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Given a set 𝑆 of 𝑛 keys, a perfect hash function for 𝑆 maps the keys in 𝑆 to the first𝑚 ≥ 𝑛 integers without
collisions. It may return an arbitrary result for any key not in 𝑆 and is called minimal if𝑚 = 𝑛. The most
important parameters are its space consumption, construction time, and query time. Years of research now
enable modern perfect hash functions to be extremely fast to query, very space-efficient, and scale to billions
of keys. Different approaches give different trade-offs between these aspects. For example, the smallest
constructions get within 0.1% of the space lower bound of log2 𝑒 bits per key. Others are particularly fast
to query, requiring only one memory access. Perfect hashing has many applications, for example to avoid
collision resolution in static hash tables, and is used in databases, bioinformatics, and stringology.

Since the last comprehensive survey in 1997, significant progress has been made. This survey covers the
latest developments and provides a starting point for getting familiar with the topic. Additionally, our extensive
experimental evaluation can serve as a guide to select a perfect hash function for use in applications.

CCS Concepts: • Theory of computation → Data compression; Bloom filters and hashing; • Informa-
tion systems→ Point lookups; • General and reference→ Surveys and overviews.

Additional Key Words and Phrases: Compressed Data Structures, Minimal Perfect Hashing, Survey

1 Introduction
Given a set 𝑆 ⊆ 𝑈 of 𝑛 keys drawn from a universe set𝑈 of size 𝑢, a perfect hash function (PHF)
for 𝑆 maps the keys in 𝑆 to the first𝑚 ≥ 𝑛 integers [𝑚] = {0, . . . ,𝑚 − 1} without collisions. For any
key not in 𝑆 , it may return an arbitrary result. Therefore, it does not need to be able to distinguish
between keys in 𝑆 and keys that it was not constructed with. As we will see later, this enables a
constant amount of space per key regardless of the nature of keys. Most practical implementations
of such functions need, in fact, less than 2 bits per key, depending on the load factor 𝑛/𝑚. In
contrast, a data structure storing a sparse (𝑢 ≫ 𝑛) set of 𝑛 keys must use at least log2 (𝑒𝑢/𝑛) − 𝑜 (1)
bits/key. A perfect hash function is called minimal (MPHF) if𝑚 = 𝑛, in which case it represents
a bijection between the input set and the first 𝑛 integers. Intuitively, the smaller output range
reduces the flexibility of how keys can be placed, thus reducing the number of functions that
are collision-free. This increases the space consumption compared to the non-minimal case. For
an MPHF, the space lower bound is about log2 𝑒 ≈ 1.443 bits per key, and practical applications
can already achieve 1.444 bits per key [107]. PHFs can be converted to MPHFs using techniques
we explain in Section 3.1. We follow the practice in the literature and focus on minimal perfect
hash functions only. Perfect hashing has many applications in various fields of computing, from
bioinformatics to stringology. Over the past years, there has been significant progress in this
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research area. Many different approaches have been proposed, showing a wide variety of ideas on
how to solve the perfect hashing problem.

This Survey in Context. Lewis and Cook [113] review early letter-based approaches [38, 42, 44,
45, 62, 75, 90, 100, 150, 155]. The last survey about minimal perfect hashing by Czech et al. [47]
gives a comprehensive review of approaches until the year 1997 [4, 28, 29, 33–35, 37, 48, 55, 56, 70,
72, 73, 83, 91, 92, 97, 99, 113, 118, 124, 136, 146, 149, 152, 154, 157, 159, 164, 165, 167]. Because these
approaches are no longer relevant in practice, we do not go into detail about these here and mainly
focus on modern approaches. In particular, our focus is on practical constructions, i.e., on those that
have been implemented and shown to perform well in practice. As such, we also give an extensive
evaluation that shows their performance in practice and helps to choose a fitting PHF for a given
application. We nonetheless point out theoretical constructions when necessary.

Space Lower Bounds. The space lower bound for representing an MPHF is 𝑛 log2 𝑒 − O(log𝑛) ≈
1.443𝑛 bits for large 𝑛 and 𝑢 → ∞ [74, 118, 123]. This bound is quite simple to explain. Take a
function 𝑓 : 𝑆 → [𝑛] that is minimal perfect on some set 𝑆 . Because 𝑓 can be evaluated with any
input key from the universe and outputs only values from [𝑛], there can be additional input sets for
which 𝑓 is minimal perfect. More precisely, 𝑓 is minimal perfect for all sets where exactly one input
key is in each preimage 𝑓 −1 (1), 𝑓 −1 (2), . . . , 𝑓 −1 (𝑛). The number of input sets on which 𝑓 is minimal
perfect is therefore |𝑓 −1 (1) | · |𝑓 −1 (2) | · . . . · |𝑓 −1 (𝑛) |. This expression is maximized if all preimages
have the same size 𝑢/𝑛. Therefore, a single function can be minimal perfect for at most (𝑢/𝑛)𝑛
different input sets. There are

(
𝑢
𝑛

)
different possible input sets. Therefore, we need to be able to

differentiate between at least
(
𝑢
𝑛

)
/(𝑢/𝑛)𝑛 different behaviors of our MPHF to be able to cover every

possible input set. A minimal perfect hash function then needs to store which of these behaviors
has to be used on the respective input set. Therefore, the number of bits needed is log2

( (
𝑢
𝑛

)
/
(
𝑢
𝑛

)𝑛 )
which, by using Stirling’s approximation of the factorial, is ≈ log2

( (
𝑢𝑒
𝑛

)𝑛 /(𝑢
𝑛

)𝑛 ) − O(log𝑛) =

𝑛 log2 𝑒 − O(log𝑛) ≈ 1.443𝑛 for large 𝑛 and 𝑢 → ∞. Using a similar combinatorial argument, one
can show that the space lower bound to represent non-minimal PHFs with load factor 𝛼 = 𝑛/𝑚 is
𝑛
(
log2 𝑒 +

( 1
𝛼
− 1

)
log2 (1 − 𝛼)

)
− O

(
log2 𝑛

)
[12, 74, 109, 124].

These lower bounds hold even for the expected space requirement of randomized MPHFs and
even if the input set is chosen uniformly at random. For randomized MPHFs the lower bounds are
tight as we will see for 𝑛 =𝑚 in Section 7: a randomized brute force construction [124] requires
𝑛 log2 𝑒 − Ω(log𝑛) bits in expectation, even for infinite universes.

A completely independent lower bound of Ω(log log𝑢) bits [74] holds for deterministic MPHFs
in the worst case even for 𝑛 = 2 because log2 𝑢 functions 𝑓 : 𝑈 → [2] are required until each pair
of elements from the universe is separated by at least one such function. Since this lower bound
does not apply to randomized constructions and exceeds the more general lower bound only if
𝑛 = O(log log𝑢) we leave it aside for the rest of the paper.

Variants. There are several variants of perfect hashing. Because these use independent techniques,
we only mention them briefly but do not go into detail. 𝑘-perfect hash functions are a generalization
that allow for up to 𝑘 collisions on each output value. Order-preserving MPHFs retain any arbitrary
order of the keys, which means that they need at least log𝑛 bits per key due to storing one of the
𝑛! permutations. Monotone MPHFs, in contrast, use the intrinsic order of the keys as implied by an
order of the universe. Surprisingly, MMPHFs achieve a much smaller space consumption of just
O(log log log𝑢) bits per key [6, 9, 105]. We refer to Appendix A for details.

Overview. We begin our journey with an overview of different applications of perfect hashing in
Section 2. In Section 3, we give an introduction to common techniques. Then we look at approaches
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from the literature, first starting with the origins of perfect hashing in Section 4. We then categorize
the modern approaches into three categories based on their main working principle in Section 5.
In Sections 6 to 8 we then discuss the approaches in those categories: Perfect hashing through
retrieval in Section 6, brute-force in Section 7, and fingerprinting in Section 8. In Section 9, we
give theoretical details about the space consumption and construction time of different approaches.
After this overview of the literature, we give a detailed practical evaluation in Section 10. There,
Figure 7 can serve as a guide to select a perfect hash function in practice, given specific space and
time budgets. We conclude this paper in Section 11.

2 Applications
In the following section, we outline some of the wide range of applications of perfect hashing.

Hash Tables and Retrieval. Hash tables are one of the most fundamental data structures used
today. When the key set is static, a perfect hash function can be used to directly index the hash
table without the need for collision resolution. This guarantees constant access times [75], efficient
access with fewer cache faults than standard hash tables [23], and fewer external memory access
operations [106]. If we do not need the ability to query whether some key is stored in the table, we
can store only the values and not the keys in the table cells. With this, we obtain a value-dynamic
retrieval data structure [40, 61, 119]. This is a space-efficient updateable dictionary where the
behavior is undefined for any key not in the original set. There is also work on retrieval data
structures with a dynamic key set, however not based on perfect hashing [43, 49, 50].

AMQ Data Structures. An Approximate Membership Query (AMQ) data structure (also called
filter) can answer membership queries, “Is 𝑥 ∈ 𝑆?”, allowing false-positive answers. The space lower
bound for an AMQ data structure for 𝑆 with false positive rate 𝜀 is 𝑛 log2 (1/𝜀) bits [32]. The most
widely known example is the Bloom filter [20]. With the optimal number of hash functions, it needs
at least 𝑛(log2 (𝑒) · log2 (1/𝜀)) bits to be represented [30], thus approximately 44.3% more space
than the space lower bound for an AMQ data structure. Assuming a PHF 𝑓 taking 𝑐 bits per key, we
can easily achieve an AMQ data structure with𝑚(𝑐 + ⌈log2 (1/𝜀)⌉) bits by storing ⌈log2 (1/𝜀)⌉-bit
fingerprints of the input keys in a packed array with𝑚 cells indexed by 𝑓 [17, 30, 67, 85, 121]. For
example, for MPHFs (𝑚 = 𝑛) we can get close to 𝑛(log2 (𝑒) + log2 (1/𝜀)) bits. Since MPHFs can have
very fast construction and query time, this can be practically valuable because even more space
efficient AMQ constructions based on retrieval [61] have slower queries.

Databases. Perfect hashing also finds use in static databases (or “stores”) to map variable-length
keys (e.g., strings) from a known universe to smaller identifiers that can be stored with less
space [24, 128]. For example, this is the case for Indeed Engineering [65]. The COPR database [147]
uses perfect hashing for efficient search in log files. Perfect hashing can also be used to speed up
finding association rules [2] in databases [36, 95]. SNIPS [131] uses perfect hashing to synchronize
the content of a distributed database without communicating the full list of files that each peer
stores. Perfect hashing can also be used to enable faster joins and aggregates in OLAP databases [77].
Finally, monotone minimal perfect hash functions can be useful as part of an algorithm for range
queries in databases [106, 115].

