Software, Validation, Writing – Original Draft. All authors read and 
approved the final manuscript.

Funding
R.G.K.: ETH Research Grant ETH-1721-1 to Gunnar Rätsch. G.E.P.: Funding for 
this research has also been provided by the European Union’s Horizon Europe 
research and innovation programme (EFRA project, Grant Agreement Number 
101093026). This work was also partially supported by DAIS – Ca’ Foscari 
University of Venice within the IRIDE program.

Declarations

Competing interests
The authors declare that they do no have any competing interests.

Received: 31 October 2024   Accepted: 28 January 2025

References
	1.	 Ndiaye M, Prieto-Baños S, Fitzgerald LM, Yazdizadeh Kharrazi A, Oreshkov S, 

Dessimoz C, Sedlazeck FJ, Glover N, Majidian S. When less is more: sketching 
with minimizers in genomics. Genome Biol. 2024;25(1):270. https://​doi.​org/​10.​
1186/​s13059-​024-​03414-4.

	2.	 Zheng H, Marçais G, Kingsford C. Creating and using minimizer sketches in 
computational genomics. J Comput Biol. 2023;30(12):1251–76. https://​doi.​
org/​10.​1089/​cmb.​2023.​0094.

	3.	 Pibiri GE. Sparse and skew hashing of k-mers. Bioinformatics. 2022;38:185–194. 
https://​doi.​org/​10.​1093/​bioin​forma​tics/​btac2​45.

	4.	 Pibiri GE. On weighted k-mer dictionaries. Algorithms Mol Biol. 2023;18(1):1–
20. https://​doi.​org/​10.​1186/​s13015-​023-​00226-2.

	5.	 Marchet C, Kerbiriou M, Limasset A. BLight: efficient exact associative structure 
for k-mers. Bioinformatics. 2021;37(18):2858–65. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​btab2​17.

	6.	 Fan J, Khan J, Singh NP, Pibiri GE, Patro R. Fulgor: a fast and compact k-mer 
index for large-scale matching and color queries. Algorithms Mol Biol. 
2024;19(1):1–21. https://​doi.​org/​10.​1186/​s13015-​024-​00251-9.

	7.	 Pibiri GE, Fan J, Patro R. Meta-colored compacted de Bruijn graphs. In: 
Research in Computational Molecular Biology—28th Annual International 
Conference, RECOMB 2024, Cambridge, MA, USA, April 29–May 2, 2024, Pro-
ceedings, pp. 2024;131–146 . https://​doi.​org/​10.​1007/​978-1-​0716-​3989-4_9

	8.	 Roberts M, Hayes WB, Hunt BR, Mount SM, Yorke JA. Reducing storage require-
ments for biological sequence comparison. Bioinformatics. 2004;20(18):3363–
9. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bth408.

	9.	 Schleimer S, Wilkerson DS, Aiken A. Winnowing: local algorithms for docu-
ment fingerprinting. In: Halevy AY, Ives ZG, Doan A. (eds.) Proceedings of the 
2003 ACM SIGMOD International Conference on Management of Data, San 
Diego, California, USA, June 9-12, 2003, 2003;76–85 . https://​doi.​org/​10.​1145/​
872757.​872770

	10.	 Zheng H, Kingsford C, Marçais G. Improved design and analysis of practical 
minimizers. Bioinformatics 2020;36: 119–127 https://​doi.​org/​10.​1093/​bioin​
forma​tics/​btaa4​72

	11.	 Pellow D, Pu L, Ekim B, Kotlar L, Berger B, Shamir R, Orenstein Y. Efficient mini-
mizer orders for large values of k using minimum decycling sets. Genome Res. 
2023;33(7):1154–61. https://​doi.​org/​10.​1101/​gr.​277644.​123.

	12.	 Groot Koerkamp R, Pibiri GE. The mod-minimizer: a simple and efficient 
sampling algorithm for long k-mers. In: 24th International Workshop on Algo-
rithms in Bioinformatics (WABI 2024), 2024;312, 11–11123 . https://​doi.​org/​10.​
4230/​LIPIcs.​WABI.​2024.​11

	13.	 Marçais G, DeBlasio DF, Kingsford C. Asymptotically optimal minimizers 
schemes. Bioinformatics. 2018;34(13):13–22. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​bty258.