Bioinformatics. The (node-centric) De Bruijn graph is a directed graph where nodes correspond to
strings of length𝑘 , called𝑘-mers, and edgesmodel (𝑘−1)-length overlaps between the nodes [51, 82].
Note that there is a one-to-one correspondence between a De Bruijn graph and a set of 𝑘-mers.
This combinatorial object is vital to many applications in bioinformatics, such as de novo genome
assembly [114, 137], transcriptome assembly from RNA [84], and variant calling [96]. Representing
such graphs in compact space is therefore very important. Perfect hashing can be used to enable fast
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navigation in such graphs [39] and to support membership queries for 𝑘-mers [3, 122, 138, 139, 153].
Pibiri et al. [140] also introduce the first MPHF specifically designed for 𝑘-mer sets. They exploit
the fact that two consecutive 𝑘-mers overlap by 𝑘 − 1 symbols to beat the space lower bound that
applies to general-purpose minimal perfect hashing, and to even achieve locality of the hash values
for overlapping 𝑘-mers. Perfect hashing is also used to build a De Bruijn graph in external memory;
for example to associate some metadata to each 𝑘-mer to aid construction [102], and to efficiently
implement union-find data structures for 𝑘-mers [41].

Text Indexing. Perfect hashing can be used to index children of a node of a suffix tree [163] in
constant time [14]. In general, perfect hashing can be used to store trees, for example in prefix
search [10]. In a large external memory lexicon, perfect hashing can be used to ensure that the
number of memory accesses is low when accessing specific words [166]. Monotone minimal perfect
hashing can be used for constant-time rank queries on an input set. As a special case, one can
build a monotone MPHF on the positions of 1-bits of a bit vector [130], possibly undercutting
the space consumption of storing the bit vector itself. The data structure then only supports
rank queries for positions that we know have a 1-bit, which can be a common use-case. Running
rank queries on an alphabet is useful to decode the Burrows-Wheeler Transform (BWT) [31]
using a perfect hash function [14]. For reporting the number of occurrences of each character
in a substring, Belazzougui et al. [15] store the rank of each character occurrence in an array
indexed by a monotone MPHF. From a list of documents, this then enables efficiently finding the 𝑘
documents with the most occurrences of a pattern (top-𝑘 retrieval) [15, 129]. Finally, in pattern
matching [13, 78, 88], monotone MPHFs are applied mostly to integer sequences representing the
occurrences of certain characters in a text.

Natural Language Processing. 𝑁 -gram language models are a crucial ingredient of natural lan-
guage processing, machine learning, and spell checking [120]. Pibiri and Venturini [143, 144]
introduce a compressed trie representation of 𝑁 -gram language models and use perfect hashing to
achieve faster lookups. For real-time speech recognition at Amazon, Strimel et al. [156] introduce
the compressed 𝑁 -gram data structure DashHashLM, which is particularly focused on fast lookups.
It computes IDs of the 𝑁 -gram context using a minimal perfect hash function. In contrast to storing
the IDs explicitly, this avoids the need for a more complex lookup table.

Further Applications. In flow lookup tables in routers [117], partially dynamic PHFs get rebuilt
only if they change too much (see also Appendix A). Perfect hashing helps to perform depth-first
search in large implicitly defined graphs using a value-dynamic retrieval data structure that stores
one bit per node while all other data structures can reside in external memory [63]. For example,
this can be used for formal verification of software via model-checking. Finally, monotone MPHFs
can be used for efficient queries in encrypted data [21].

3 Preliminaries
In this section, we explain general tools and technique that we need later in the paper. We also
highlight basic building blocks that are used in almost every MPHF construction.

3.1 Common Perfect Hashing Tools

Fully Random Hash Functions. In the course of this paper, we regularly need access to a fully
randomhash functionℎ(𝑥),𝑥 ∈ 𝑈 . In fact, we often need a number of different hash functions, which
we here model by adding a second parameter to ℎ: we assume that ℎ(𝑥, 𝑠) is a fully random function
for all values 𝑠 ∈ N0 = {0, 1, 2, . . .} and for any 𝑥 ∈ 𝑈 . We also assume thatℎ(𝑥, 𝑠) can be evaluated in
constant time for any 𝑥 ∈ 𝑈 and 𝑠 ∈ N0. This is known as the “simple uniform hashing assumption”
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which is common in the literature about hashing [55, 106, 110, 112, 132, 133]. The assumption is an
adequate model for practical hash functions and can be justified in theory [1, 18, 59, 158].

Master Hashes. Most perfect hash functions first generate an initial, “master”, hash using a high
quality random hash function with large output range (e.g., with range [264] or [2128]).1 This
makes the construction mostly independent of the input distribution. Another important advantage
is that the construction works with fixed-size keys (i.e., the hashes themselves) instead of the
original, possibly variable-length, keys. Clearly, handling fixed-length keys aids implementation
and improves performance. The idea is introduced in one of the first perfect hashing papers by
Sprugnoli [155] (although initially just with a modulo operation).

Partitioning. A second fundamental idea introduced by Sprugnoli [155] is to apply partitioning
to perfect hashing. In order to determine a perfect hash function for a larger key set, it is possible
to first divide the input keys into smaller subsets of approximately the same size, for example using
a random hash function. After determining perfect hash functions on all subsets independently,
adding a prefix sum over the subset sizes to the hash values gives a perfect hash function of the
overall set. While this causes some space and time overhead due to the need to store and lookup
the prefix-sum values, it can help with cache locality and therefore construction performance.
Furthermore, each partition can be built independently in parallel using multiple threads.
Another way to partition PHFs that avoids storing prefix sums is to construct a 𝑘-perfect hash

function. PtrHash [87] takes a different approach by constructing a non-minimal PHFs, making
each partition size the maximum of all sizes.

Remapping. Any perfect hash function with output range𝑚 > 𝑛 can be converted to an MPHF.
Folklore methods include marking the actual outputs in a vector of𝑚 bits and then performing
a rank query using the output of the perfect hash function. An alternative is to store the unused
output values in a predecessor data structure and then discount the output of the perfect hash
function by the number of unused output values that precede it. Sometimes, in the first case one
does not even need an additional bit vector because a special encoding of the output can be used to
distinguish between used and unused entries [26]. Pibiri and Trani [141] remap the values greater
than 𝑛 to the unused output values in [𝑛] instead. Therefore, only a small fraction of the keys need
to query the remapping data structure. Constructing a non-minimal PHF first might be faster but
might also increase space consumption and query time.

3.2 Retrieval Data Structures
A (static function [79]) retrieval data structure represents a function 𝑓 : 𝑆 → {0, 1}𝑟 that maps each
key in 𝑆 ⊆ 𝑈 to an 𝑟 -bit integer. Similarly to a MPHF, the behavior of a retrieval data structure is
undefined for any key not in 𝑆 and, because it does not need to differentiate between keys in 𝑆 and
keys not in 𝑆 , it can represent 𝑓 in close to 𝑟𝑛 bits.
Demaine et al. [52] point out that given an MPHF 𝑝 for 𝑆 it is trivial to construct a retrieval

data structure: simply index a packed array of 𝑟 -bit values using 𝑝 . This, however, results in a
space consumption of at least 𝑛 · (𝑟 + log2 𝑒) bits, so a space overhead of at least log2 𝑒 bits/key.
Moreover, the packed array approach issues as least two dependent memory accesses for each
query whereas many kinds of retrieval data structures issue independent memory accesses [58],
which are parallelized efficiently by modern processors. The converse can be efficient: in Section 6
we use retrieval data structures to build perfect hash functions.

One of themain approaches to the construction of retrieval data structures is due to Czech et al. [46,
119], and has been the source of most development in the area. The idea is that given the function
1Examples include MurmurHash, xxHash, and CityHash. The SMHasher test suite [5] offers a comprehensive comparison.
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𝑓 , one fixes an integer 𝑘 > 0 and chooses 𝑘 hash functions ℎ : 𝑈 × [𝑘] → [𝑚],𝑚 ≥ 𝑛, and uses
them to write the system of equations

𝑤ℎ (𝑥,0) +𝑤ℎ (𝑥,1) + · · · +𝑤ℎ (𝑥,𝑘−1) = 𝑓 (𝑥) for all 𝑥 ∈ 𝑆. (1)
Note that ‘+‘ denotes the sum operator in an Abelian group. In the original proposal, it was modular
arithmetic, but is nowmore commonly a bitwise XOR operation between bit vectors. Clearly, storing
a solution𝑤0, . . . ,𝑤𝑚−1 for this system is sufficient to compute 𝑓 on all keys in 𝑆 , but elements in
𝑈 \ 𝑆 will be mapped to arbitrary values. The criterion originally used to make the system solvable
was to make the ratio 𝑛/𝑚 small enough that the system can be almost always put in echelon form
in linear time, instead of the typical cubic time of Gaussian elimination. For example, for 𝑘 = 2 and
any 𝜀 > 0 one can obtain a structure with a space of ≈ (2 + 𝜀)𝑟𝑛, i.e., more than twice the optimum,
whereas for 𝑘 = 3 the overhead decreases to ≈ 23%. These overheads come from thresholds for
the peelability problem discussed in Section 3.3. Arbitrarily lower overheads can be obtained by
increasing 𝑘 and solving the linear system [79] — for example, for 𝑘 = 3 (10% overhead) or 𝑘 = 4 (3%
overhead), as the threshold for solvability is lower [145], and tends to 1 as 𝑘 grows, as we discuss in
the Section 3.3. Recent retrieval data structures achieve very low space consumption: for example,
Bumped Ribbon Retrieval (BuRR) [61] is also based on solving a system of linear equations. BuRR
achieves a space consumption of less than 1.01𝑟𝑛 and supports fast queries, albeit only for small
𝑟 . We do not go into detail about its working principle here but still want to mention it because
several approaches in Section 6.2 use BuRR as a black box retrieval data structure. As noted by
Dietzfelbinger and Pagh [58], retrieval data structures can also be used to implement AMQ data
structures by storing a fingerprint of each key in the set (as discussed in Section 2).

3.3 Graph Properties
Several perfect hash function constructions that we describe later are based on peeling and orienting
graphs. In this section, we give an introduction to these terms.

Peelability. Peeling is the process of iteratively taking away nodes of degree 1 from a graph,
together with their adjacent edge [26, 46, 101, 119, 126, 160, 161]. We call a graph peelable if it can
be peeled to an empty graph. Clearly peelability in ordinary graphs is equivalent to acyclicity.
However, once we move to 𝑘-uniform hypergraphs, 𝑘 ≥ 3, where an edge is a subset of vertices of
cardinality 𝑘 , the two concepts are no longer equivalent.2 Peelability is important for retrieval data
structures because we can associate a 𝑘-uniform hypergraph with the system in Eq. (1): vertices are
elements of [𝑚], and each equation is a hyperedge containing the vertices ℎ(𝑥, 𝑖), 0 ≤ 𝑖 < 𝑘 . It is
easy to see that peelability implies that the system is in echelon form up to row swaps and column
swaps, as each peeled edge is an equation containing a variable not appearing elsewhere. Peeling
can be performed in linear time. As each edge is peeled due to a degree 1 vertex, the associated
equation and variable index are put on a stack. After peeling, the equations and variables are popped
from the stack and processed in reverse order. Each equation is solved by setting the variable to the
required value, exploiting that the variable does not appear in previously solved equations. At the
end of the process, equations are popped from the stack and solved backwards.
Czech et al. [46, 119] showed that a graph with 𝑚 vertices, 𝑛 uniformly random edges, and

𝑛/𝑚 ≤ 1/(2 + 𝜀), 𝜀 > 0 is peelable with a probability > 0. In practice, they suggest to use
𝑛/𝑚 = 0.467. For 𝑘-uniform hypergraphs, 𝑘 ≥ 3, there is instead a sharp peelability threshold
peel𝑘 : a hypergraph with𝑚 vertices and 𝑛 uniformly random hyperedges of size 𝑘 is peelable with
probability 1 − 𝑜 (1) if 𝑛/𝑚 < peel𝑘 − 𝜀, and peelable with probability 𝑜 (1) if 𝑛/𝑚 > peel𝑘 + 𝜀. For
𝑘 = 3 the threshold is peel𝑘 ≈ 0.8185, and for 𝑘 > 3 the threshold decreases, so 𝑘 = 3 is the most
2Note that early papers sometimes used the term “acyclic” for “peelable”.
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interesting case for practical applications, providing a 23% space overhead for retrieval. Molloy [126]
proved ten years later that the thresholds conjectured in [119] were quite accurate. We remark that
a slightly different distribution for the hyperedges yields larger peelability thresholds [160, 161],
e.g., ≈ 0.9179 for 𝑘 = 3, equal to the orientability thresholds we discuss next, which moreover
improve for larger 𝑘 . This has, to our knowledge, not yet been exploited in MPHF constructions.

Orientability. Orientability is a weaker concept than peelability: we call a hypergraph orientable
if we can orient each edge, that is, select a vertex from each edge so that no two edges share the same
selected vertex. Clearly, a peelable graph is orientable, as we can select for each edge the vertex
from which it was peeled.3 Orientability is a well known property that is analyzed, among others,
in the context of cuckoo hashing [135]. Similarly to the peelability threshold, the orientability
threshold describes how large𝑚 has to be with respect to 𝑛 to ensure that the hypergraph can be
almost always oriented as 𝑛 goes to infinity. For 𝑘 ≥ 3, this threshold is (surprisingly) equivalent to
the threshold for the 𝑘-XORSAT problem [54, 145]: when considering a random system on F2 with
𝑚 variables, 𝑛 equations, and 𝑘 variables per equation, the system is almost always solvable as 𝑛
goes to infinity as long as 𝑛/𝑚 is is below the 𝑘-XORSAT solvability threshold, which is the same
as the orientability threshold for 𝑘-uniform hypergraphs. For example, 3-uniform hypergraphs
have threshold ≈ 0.9179, 4-uniform hypergraphs have threshold ≈ 0.9768, and when 𝑘 increases
further the threshold approaches 1 [145]. The threshold has also been extended to larger fields [80].
There is no threshold for 2-XORSAT, but ordinary graphs have an orientability threshold of 1/2,
and below the same ratio they are peelable with positive probability.

4 The Birth of Perfect Hashing
In this section, we give a short overview of the origins of perfect hashing. These approaches already
introduce a number of basic principles that are still used in modern constructions, some of which
we have explained in Section 3.1. Even if there are faster and more space-efficient approaches today,
they illustrate the progress that was made on the topic during the last 50 years of research.
In 1963, for identifying reserved words in an assembler, Grenievski and Turski [86] present a

function that can convert tokens to integers without collisions. Given an input text 𝑇 , their hash
function has the form 𝑓𝑖 (𝑇 ) = 𝑎𝑖 𝑓𝑖−1 (𝑇 ) +𝑇 [𝑖] + 𝑐𝑖 . The idea is to determine constants 𝑎𝑖 and 𝑐𝑖
experimentally such that 𝑓𝑛 avoids collisions on the input set. However, the authors do not describe
a way to generalize the idea to arbitrary input sets nor do they call the resulting data structure a
perfect hash function. In the first edition of The Art of Computer Programming [103] released in
1973, Knuth describes finding a hash function without collisions as an “amusing puzzle”. Knuth
states that the puzzle can be solved manually in about one day of work if the number of input keys
is small enough and gives an example with 𝑛 = 31 keys. He uses this as an introduction to a chapter
about hash tables and not as an independent field of research. The second edition [103] of his book
released in 1998 then already describes the first practical perfect hash function constructions.
It was Sprugnoli [155] who first used the terms perfect hashing and minimal perfect hashing in

1977. He also describes the first algorithm to systematically construct perfect hash functions. The
idea is to find a linear transformation of the input keys, i.e., 𝑥 ↦→ ⌊(𝑥 + 𝑐1)/𝑐2⌋, where 𝑐1 and 𝑐2 are
constants determined by the algorithm. This approach only works well if the keys are uniformly
distributed. To deal with this problem, Sprugnoli then proposes to scramble the input using a modulo
operation. While this does not work for all input sets, it gives a fundamental basis that is still used
in many modern perfect hash functions. Sprugnoli also introduces the ideas of initial hashing,
as well as partitioning (see Section 3.1). He even already discusses the space usage of his perfect
3In general, a hypergraph is (𝑘, ℓ )-orientable if it possible to select 𝑘 vertices in each edge so that no vertex is selected by
more than ℓ edges. While this notion might be useful for 𝑘-perfect hashing, we do not consider it further in this paper.
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hash functions in terms of machine code that needs to be written for representing the function.
Today, perfect hashing is mainly measured as the amount of space needed in a corresponding data
structure, but measuring machine code was common for a long time [151].

Cichelli [42] describes a first practical algorithm for determining minimal perfect hash functions
based on brute-force searching for a simple assignment of letters to numbers. Similar letter-based
approaches are presented later, with the main innovations being to look at letters in different
positions in the input string which are less likely to be correlated. Jaeschke [100] gives an algorithm
that can already handle input sets of up to 1000 keys.

5 Overview
We now continue with modern perfect hash function constructions. For this, we divide the ap-
proaches into three categories, which we explain in the following.
Perfect hashing through retrieval (Section 6) builds on retrieval data structures (see Section 3.2).

Early approaches explicitly store the desired hash value for each key, leading to a space consumption
of O(log𝑛) bits per key. Later approaches achieve constant space per key by storing the index of
one of several candidate output values determined by different hash functions on the key.

Simple brute-force search for a PHF achieves the optimal space consumption but has exponential
running time, making it impractical. In perfect hashing through brute-force (Section 7) we describe
techniques that still use brute-force at their core, but are practical because they first reduce the size
of the sets that need to be handled with brute-force.
Perfect hashing through fingerprinting (Section 8) describes another technique that is focused

more on construction and query performance than on space consumption. There are several
implementations of the same basic technique, mostly with minor algorithmic changes.

Figure 1 gives an overview of all approaches that we consider in this survey, and shows how the
ideas influence each other. We can see that the three main categories each have their own strands
of research. Recent approaches start using ideas from multiple categories, as we show in the figure
by placing them in between the categories. Interestingly, the number of publications in the last few
years increased massively, after several years of mostly inactivity in the early 2000s. With so much
new development in the field, this survey gives structure and an overview over the state of the art.

6 Perfect Hashing through Retrieval
We recall from Section 3.2 that a retrieval data structure represents a function 𝑓 : 𝑆 → {0, 1}𝑟 that
maps each key in 𝑆 ⊆ 𝑈 to an 𝑟 -bit integer. In the following, we explain a range of perfect hash
function constructions that use retrieval data structures (see Section 3.2). In Section 6.1, we explain
perfect hash functions that store the final output hash value in the retrieval data structure. This
needs a space consumption of O(log𝑛) bits per key. Then, in Section 6.2, we explain approaches
where the retrieval data structures only store the index of one of multiple choices, enabling constant
space per key. Some of the approaches we present here do not have an explicit name in their original
paper. We therefore follow the convention of previous papers and name the approaches after the
first letters of the authors’ last names.

6.1 Storing Perfect Hash Values
Retrieval data structures can be used to explicitly store a desired perfect hash value for each key
using about log2 𝑛 bits per key. Several early MPHF constructions actually implement a retrieval
data structure and store the desired hash values [46, 119], even if the authors do not explicitly
explain their approach as a retrieval data structure. In this section, we nevertheless look at those to
illustrate the progress on perfect hashing made over the past years. We give an overview in Table 1.
Remember from Section 3.2 that retrieval data structures can be constructed from the following
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Retrieval (Section 6) Brute-Force (Section 7) Fingerprinting (Section 8)

CHM
1992 [46]

MWHC
1996 [119]Bloomier

filters
2004 [40]

BMZ
2004 [22]

BPZ
2013 [26]

GOV
2016 [79] SicHash

2023 [110]

WBPM
2020 [162]

EMPHF
2014 [8]

ShockHash
2023 [111, 112]

MorphisHash
2025 [93]

Brute-Force
1984 [124]

FCH
1992 [71] CHD

2009 [12]

PTHash
2021 [141, 142]

RecSplit
2020 [66]

SIMDRecSplit
2023 [19]

PHOBIC
2024 [94]

PtrHash
2025 [87]

CONSENSUS-RS
2025 [107]

FMPHGO
2023 [16]

Meraculous
2011 [39]

FiPHa
2014 [128]

BBHash
2017 [116]

FMPH
2023 [16] FiPS

2024 [109]

Figure 1. Perfect hashing approaches and how they influence each other. While we describe them in this
paper, we do not evaluate the performance of approaches given in gray color because they are clearly larger
than current ones or because they do not have a publicly available implementation.

system of equations: 𝑤ℎ (𝑥,0) +𝑤ℎ (𝑥,1) + · · · +𝑤ℎ (𝑥,𝑘−1) = 𝑓 (𝑥) for all 𝑥 ∈ 𝑆 . All the perfect hash
function constructions in this section solve a system of that form. Remember also from Section 3.3
the concepts of peelability (repeatedly taking away nodes of degree 1) and orientability (directing
edges such that each node has indegree 1) of graphs.