	14.	 Kille B, Koerkamp RG, McAdams D, Liu A, Treangen TJ. A near-tight lower 
bound on the density of forward sampling schemes. bioRxiv 2024; https://​doi.​
org/​10.​1101/​2024.​09.​06.​611668

	15.	 Edgar R. Syncmers are more sensitive than minimizers for selecting conserved 
k-mers in biological sequences. PeerJ. 2021;9. https://​doi.​org/​10.​7717/​peerj.​
10805

	16.	 Shaw J, Yu YW. Theory of local k-mer selection with applications to long-read 
alignment. Bioinformatics. 2022;38(20):4659–69. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​btab7​90.

	17.	 Pike G, Alakuijala J. CityHash. https://​github.​com/​aappl​eby/​smhas​her/​blob/​
master/​src/​City.​cpp. 2011.

	18.	 Belazzougui D, Botelho FC, Dietzfelbinger M. Hash, displace, and compress. 
In: Algorithms—ESA 2009, 17th Annual European Symposium, Copenhagen, 
Denmark, September 7–9, 2009. Proceedings. Lecture Notes in Computer 
Science, 2009;5757, 682–693. https://​doi.​org/​10.​1007/​978-3-​642-​04128-0_​61.

	19.	 Pibiri GE, Trani R. Parallel and external-memory construction of minimal per-
fect hash functions with pthash. IEEE Trans Knowl Data Eng. 2024;36(3):1249–
59. https://​doi.​org/​10.​1109/​TKDE.​2023.​33033​41.

	20.	 Mohamadi H, Chu J, Vandervalk BP, Birol I. ntHash: recursive nucleotide hash-
ing. Bioinformatics. 2016;32(22):3492–4. https://​doi.​org/​10.​1093/​bioin​forma​
tics/​btw397.

	21.	 Chikhi R, Limasset A, Medvedev P. Compacting de Bruijn graphs from 
sequencing data quickly and in low memory. Bioinformatics. 2016;32(12):201–
8. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btw279.

	22.	 Khan J, Kokot M, Deorowicz S, Patro R. Scalable, ultra-fast, and low-memory 
construction of compacted de bruijn graphs with cuttlefish 2. Genome biol-
ogy. 2022;23(1):190. https://​doi.​org/​10.​1186/​s13059-​022-​02743-6.

	23.	 Cracco A, Tomescu AI. Extremely fast construction and querying of 
compacted and colored de Bruijn graphs with GGCAT. Genome Res. 
2023;33:1198–1207. https://​doi.​org/​10.​1101/​gr.​277615.​122.

	24.	 Golan S, Shur AM. Expected density of random minimizers. arXiv 2024; https://​
doi.​org/​10.​48550/​arXiv.​2410.​16968.

	25.	 Orenstein Y, Pellow D, Marçais G, Shamir R, Kingsford C. Designing small uni-
versal k-mer hitting sets for improved analysis of high-throughput sequenc-
ing. PLoS Comput Biol. 2017;13(10):1005777. https://​doi.​org/​10.​1371/​journ​al.​
pcbi.​10057​77.

	26.	 Ekim B, Berger B, Orenstein Y. A randomized parallel algorithm for efficiently 
finding near-optimal universal hitting sets. In: Schwartz R. (ed.) Research 
in computational molecular biology—24th Annual International Confer-
ence, RECOMB 2020, Padua, Italy, May 10–13, 2020, Proceedings. Lecture 
Notes in Computer Science, 2020;12074, 37–53. https://​doi.​org/​10.​1007/​
978-3-​030-​45257-5_3.

	27.	 Kille B, Garrison E, Treangen TJ, Phillippy AM. Minmers are a generalization 
of minimizers that enable unbiased local jaccard estimation. Bioinformatics. 
2023;39(9):512. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btad5​12.