CHM. Given a list of keys, Czech et al. [46] use peelability on a random graph to solve the system
in Eq. (1), where 𝑓 maps each key to its rank in the list. If the graph is not peelable, which rarely
happens below the peelability threshold, CHM retries with another set of hash functions. The
construction is a general retrieval data structure, but the authors only use it to construct an MPHF.
The space consumption is 2.09𝑛 log2 𝑛 bits. As we noted in Section 3.3, this paper introduces the
idea of peelability, that is used in many later constructions.

MWHC. The authors of CHM then joined forces with Wormald [119] to extend the idea of CHM
to 3-uniform hypergraphs. Once again, the construction is a general retrieval data structure, but
the authors use it to construct an MPHF, lowering the space consumption to 1.23𝑛 log2 𝑛 bits.
Belazzougui et al. [8] improve the peeling step of MWHC through better cache locality.

BMZ. Botelho et al. [22] enhance the idea of CHM into another direction thanMWHC. In contrast,
the graph does not need to be peelable — only orientable. Like CHM, the hash value is given by
the sum of the values stored at the two ends of each edge. When assigning values to nodes, BMZ
first uses the normal peeling process that is known from the previous approaches. When there
are no more nodes of degree 1, we have arrived at the 2-core. If that 2-core consists of only nodes
with degree 2, the remaining edges form loops. BMZ calls them critical and assigns them first
using breadth-first-search. This ensures that different keys get different values, but BMZ no longer
supports an arbitrary value for each key. As such, in contrast to CHM and MWHC, it is no longer a
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Table 1. Overview of perfect hashing through retrieval. We use the hypergraph interpretation here. The
number 𝑘 of nodes per edge corresponds to the number of choices for each key. ∗ The original paper [40]
discusses only PHFs, not MPHFs, and with weaker bounds. We report here the actual bounds for the
hypergraph technique [119].

Stored Approach Year 𝑘 Graph Property |𝑉 | Space Usage

O
ut
pu

t
va
lu
e CHM [46] 1992 2 Acyclic 2.09𝑛 2.09 · 𝑛 log2 𝑛

MWHC [119] 1996 3 Peelable 1.23𝑛 1.23 · 𝑛 log2 𝑛
BMZ [22] 2004 2 |Critical| < 𝑛/2 1.15𝑛 1.15 · 𝑛 log2 𝑛

H
as
h
fu
nc
tio

n
in
de
x

Bloomier filters [40] 2004 3 Peelable 1.23𝑛 2.46𝑛∗
BPZ [27] 2007 3 Peelable 1.23𝑛 2.62𝑛
GOV [79] 2016 3 Orientable 1.10𝑛 2.24𝑛
WBPM [162] 2020 log2 𝑛 Bipartite 𝑛 1.83𝑛
SicHash [110] 2023 Mix 2, 4, 8 Orientable (1 + 𝜀)𝑛 2𝑛
ShockHash [112] 2023 2 Orientable 𝑛 1.443𝑛

Mary

Dave

ℎ(Mary, 0) ℎ(Mary, 1)

ℎ(Dave, 1)ℎ(Dave, 0)

1 𝑖 (𝑥) =
{
1 𝑥 = Dave
0 𝑥 =Mary

PHF(Mary) = ℎ(Mary, 0) = 0
Query:

Retrieval Data Structure:

2 3 50 4

Figure 2. Multiple Choice Hash-
ing. Each key has the choice be-
tween several locations, in this
case two. A retrieval data struc-
ture stores which of the choices
to take.

general-purpose retrieval data structure. Instead, it is a step towards smaller perfect hash functions.
After the critical edges, BMZ then assigns the remaining nodes similar to the algorithms above. At
all times, it keeps a list of output values that are not assigned yet to find collision-free mapping.
The fact that BMZ does not require peelability has the advantage that |𝑉 | can be much closer to 𝑛.
This reduces the amount of space needed to only 1.15𝑛 log2 𝑛 bits.

6.2 Multiple Choice Hashing
In the following, we present several ideas that we categorize as multiple choice hashing. In multiple
choice hashing, each input key has a set of candidate output values. Here, these candidate values
are determined by evaluating different hash functions ℎ(·, 𝑖) on the input key. Let 𝑖 (𝑥) be a function
assigning a number to each key, indicating which of its candidate values should be selected in
order to give a collision-free mapping. Then ℎ(𝑥, 𝑖 (𝑥)) is unique for each key 𝑥 , and only the hash
function index 𝑖 (𝑥) needs to be stored in a retrieval data structure. In contrast to Section 6.1, the
approaches can therefore break the space consumption of Ω(log𝑛) bits per key. We illustrate this
idea in Figure 2. Multiple choice hashing can also be interpreted as a hypergraph, where each key
corresponds to a hyperedge, connecting its candidate output values. Then a 1-orientation of this
graph gives a mapping from keys to candidate values. In this interpretation, the similarities to the
older approaches in the previous section become clear. In the following, we explain approaches from
the literature in more detail. Table 1 gives an overview of the differences between the approaches.
We want to mention the similarity of multiple choice hashing to cuckoo hashing [135], which is a
collision resolution strategy in hash tables. Cuckoo hashing uses the power of multiple choices [125]
to reduce the load of hash table cells.
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Bloomier filters. Chazelle et al. [40] introduce the concept of Bloomier filters, which are thought
of as a generalization of Bloom filter. The setting is slightly different, as they assume that each
key is representable with 𝑟 bits, and they create a retrieval data structure that maps each key to
itself. The purpose of the mapping is to create an approximate set membership data structure, but
as in the previous case the construction can be used for general retrieval. In fact, they rediscover
the idea of 𝑘-uniform hypergraph peeling introduced by Majewski et al. [119], but they use a
completely different formalization, thus missing the connection, and not citing the previous results.
Moreover, the peelability thresholds they provide are much weaker than the ones conjectured
in [119]. However, they make an important observation that provides the first example of multiple-
choice hashing: since each edge (i.e., key) is associated uniquely with the vertex it was peeled from,
we can associate a unique vertex with each key by arbitrarily numbering the vertices in each edge,
and storing the function 𝑖 mapping each edge 𝑥 to the index of the vertex 𝑖 (𝑥) it was peeled from.
This mapping just requires log𝑘 bits and is a perfect hash function.

BPZ. Botelho et al. [25] rediscover the perfect hash functions described in the Bloomier filter
paper [40], but they do not cite it, likely because the different formalization. However, since their
goal is minimal perfect hashing, they consider the problem of how to convert the Bloomier filter [40]
idea to an MPHF. As we mentioned in the introduction, a standard technique involves a ranked bit
vector: in this case, the vector would track the vertices that have been used to peel an edge, and
thus are output by the perfect hash function for some input key. The authors note however that in
the optimal case of 3-uniform hypergraphs one uses two bits to store three values. They suggest to
store 0 as such for vertices that are not output by the perfect hash function, and to store 1, 2, or
3 for those which are. Then, after invoking the perfect hash function, one has just to count how
many nonzero pairs of bits appear before the output, which can be done in constant time and 𝑜 (𝑛)
space adapting standard ranking techniques [98]. In this way, they obtain a minimal perfect hash
function using just 2.62𝑛 bits [26].4

GOV. Genuzio et al. [79], reduce the space overhead of retrieval data structures and MPHFs.
They exploit the fact that, as we already mentioned, the following thresholds are the same [57, 80]:
(1) the threshold for orientability of 𝑘-uniform hypergraphs, (2) for solvability of random systems
on F2 with 𝑘 variables per equations, and (3) even for the same kind of random systems on larger
fields. First they orient a random 3-uniform hypergraph, thus assigning a distinct vertex to each
edge, Then they solve the system of equations on F3 representing the function that assigns to
each edge the vertex selected by the orientation. To tame the cubic time of Gaussian elimination,
GOV introduces a range of engineering tricks: first of all, keys are hashed into small partitions
(see Section 3.1). The systems associated with each partition are first peeled as much as possible to
reduce the number of equations. Then operations on equations use broadword programming [104]
by packing multiple values into a single word and running calculations on all of them at once.
Finally, the paper introduces lazy Gaussian elimination, which is a heuristic for fast solution of
random linear systems. Using three hash functions, and therefore two bits per key, and exploiting
the same trick of Botelho et al. [25] to perform ranking on the output, they reduce the space
consumption of minimal perfect hash functions to 2.24𝑛 bits.5

WBPM. Weaver and Heule [162] use a larger number of O(log𝑛) candidate output values. When
selecting which candidate to use for each key, they prefer choices with smaller indices. This is
modeled as a weighted graph connecting each key to its candidates, where the edge of hash function
𝑖 has weight 𝑖 . WBPM then determines a minimum weight bipartite perfect matching (WBPM),
4Recall that the perfect hash function can be stored in 2.46𝑛 bits but additional space is required for ranking.
5As in the case of BPZ, the additional 0.04𝑛 bits are used for the ranking structure.
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which can be shown to reach a weight of 1.83𝑛. The selected edge indicates which hash function to
use for each key. WBPM stores the hash function indices bit-by-bit in unary coding using a 1-bit
retrieval data structure. The matching weight of 1.83𝑛 therefore also equals the space consumption
of the final data structure, except for overheads like prefix sums due to partitioning.

SicHash. Most earlier approaches couple the task of retrieval and perfect hashing, which means
that the approaches have to store the same number of bits for every input key. SicHash [110], in
contrast, separates the two tasks of key placement and retrieval. This makes it possible to efficiently
use more than one retrieval data structure and store values of different widths for different keys.
Using the same width for every key, even with optimal retrieval, we can achieve no better than
about 2.2 bits per key using 4 choices and remapping values to be minimal perfect. SicHash’s main
innovation is using a hash function to determine how many choices each key has. Some of the keys
have 2 choices, some have 4 choices, and some keys have 8 choices. As such, it stores a 1, 2, and
3-bit retrieval data structure, each handling a portion of the input keys. Using the space-efficient
BuRR [61] retrieval data structure, this makes it possible to reduce the space consumption compared
to previous approaches. SicHash achieves a favorable space-performance trade-off when being
allowed 2–3 bits of space per key. It also achieves a rather limited gain in space efficiency by
overloading the corresponding graph beyond the orientability threshold. Using small partitions,
SicHash exploits the variance in the number of keys that can fit. Also, it uses the fact that the load
factor at which construction likely fails converges to the load threshold from above as 𝑛 grows.

ShockHash. ShockHash [112] can be seen as an extreme version of SicHash that directly tries to
orient a graph with 𝑛 nodes and 𝑛 edges. Each key corresponds to one edge, connecting the two
candidate output values of the key. The graph can be oriented if and only if it is a pseudoforest —
a graph where each component contains as many edges as nodes. Because ShockHash works far
above the orientability threshold, it needs to retry with many different graphs before it samples
one that is orientable. ShockHash then stores the choice between the two candidate values of
each key in a 1-bit retrieval data structure taking close to 𝑛 bits. Additionally, it stores the hash
function seed, which can be shown to need about 0.44𝑛 bits. This means that the majority of the data
originates from a simple linear time orientation of the graph. Only 0.44𝑛 bits need to be determined
by exponential time brute-force. Compared to a simple brute-force technique (see Section 7), which
needs 𝑒𝑛 tries in expectation, ShockHash needs only (𝑒/2)𝑛 tries, while still reaching the space
lower bound. A key idea for making ShockHash practical is the introduction of a simple bit-parallel
filter that checks whether all output values are hit by some key. If one output is not hit, the graph
cannot be orientable. Because the construction is still exponential time, ShockHash first partitions
the keys to smaller subsets using RecSplit (see Section 7.2). ShockHash has configurations that
achieve 1.52 bits per key using reasonable construction time.

Bipartite ShockHash. Bipartite ShockHash [111] enhances the ShockHash idea. The approach
stores two independent hash function seeds, one for each end of the edges. During construction,
it builds a pool of hash function seeds and tests all combinations of seed pairs. By hashing each
end of an edge to disjoint output ranges, the hash function pool can be filtered before building the
pairs, which enables additional exponential speedups. Bipartite ShockHash-RS achieves a space
consumption of 1.489 bits per key while still taking reasonable construction time. In addition,
bipartite ShockHash introduces a variant called ShockHash-Flat. The approach uses a 𝑘-perfect
hash function (see Section 7.2) to partition the keys to smaller subsets. This leads to higher space
consumption but much faster queries.

MorphisHash. ShockHash orients pseudoforests, so each component of the graph is a cycle with
trees branching from it. The cycle can be oriented in two ways, which leads to about 1 bit of
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redundancy for every component. MorphisHash [93] constructs a special retrieval data structure
that avoids this redundancy. The idea is to formulate orienting the graph as a system of linear
equations indicating that each node needs an indegree of 1 (mod 2). The solution to the equation
system is then a retrieval data structure that can return the orientation of each edge. By reducing
the number of columns of the equation system, MorphisHash gives a trade-off between space
consumption and success probability. Because it stores many small retrieval data structures next to
the hash function seeds, MorphisHash has better cache locality during queries than ShockHash.

7 Perfect Hashing through Brute-Force
The fact that brute-force can be useful for constructing perfect hash functions is mentioned early
after the discovery of perfect hashing [42]. Today, most of the approaches achieving the best space
efficiency are based on brute-force techniques. In the following, we first describe a very simple
brute-force construction and an approach that uses SAT solving for more structured brute-force
search. We then illustrate the practical approaches: perfect hashing through bucket placement in
Section 7.1, and recursive splitting in Section 7.2.

A Simple Brute-Force Construction. The idea of the simple brute-force construction is to try
random hash functions (identified by different seeds) until one happens to be minimal perfect [124].
The data structure simply needs to store the found seed in binary coding. We can expect to try
𝑛𝑛/𝑛! ≈ 𝑒𝑛 different hash function seeds because there are 𝑛𝑛 functions, from which 𝑛! are minimal
perfect [66, 124]. This means that it reaches the space lower bound of minimal perfect hashing, but
because of its exponential running time, it is not practical for large 𝑛. Still, brute-force is used as a
building block on smaller sets in a range of practical constructions, which we explain below.

SAT Solving. Weaver and Heule [162] describes a solution based on SAT solving. The data
structure consists of a simple sequence of bits, and a hash function on each key determines which
of these bits (possibly flipped) should be concatenated to give the final hash function value. To
determine the values of the bits in the sequence, the algorithm searches for an assignment using
SAT solving. The SAT encoding is based on an all-different constraint and is feasible for 𝑛 ≤ 40. The
SAT solver can detect correlations between the bits in the data structure to prune the search space
more efficiently than brute-force. Still, due to its large search space of all possible functions, we
categorize it as brute-force. While the construction using SAT encoding achieves space consumption
very close to the lower bound, it is much slower in practice than other approaches.

7.1 Bucket Placement
Perfect hashing through bucket placement is a specialization of the mapping, ordering, searching
(MOS) technique [12, 70–73, 134]. The general idea is as follows.6 (1) Mapping. Each key 𝑥 is mapped
to a small bucket 𝐵𝑖 = {𝑥 |𝑏 (𝑥) = 𝑖}, using a bucket assignment function 𝑏 : 𝑈 → [𝑡] and 𝑡 buckets.
(2) Ordering. The buckets {𝐵𝑖 }𝑡−1𝑖=0 are then sorted by falling size. (3) Searching. For each bucket 𝐵𝑖 in
the order, we determine a value 𝑣𝑖 , using brute-force, that the final function 𝑓 uses to place all the
keys in the bucket to the output domain [𝑛] without collisions with keys of previously processed
buckets and with one another. Once the value 𝑣𝑖 has been determined, we say that the bucket 𝐵𝑖
has been “placed”. (4) Encoding. The collection of values {𝑣𝑖 }𝑡−1𝑖=0 is then stored in an array𝑉 [𝑖] = 𝑣𝑖
and compressed with a mechanism that retains the ability to quickly retrieve 𝑉 [𝑖] for any random
𝑖 ∈ [𝑡]. The array 𝑉 is what the MPHF data structure actually stores.
6There are additional techniques based on MOS that are not bucket placement. For example [42, 73, 150], each key is hashed
to two buckets. The seed of both buckets influences the output value. Therefore, selecting a seed value for the largest bucket
does not actually place any keys. Only when determining the second seed of a key, it gets its final output value. This means
that it can better balance the number of keys that need to be placed at the same time.
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Table 2. Overview of perfect hashing approaches using bucket placement.

Approach Year Bucket Assignment Seed Compression Search Type Partitioning
FCH [71] 1992 Skewed Fixed width Additive No
CHD [12] 2009 Uniform SDC Double Additive No
PTHash [141] 2021 Skewed Multiple options XOR Large [142]
PHOBIC [94] 2024 Optimized Interleaved Additive+Retry Small
PtrHash [87] 2025 Approximate optimized Byte array Cuckoo Small, equal-size

At the beginning of the search, almost all values in the output domain [𝑚] are available, hence
the first buckets are significantly easier to place. Buckets with fewer keys are easier to place as well.
This is intuitively why, to accelerate the search, it is useful to sort the buckets by falling size and
process them in this order. A query for a key 𝑥 then only needs to retrieve 𝑉 [𝑖], where 𝑖 = 𝑏 (𝑥),
and use it to compute the resulting hash value. Figure 3 illustrates the general idea.

We remark that, in practice, 𝑓 and 𝑏 make use of random hash functions ℎ(·, ·) (see Section 3.1).
For example, the value 𝑣𝑖 can directly be the seed for ℎ such that the bucket 𝐵𝑖 can be placed
successfully, i.e., all its keys 𝑥 mapped to output values ℎ(𝑥, 𝑣𝑖 ). Then the function 𝑓 itself would
be 𝑓 (𝑥) := ℎ(𝑥,𝑉 [𝑏 (𝑥)]) mod 𝑛, where the bucket assignment function could instead be 𝑏 (𝑥) :=
ℎ(𝑥, 𝑠) mod 𝑡 for a randomly chosen seed 𝑠 . The approaches we review in this section, as outlined
in Table 2, use a more sophisticated definition for 𝑓 and 𝑏.

FCH. FCH [71] is the first perfect hash function construction that uses the bucket placement idea.
It uses 𝑡 = ⌈𝑐𝑛/(1 + log2 𝑛)⌉ buckets, where 𝑐 > log2 𝑒 is a parameter that trades space usage for
construction speed. To further amplify the effect that the first buckets are easier to place, FCH uses
a bucket assignment function that produces a skewed distribution of bucket sizes: it hashes 60% of
the keys to 30% of the buckets. For each bucket 𝐵𝑖 , a displacement value 𝑑𝑖 ∈ [𝑛] is determined so
that all the keys 𝑥 in 𝐵𝑖 are placed and assigned hash values (ℎ(𝑥, 𝑠𝑖 ) + 𝑑𝑖 ) mod 𝑛. In the following
(and in Table 2), we refer to this form of hash function as additive displacement. The seed 𝑠𝑖 ∈ {0, 1}
gives more flexibility during the search for bucket 𝐵𝑖 : if all of the displacements cause collisions
for 𝑠𝑖 = 0, FCH repeats the search for 𝑠𝑖 = 1. If both seeds do not work, the construction fails.
To accelerate the identification of 𝑑𝑖 , an auxiliary data structure formed by two integer arrays,
taking Θ(𝑛 log𝑛) bits overall, is used to maintain the output values available in [𝑛] during the
search. Given a random available output value 𝑝 ∈ [𝑛], 𝑑𝑖 is computed by “aligning” an arbitrary
key of 𝐵𝑖 , say 𝑥𝑖 , to 𝑝: let 𝑞 = ℎ(𝑥𝑖 , 𝑠𝑖 ) mod 𝑛, then 𝑑𝑖 = (𝑝 − 𝑞) mod 𝑛. This random alignment is
rather critical for the search as it guarantees that all output values have the same probability to be
occupied. On the other hand, this auxiliary structure has to be updated as well during the search,
involving some extra cache misses.
Since each displacement 𝑑𝑖 can be coded in ⌈log2 𝑛⌉ bits, all the pairs {(𝑠𝑖 , 𝑑𝑖 )} are stored in an

array of 𝑡 (1 + ⌈log2 𝑛⌉) bits. It follows that FCH uses about 𝑐 bits/key. By decreasing the number of
buckets, it is possible to lower the space usage at the cost of a larger construction time. However,
in practice it is unfeasible to go below 2.5 bits/key for large values of 𝑛. On the other hand, FCH
shines for its very fast query time because the pair (𝑠𝑖 , 𝑑𝑖 ) is coded in fixed-width. That is, FCH just
spends one memory access per query (plus some inexpensive bit manipulations), which is optimal.