	28.	 Loukides G, Pissis SP, Sweering M. Bidirectional string anchors for improved 
text indexing and top-k similarity search. IEEE Trans Knowl Data Eng. 
2023;35(11):11093–111. https://​doi.​org/​10.​1109/​TKDE.​2022.​32317​80.

	29.	 Marçais G, Pellow D, Bork D, Orenstein Y, Shamir R, Kingsford C. Improving 
the performance of minimizers and winnowing schemes. Bioinformatics. 
2017;33(14):110–7. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btx235.

	30.	 Rossi M, Silva MSD, Ribeiro-Gonçalves BF, Silva DN, Machado MP, Oleastro M, 
Borges V, Isidro J, Viera L, Halkilahti J, Jaakkonen A, Palma F, Salmenlinna S, Hak-
kinen M, Garaizar J, Bikandi J, Hilbert F, Carriço JA. INNUENDO whole genome 
and core genome MLST schemas and datasets for Salmonella enterica. 2018. 
https://​doi.​org/​10.​5281/​zenodo.​13225​63.

	31.	 Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 
2018;34(18):3094–100. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty191.

	32.	 Golan S, Tziony I, Kraus M, Orenstein Y, Shur A. Generating low-density mini-
mizers. 2024. https://​doi.​org/​10.​1101/​2024.​10.​28.​620726.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s13059-024-03414-4
https://doi.org/10.1186/s13059-024-03414-4
https://doi.org/10.1089/cmb.2023.0094
https://doi.org/10.1089/cmb.2023.0094
https://doi.org/10.1093/bioinformatics/btac245
https://doi.org/10.1186/s13015-023-00226-2
https://doi.org/10.1093/bioinformatics/btab217
https://doi.org/10.1093/bioinformatics/btab217
https://doi.org/10.1186/s13015-024-00251-9
https://doi.org/10.1007/978-1-0716-3989-4_9
https://doi.org/10.1093/bioinformatics/bth408
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/10.1093/bioinformatics/btaa472
https://doi.org/10.1093/bioinformatics/btaa472
https://doi.org/10.1101/gr.277644.123
https://doi.org/10.4230/LIPIcs.WABI.2024.11
https://doi.org/10.4230/LIPIcs.WABI.2024.11
https://doi.org/10.1093/bioinformatics/bty258
https://doi.org/10.1093/bioinformatics/bty258
https://doi.org/10.1101/2024.09.06.611668
https://doi.org/10.1101/2024.09.06.611668
https://doi.org/10.7717/peerj.10805
https://doi.org/10.7717/peerj.10805
https://doi.org/10.1093/bioinformatics/btab790
https://doi.org/10.1093/bioinformatics/btab790
https://github.com/aappleby/smhasher/blob/master/src/City.cpp
https://github.com/aappleby/smhasher/blob/master/src/City.cpp
https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.1109/TKDE.2023.3303341
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1186/s13059-022-02743-6
https://doi.org/10.1101/gr.277615.122
https://doi.org/10.48550/arXiv.2410.16968
https://doi.org/10.48550/arXiv.2410.16968
https://doi.org/10.1371/journal.pcbi.1005777
https://doi.org/10.1371/journal.pcbi.1005777
https://doi.org/10.1007/978-3-030-45257-5_3
https://doi.org/10.1007/978-3-030-45257-5_3
https://doi.org/10.1093/bioinformatics/btad512
https://doi.org/10.1109/TKDE.2022.3231780
https://doi.org/10.1093/bioinformatics/btx235
https://doi.org/10.5281/zenodo.1322563
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1101/2024.10.28.620726

	The open-closed mod-minimizer algorithm
	Abstract 
	Introduction
	Preliminaries
	The small-k case: the open-closed minimizer
	The open-closed minimizer
	Analysis
	Density

	The large-k case: the extended mod-minimizer
	The extended mod-minimizer
	Analysis
	Density

	Conclusions and future work
	Appendix A Probability distributions
	Appendix B Density plots for 
	References