CHD. CHD [12] maps the keys uniformly to 𝑡 = ⌈𝑛/𝜆⌉ buckets, where 𝜆 > 0 is a chosen
parameter representing the average bucket size. For each bucket 𝐵𝑖 , a displacement pair (𝑑𝑖,0, 𝑑𝑖,1)
is computed to ensure that all keys 𝑥 within the bucket can be placed collision-free to output values
(ℎ(𝑥, 0) +𝑑𝑖,0ℎ(𝑥, 1) +𝑑𝑖,1) mod𝑚. CHD chooses for the search an output range larger than 𝑛, hence
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the values are in [𝑚], where𝑚 = ⌈𝑛/𝛼⌉ for a suitable load factor 0 < 𝛼 < 1. The domain of the
function is then restricted back to [𝑛] using a rank query as we discussed in Section 1. Differently
from FCH, CHD maintains a bitmap of𝑚 bits to mark values in [𝑚] that are still available.
Instead of explicitly storing a displacement pair (𝑑𝑖,0, 𝑑𝑖,1) for each bucket, CHD encodes the

position of the pair in the predefined sequence (0, 0), . . . , (0,𝑚−1), . . . , (𝑚−1, 0), . . . , (𝑚−1,𝑚−1).
Very importantly, CHD tries positions in increasing order starting from the smallest position, i.e.,
following the order [0, 1, 2, . . .], and not at random as FCH. This intuitively helps compression
because smaller numbers are tried first. The sequence of pairs’ positions is then compressed within
entropy bounds using the Simple Dense Coding (SDC) mechanism by Fredriksson and Nikitin [76],
while permitting to retrieve an index in constant time. With 𝛼 = 0.99 and 𝜆 = 6, CHD achieves 2
bits/key and it is much faster to build compared to FCH (albeit significantly slower to query).

PTHash and PTHash-HEM. Under proper configuration, PTHash [141] combines the query time
of FCH and the space effectiveness of CHD, with fast construction time. It uses the same imbalance
trick of FCH by hashing 60% of the keys to 30% of 𝑡 = ⌈𝑐𝑛/log2 𝑛⌉ buckets. Like CHD, it stores the
values {𝑣𝑖 } in compressed form but, rather than coding them using SDC, PTHash generalizes the
encoding step to use a wide range of mechanisms (e.g., Elias-Fano coding [64, 68], fixed-width, and
dictionary-based coding). Using an appropriate coding scheme, only a single memory access is
required to find the hash value for a key and the remaining operations use simple arithmetic.
Like CHD, it also first generates a non-minimal function with range𝑚 = ⌈𝑛/𝛼⌉ for some load

factor 0 < 𝛼 < 1, and uses a bitmap of𝑚 bits to mark taken output values. It then scales the output
range back to [𝑛] by remapping values larger than 𝑛 using an explicit list of𝑚 − 𝑛 free output
values that can be effectively compressed using Elias-Fano. To accelerate the search for the values
{𝑣𝑖 }, PTHash uses the so-called XOR displacement: the keys of a bucket are mapped to output values
given by (ℎ(𝑥, 𝑠) ⊕ ℎ(𝑣𝑖 , 𝑠)) mod𝑚, where (𝐴 ⊕ 𝐵) denotes the bit-wise XOR between the integers
𝐴 and 𝐵, and 𝑠 is a randomly chosen seed. As also noted for CHD, the values {𝑣𝑖 } are tried in linear
order to improve compression, while still achieving random displacement of keys via the XOR
operator. PTHash tunes two different compressors for the two different expected bucket sizes.

Also note that the seed 𝑠 does not change during construction, hence all the keys can be hashed
once (which is particularly important to save time when hashing long, variable-length, keys). On
the other hand, this XOR-based approach only works for large output domains [94].
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PTHash-HEM [142] is a parallel construction of PTHash that first partitions the input and then
builds each partition independently in parallel. These partitions must be relatively large, e.g., with
one million keys each, to avoid the aforementioned problem due to the XOR operator.

PHOBIC. PHOBIC [94] is based on PTHash. It introduces an optimal bucket assignment function
𝑏 (·) that, instead of generating two expected bucket sizes as in FCH, gives a different expected size
to every bucket. This allows each bucket to have the same probability to be placed successfully (in
asymptotic terms), which minimizes the construction time and makes the expected value of each 𝑣𝑖
equal. Figure 4 plots the relative expected bucket sizes using different bucket assignment functions
(“skew” for FCH and PTHash, “uniform” for CHD, and “optimized” for PHOBIC). As apparent from
the plot, PHOBIC makes the first (and easiest to place) buckets much larger than those generated
by FCH. However, because the actual bucket sizes need to be integers, PHOBIC cannot completely
reach the optimal values. Therefore, not all values {𝑣𝑖 } have the exact same distribution.

PHOBIC uses partitioning as a key design feature. In particular, it uses small partitions (of about
2000 − 3000 keys), differently from PTHash-HEM. Small partitions lead to better cache locality
since the bitmap used by the search is small and accesses are more localized in memory. Small
partitions also enable efficient GPU acceleration. Since small partitions are created, PHOBIC relies
on a additive displacement function and computes 𝑣𝑖 = 𝑠𝑖 · 𝑃 + 𝑑𝑖 where 𝑠𝑖 is a seed for the bucket
𝐵𝑖 , 𝑃 is the size of the partition, and 𝑑𝑖 ∈ [𝑃] is the displacement value. The hash value of a key 𝑥 ,
relative to the partition size 𝑃 , is then (ℎ(𝑥, 𝑠𝑖 ) +𝑑𝑖 ) mod 𝑃 . This is similar to the function computed
by FCH, but the seed 𝑠𝑖 is not necessarily restricted in {0, 1}: if no displacement 𝑑𝑖 ∈ [𝑃] works
for the bucket 𝐵𝑖 , the seed 𝑠𝑖 is incremented (and all the keys of the bucket hashed again), and the
search for a new 𝑑𝑖 continues. The pair (𝑠𝑖 , 𝑑𝑖 ) is computed from 𝑣𝑖 as follows: 𝑠𝑖 = ⌊𝑣𝑖/𝑃⌋ because
𝑑𝑖 < 𝑃 , and clearly 𝑑𝑖 = 𝑣𝑖 mod 𝑃 . Another contribution of PHOBIC is interleaved coding of the
values {𝑣𝑖 } given that, as pointed out before, they do not follow the same exact distribution. By
allocating the same number of bucket for each partition, it follows that the values for the 𝑗-th
buckets from all partitions are drawn from the same distribution. This allows to tune a specific
compressor to encode all those values together. Instead of storing all the values sequentially, 𝑡
encoders store values for the corresponding 𝑗-th bucket across all partitions. This method is a
natural extension of the front-back compression strategy introduced by PTHash to 𝑡 compressors
(not just 2), and makes PHOBIC more space-efficient than PTHash (saving up to 0.17 bits/key)
while still having the same construction and query throughput.

PtrHash. Lastly in this section, PtrHash [87] builds on both PTHash and PHOBIC with the intent
of simplifying the design of the data structure to accelerate queries. The two main simplifications
are: (1) a value 𝑣𝑖 is coded using exactly 1 byte, hence PtrHash stores a plain byte array at its core; (2)
the use of fixed-size partitions. The values stored in PtrHash are therefore less than 256 by design. If
none of the values {0, . . . , 255} is able to place a bucket, PtrHash bumps out already placed buckets
in a similar way to cuckoo hashing [135]. Like PHOBIC, PtrHash partitions the input into small
partitions and uses not only the same number of buckets per partition but also the same number of
output slots. That is, while the partitions have variable size in PHOBIC and PTHash-HEM, PtrHash
uses fixed-size partitions. This has the net advantage that, during a query for key 𝑥 , the size of the
partition to which 𝑥 belongs is readily available rather than having to retrieve it from an encoded
sequence. PtrHash further uses Taylor approximations of the optimal bucket assignment function
introduced in PHOBIC, which are more efficient to compute. Additionally, it uses a cache-friendly
implementation of Elias-Fano coding [64, 68] that supports faster access but consumes slightly
more space. Finally, it uses explicit prefetching of batches of keys to increase query throughput.
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Table 3. Overview of approaches using recursive splitting. The base case column gives the technique used
after splitting the input set to small subsets of size ℓ . We also include ShockHash [111, 112] again, even though
it is actually explained in Section 7.1, because it uses recursive splitting to partition the keys.

Approach Year ℓ Base case Seed encoding Fanout
RecSplit [66] 2020 8–16 Brute-force Golomb-Rice Depending on ℓ

SIMDRecSplit [19] 2023 8–18 Rotation fitting Golomb-Rice Depending on ℓ

ShockHash-RS [112] 2023 40–60 ShockHash Golomb-Rice Depending on ℓ

Bip. ShockHash-RS [111] 2023 90–120 Bip. ShockHash Golomb-Rice Depending on ℓ

CONSENSUS-RS [107] 2025 1 None, ℓ = 1 CONSENSUS 2

Bucket 0 Bucket 𝑛/𝑏 − 1

Input keys

...
Figure 5. Illustration of the
overall RecSplit data structure.
Within each bucket, it constructs
a splitting tree. Circular nodes
represent splittings, squares
represent bijections.

7.2 Recursive Splitting
The simple brute-force construction explained at the beginning of this section needs 𝑒𝑛 trials and
therefore is not practical for large 𝑛. The recursive splitting idea introduced in RecSplit [66] enables
space-efficiently reducing the input set into small sets of size ℓ . These are then small enough that
the brute-force construction becomes feasible. The following paragraphs introduce RecSplit, as
well as improvements in later papers. Table 3 gives an overview.

RecSplit. RecSplit [66] uses brute-force in a novel way to enable large key sets with space close to
the lower bound. It first maps all keys to buckets of expected size 𝑏, where 𝑏 is a tuning parameter
usually in the range 100–2000. In each bucket, it then constructs an independent splitting tree, as
illustrated in Figure 5. The splitting tree partitions the keys into smaller and smaller sets until
we arrive at the leaves which have a small configurable size ℓ . At each inner node, RecSplit tries
random hash functions to find one that distributes the keys to the child nodes according to a
splitting strategy. The splitting strategy also decides the fanout (number of child nodes) of the
tree and is optimized for balancing the work between splittings and leaves. The lowest level of
the splitting tree is called leaf level. Each leaf, except for possibly the last, contains exactly ℓ keys.
Usual values for the leaf size are about 8–16 keys. This is small enough that it is feasible to use
the simple brute-force construction. The shape of the splitting tree depends only on the leaf size ℓ
and the total number of keys in the bucket. Therefore, RecSplit does not need to store structural
information of the tree. It is enough to store the seed for each node in DFS order, encoded using
Golomb-Rice codes [81, 148]. The key theoretical observation of RecSplit is that the probability of
finding a MPHF by brute force is the same as the probability of finding splittings and MPHFs for
the leaves of the tree, so the space needed to represent the MPHF does not change with splitting
(modulo small overheads due to approximations), but splitting makes the construction much faster.
Overall, the overhead over the lower bound is constant for each node of the splitting tree.
RecSplit can be queried by traversing the splitting tree from the root to a leaf by applying the

splitting hash functions. During traversal, it accumulates the number of keys stored in children to
the left of the one descended into. The final hash value is then the sum of the value of leaf bijection,
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the number of keys to the left in the splitting tree, and the total size of previous buckets. There are
configurations that need only 1.56 bits per key with reasonable construction time.

SIMDRecSplit and GPURecSplit. SIMDRecSplit [19] enhances RecSplit to use parallelism on mul-
tiple levels to improve the construction throughput. The paper proposes a new technique for
searching for bijections called rotation fitting. Instead of just applying hash functions on the keys
in a leaf directly, rotation fitting splits the keys into two sets using a 1-bit hash function. It then
hashes each of the two sets individually, forming two words where the bits indicate which hash
values are occupied. Then it tries to cyclically rotate the second word, such that the empty output
values left by the first set are filled by the values of the second set. Each rotation essentially gives a
new chance for a bijection [19], so it is a way to quickly evaluate additional hash function seeds
in a bit-parallel way. In addition to bit parallelism, SIMDRecSplit uses parallelism on the level
of words, through SIMD instructions. For this, it tests different hash function seeds or rotations
simultaneously. Finally, it uses multi-threading to construct different buckets in parallel.

GPURecSplit [19] is an implementation of SIMDRecSplit on the GPU. An important observation
here is that all buckets of the same size also lead to splitting trees of the same shape. Therefore,
they can be constructed together using the same set of kernel calls. GPURecSplit then uses CUDA
streams to construct different tree shapes in parallel.

CONSENSUS-RecSplit. Perfect hashing through brute-force often stores the seed for each subtask
individually using a variable-length code like Golomb-Rice [81, 148]. With CONSENSUS [107], each
seed has a fixed number of choices just barely larger than its expected number of choices. If a
subtask runs out of choices without finding a successful seed, CONSENSUS backtracks to a previous
subtask and looks for another successful seed. The key idea making this feasible is that hashing
takes into consideration not just the current seed but the concatenation of all previous seeds. With
this, backtracking gives a completely new chance for a seed to be successful. CONSENSUS needs less
space than storing the seed of each subtask individually, even when assuming an entropy-optimal
coding. CONSENSUS-RecSplit uses RecSplit with a leaf size ℓ = 1which would otherwise be inefficient.
However, it stores the seeds efficiently using CONSENSUS. Both RecSplit and CONSENSUS-RecSplit
can achieve a space consumption of (1 + 𝜀) log2 𝑒 bits per key, arbitrarily close to optimal. However,
while RecSplit has a running time of O

(
𝑛 · 𝑒1/𝜀

)
, CONSENSUS-RecSplit is the first approach to achieve

this in just O(𝑛/𝜀). We refer to Section 9 for details. A practical implementation achieves a space
consumption of just 1.444 bits per key, very close to the lower bound of log2 𝑒 ≈ 1.443 bits per key.

8 Perfect Hashing through Fingerprinting
The idea of perfect hashing through fingerprinting is to assign a small fingerprint to each input
key using a hash function. We then resolve collisions between the fingerprints using recursion
on the colliding keys. An advantage is the very simple and easily parallelizable construction. It is
originally introduced by Chapman et al. [39] in the context of bioinformatics, but not described as
a perfect hashing data structure of general interest. Müller et al. [128] then enhance and describe
the idea from a data structure perspective. Table 4 gives an overview of the development.

FiPHa. Perfect hashing through fingerprinting [128] hashes the 𝑛 keys to 𝛾𝑛 fingerprints using
an ordinary hash function, where 𝛾 is a tuning parameter. A bit vector of length 𝛾𝑛 indicates
fingerprints to which exactly one key was mapped. At query time, when a key is the only one
mapping to its location, a rank operation on the bit vector gives the MPHF value. The bit vector
indicates with a 0-bit that the key was not the only one mapping to that location. In this case, an
additional layer of the same data structure needs to be queried. Figure 6 illustrates this idea. The
most space-efficient choice 𝛾 = 1 leads to a space consumption of 𝑒 bits per key [128], which is
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Table 4. Overview of perfect hashing through fingerprinting.

Approach Year New idea
Meraculous [39] 2011 Original idea
FiPHa [128] 2014 First description as data structure
BBHash [116] 2017 First public implementation
FMPH [16] 2023 Partitioning for faster construction
FMPHGO [16] 2023 Brute-Force trials for fewer levels
FiPS [109] 2024 Sorting for faster construction, interleaved rank data structure
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Figure 6. Illustration of PHFs using fingerprinting. Collisions are handled in the next layer.

quite far from the lower bound of log2 𝑒 bits per key. However, the approach offers fast construction
and queries. Perfect hashing through fingerprinting provides efficient queries when about 4 or
more bits per key are available (using larger values of 𝛾 ). FiPHa was developed in cooperation with
the German company SAP, and the source code is not publicly available.

BBHash. The first publicly available implementation, BBHash [116], iterates over all keys to
count the collisions. Then it iterates over the keys again to write the fingerprint bit vector and to
extract colliding keys. Depending on the size of the bit vector and counter arrays, this causes up to
three random memory accesses per key and level. For parallelization, BBHash uses a large number
of atomic operations in the arrays. While FiPHa already introduces the idea to scale the bit vector
of fingerprints, BBHash makes this more explicit by introducing the 𝛾 parameter that we already
used in the description of FiPHa. Just like FiPHa, BBHash gets most efficient for about 4 bits/key.

FMPH. FMPH [16] is a fast implementation of the idea in the Rust programming language. The
approach still uses the construction algorithmwith two passes. For parallelization, FMPH distributes
the keys to multiple threads and relies on a large number of atomic operations, just like BBHash.
FMPH achieves impressive speedups compared to BBHash, even though it essentially implements
the same algorithm. It offers decent performance starting with about 3 bits/key.

FiPS. FiPS [109] — Fingerprint Perfect hashing through Sorting — is a third implementation of
the approach. In contrast to the approaches above, FiPS focuses on cache locality when filling
the bit vector during construction. It does so by sorting the fingerprints and then determining
collisions by a simple scan. Using integer sorting, the construction takes linear time. This approach
through sorting is already described in the FiPHa paper [128] but without a publicly available
implementation. Using existing sorting libraries, the construction can be parallelized efficiently.
FiPS interleaves the select data structures and the bit vector. More precisely, in each cache line,
FiPS stores both the bit vector indicating fingerprints that did not collide, and the number of bits
set in previous cache lines. Different cache line sizes provide different trade-offs between space
consumption and query performance. FiPS has faster queries than the other approaches based on
fingerprinting while keeping a similar space consumption of about 3–4 bits/key.
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Table 5. Asymptotic construction and query time of different approaches. The variable 𝜀 denotes the space
overhead over the lower bound. While almost all approaches have some tuning parameters, not all make
it possible to get arbitrarily close to the lower bound. With 𝑤 , we denote the size of a machine word. Top:
Brute-force approaches for small sets of size ℓ , assuming ℓ ∈ O(𝑤). Bottom: Approaches for large sets of size
𝑛, assuming ℓ, 𝑏, 𝜆 ∈ O(𝑤) , 𝜀 ∈ 𝜔 (1/

√
𝑛).

Approach Space overhead Construction time Query time

Simple Brute-Force [124] O
( 1
ℓ

)
O
(
𝑒ℓ
)

O(1)
ShockHash [112] O

( 1
ℓ

)
O
(
1.36ℓ

)
O(1)

Bip. ShockHash [111] O
( 1
ℓ

)
O
(
1.17ℓ

)
O(1)

Multiple Choice [25, 79, 110, 162] O(1) O(𝑛) O(1)
Bucket Placement [12, 71, 94, 141, 142] O

( 1
𝜆

)
O
(
𝑛 𝑒𝜆

𝜆

)
O(1)

Recursive Splitting [19, 66]
+ any brute-force base case O

(
1
ℓ
+ log𝑏

𝑏

)
𝑛(𝑒O(ℓ ) + poly(𝑏)) O

(
log 𝑏

ℓ

)
CONSENSUS-RecSplit [107] O(𝜀) O

(
𝑛
𝜀

)
O
(
log 1

𝜀

)
Fingerprinting [16, 39, 109, 116, 128] O(1) O(𝑛) O(1)
Hagerup and Tholey [89] O

(
(log log𝑛)2

log𝑛

)
O(𝑛) O(1)

FMPHGO. FMPH with group optimization (FMPHGO) [16] is a new spin on the fingerprinting
idea, combining it with a few brute-force tries. The idea is to hash the keys to buckets like in FCH
or CHD. FMPHGO then tries a (small) number of different hash functions for each bucket and
invests additional space to store which hash function should be used. It selects the hash function
that causes the least collisions in the fingerprint array. Overall, this reduces the number of required
layers and the required space. Compared to FMPH, FMPHGO reduces the storage space by up to
0.7 bits/key, while the query performance stays mostly the same.

9 Asymptotic Performance
In this section, we discuss the asymptotic space consumption, construction time, and query time of
different families of approaches. This includes how the configuration parameters can be tuned to
achieve a space consumption that asymptotically approaches the lower bound.

We say a perfect hash function has space overhead 𝜀 if it uses (1 + 𝜀)𝑛 log2 𝑒 + 𝑜 (𝑛) bits of space
(see Section 1). It is called succinct if 𝜀 ∈ 𝑜 (1). Many of the approaches we describe in this survey
admit succinct configurations, such as PTHash [141, 142], PHOBIC [94], RecSplit [19, 66], and
ShockHash [111, 112]. Here, we go one step further and discuss the 𝑜 (1) term in more detail. We
are specifically interested in approaches with tuning parameters that can bring 𝜀 arbitrarily close
to 0 without the construction or query time increasing too much. In contrast, earlier papers mostly
model the tuning parameters as constants. In Table 5, we give an overview of the asymptotic
construction time depending on the parameters. Note that all approaches can trivially get linear
time construction through partitioning (see Section 3.1). However, the partitions introduce some
space overhead. If we want to get arbitrarily close to the lower bound, we might have to select
larger partition sizes, leading to construction and query times that depend on the parameter. We
only use partitioning where used in the original paper. We start with brute-force approaches that
are only suitable for small input sets of size ℓ .

Simple Brute-Force. The simple brute-force technique (see Section 7) takes time O
(
𝑒ℓ
)
to construct.

The technique reaches the space lower bound but encoding the result loses a constant number
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of bits. Therefore, in order to decrease the space overhead, we have to increase ℓ . Queries take
constant time assuming that the seed of ≈ ℓ log2 𝑒 bits fits into a machine word of size𝑤 .

ShockHash. ShockHash [112] (see Section 6.2) is a hybrid between brute-force and multiple choice
hashing. Like brute-force, its construction time is exponential in ℓ , however with a much smaller
base. Bipartite ShockHash [111] reduces the base even further. Queries of ShockHash access a seed
of ≈ ℓ (log2 (𝑒) − 1) bits and a 1-bit retrieval data structure. Both operations take constant time,
assuming ℓ ∈ O(𝑤). While ShockHash uses the BuRR [61] retrieval data structure (see Section 3.2)
in practice, we use a different construction [60] here because its space overhead shrinks more
quickly. In the following, we now consider techniques for larger input sets.

Multiple Choice Hashing. Multiple choice hashing (see Section 6.2) needs a constant number of
bits/key due to storing the index of the choice. Using a smart choice of hash function indices we
can bring this down to 1.83 bits/key [162]. However, no matter how we tune the number of choices
for each key, classical multiple choice hashing does not reach the lower bound of log2 𝑒 bits/key.

Bucket Placement. PHOBIC [94] shows that perfect hashing through bucket placement (see
Section 7.1) achieves a space consumption of log2 (𝑒) + O(log(𝜆)/𝜆) bits per key. Therefore, by
selecting large average bucket sizes 𝜆, we can get arbitrarily close to the optimal space consumption.
The construction time stays linear in 𝑛, but it increases exponentially in 𝜆. Depending on the bucket
assignment function and the order in which the buckets are placed, it is possible to achieve a
construction time of O

(
𝑛𝑒𝜆/𝜆

)
. The query time is constant. Note that PtrHash [87] uses fixed size

seeds for improved query time in practice, which makes it not succinct.

Recursive Splitting. Each split in RecSplit’s splitting tree loses a constant number of bits [66].
The original implementation uses the simple brute-force technique as its base case in each leaf.
Then, the space overhead in each leaf of size ℓ is in O(1/ℓ). For buckets of size 𝑏, storing the
prefix sum of bucket sizes causes an additional overhead of O(log(𝑏)/𝑏) bits. Queries traverse the
splitting tree, which takes at least time O(log(𝑏/ℓ)), and then evaluate the base case in constant
time. Note that this assumes ℓ, 𝑏 ∈ O(𝑤). Constructing the splittings takes polynomial time in
the bucket size, in addition to the base case construction. Note that now ℓ is a tuning parameter.
This means that for any constant factor 𝛼 , we get a space overhead of O(𝛼/ℓ) = O(1/ℓ). However,
the construction time of the base case is O

(
𝑒𝛼ℓ

)
= O

(
(𝑒𝛼 )ℓ

)
. Therefore, any exponential base case

(such as ShockHash) only gives a constant factor of space improvement when included in RecSplit.

CONSENSUS-RecSplit. Bucketed CONSENSUS-RecSplit [107] is currently the only known approach
where the construction time increases linearly in the inverse of the space overhead. This is because
its space consumption is not influenced by an exponential-time base case. Through buckets of size
O(1/𝜀), it achieves a query time of O(log(1/𝜀)). Consider the approaches using the parameter ℓ
(or 𝜆). Assume the word size is𝑤 , e.g.,𝑤 ∈ Θ(log𝑛). If we wanted to reduce the space overhead to
𝑜 (1/𝑤) by using ℓ ∈ 𝜔 (𝑤), then not only would the construction time become a problem (after all,
it is exponential in ℓ), but the seed values of Θ(ℓ) bits would also no longer fit the word size. This
means that the query time would start to increase linearly in ℓ . CONSENSUS-RecSplit is currently
the only approach for which this is not the case.

Fingerprinting. The fingerprint based approaches (see Section 8) have a tuning parameter 𝛾 that
influences the space consumption. However, when selecting the smallest possible value of 𝛾 = 1,
we get a space consumption of 𝑒 bits per key, quite far from the lower bound of log2 𝑒 bits per key.
FMPHGO [16] introduces the idea of group optimization to improve the space consumption of
fingerprinting. In a hypothetical case where we would encode the group seeds with variable length
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and retry until there are no collisions, we get perfect hashing through bucket placement. FMPHGO
can therefore interpolate between Fingerprinting and bucket placement.

Hagerup and Tholey. Finally, we look at a purely theoretical result that is not included in the
main part of the survey. Hagerup and Tholey [89] first reduce the range of input universe to [𝑛3] by
repeatedly taking the keys modulo a prime number. Then they hash the input to small sets of size
O(log𝑛/log log𝑛). For each possible small input set, they use brute-force to determine a minimal
perfect hash function. Then they map each actual small set to one of the pre-computed MPHFs using
a lookup table. Overall, Hagerup and Tholey achieve linear construction time, constant query time,
and space 1+𝑜 (1) times the lower bound. More precisely, the space overhead isO

(
(log log𝑛)2/log𝑛

)
and therefore only depends on 𝑛. This means that in order to reduce the overhead, we have to
increase the input size. In contrast, other approaches have a tuning parameter that can control the
space overhead independently of 𝑛. Note that even for 𝑛 = 2256 we have (log log𝑛)2/log𝑛 > 1, so
the overhead is large even for astronomic sizes of 𝑛. The approach has never been implemented
(and is, in fact, not properly defined for 𝑛 < 2150 [26]).

10 Evaluation
In this section, we compare the performance of the different state-of-the-art perfect hash function
constructions. Our detailed measurements can help to pick the most fitting perfect hash function
for any given application. For this comparison, we look at the three most important parameters for
minimal perfect hash functions: space consumption, construction time, and query time.

Experimental Setup. We run most of our experiments on an Intel i7 11700 processor with 8 cores
(16 hardware threads) and a base clock speed of 2.5 GHz, supporting AVX-512. The machine runs
Rocky Linux 9.5 with Linux 5.14.0. The sizes of the L1 and L2 data caches are 48 KiB and 512 KiB
per core, and the L3 cache has a size of 16 MiB. We use the GNU C++ compiler version 14.2.0 with
optimization flags -O3 -march=native and Rust 1.85.0 with release mode and target-cpu=native.
We also give experiments on an ARM processor in Appendix D. Many of the implementations we
evaluate are actively maintained and get updated with performance improvements. Our measure-
ments refer to their state from April 1st, 2025. As input data, we use strings of uniform random
length in the range [10..50] containing random characters except for the zero byte. This is because
essentially all approaches support string inputs. Note that, as a first step, almost all competitors
generate an initial hash of each key using a high quality hash function. This makes the remaining
computation largely independent of the input distribution. The code and scripts needed to repro-
duce our experiments are available on GitHub under the General Public License [108]. In total, we
measure 5608 data points with a cumulative duration of more than 18 days.

Dominance Maps. Visual plots give a good understanding of the trade-offs between different
perfect hash functions, especially if each approach has a wide number of configurations. In order
to print all three main parameters — space consumption, construction performance, and query
performance — on paper, we use a type of plot that we call dominance map [61, 109]. We start with
a 2D projection and then color each point based on the best competitor along the third dimension.
This therefore provides a “front view” of the Pareto space. Pareto optimal points are the points that
are not dominated in all three dimensions simultaneously. This results in a cleaner plot because it
does not include data points for dominated approaches. When having a specific time and/or space
budget, dominance maps show the fastest approach given that restriction.

Overview. We start our evaluation with Pareto fronts and dominance maps containing a wide
range of configurations for each competitor. In Sections 10.1 and 10.2 we focus on the construction
time trade-off and the query time trade-off. From these configurations, we then pick representative
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ones for each approach in Appendix B. We then look at how the approaches scale in the input size
in Section 10.3 and in the number of threads in Section 10.4.

10.1 Construction Trade-Off
We start our comparison by looking at the single-threaded construction time. Figure 7 gives both
a Pareto front showing all approaches, and the dominance map described above. The dominance
map plots the space consumption and the construction throughput on the axes, and colors each
point with the approach that has the fastest queries. For example, with a space consumption of 2.5
bits per key, SIMDRecSplit [19] has the fastest construction. However, by sacrificing just a little bit
of construction performance by looking further down, we see that we can get the faster queries of
PtrHash. Because some approaches are focused on very small space consumption, we additionally
give a plot that uses logarithmic 𝑥- and𝑦-axes. In the following, we look at the different perfect hash
function constructions in more detail. We focus on the construction time but also briefly mention
the query time from the dominance maps. For details on query time, we refer to Section 10.2.

Multiple Choice Hashing. SicHash [110] is up to two times faster to construct than PTHash [141]
and PHOBIC [94], up to a space consumption of about 2 bits per key. However, like most other
approaches, its construction throughput stays quite far below SIMDRecSplit. Even though BPZ [26]
is a lot older than the other approaches, it still holds up in terms of construction time. However, the
dominance map shows that newer approaches cover it completely with a better trade-off. Looking
at even more space-efficient approaches, mainly variants of ShockHash [112] achieve below 1.55
bits per key (0.1 bits per key overhead). Especially the logarithmic plot shows how ShockHash and
bipartite ShockHash improve the space consumption significantly. Bipartite ShockHash-Flat [111]
trades larger space consumption and slower construction for better query speed. MorphisHash [93],
as an enhancement to ShockHash, offers similar construction time but has lower space consumption.
Because its queries are slightly faster due to the integrated retrieval data structure, it mostly covers
ShockHash in the dominance maps.

Bucket Placement. PTHash [141] and CHD [12] have a similar trade-off between construction time
and space consumption. PHOBIC [94] improves the space consumption of PTHash. The construction
time of FCH [71] is rather far from the other approaches. The construction of PtrHash [87], an
extension of PTHash and PHOBIC, is consistently faster than the other approaches based on
bucket placement. Because of its fast queries that we will look at in Section 10.2, it fills most of the
dominance map about space and construction time. Because PtrHash covers such a large range of
configurations, it is a good initial choice when space is not the limiting factor.

Recursive Splitting. RecSplit [66] is a construction that achieved a significant step towards the
space lower bound at the time of its publication. Today, it is mostly dominated by the SIMD-
parallel implementation. Just like RecSplit, SIMDRecSplit [19] is originally designed for small space
consumption. We make the surprising observation that SIMDRecSplit not only wins for the most
space-efficient configurations, but also dominates the construction time of most other approaches
even for less space-efficient cases. However, being based on the splitting tree of RecSplit, it has
quite slow queries, so in the dominance map, it only appears in areas that no other approaches
can reach. CONSENSUS-RS [107] needs the smallest amount of space. As visible in the logarithmic
versions of the plots, it significantly outperforms previous approaches in terms of space efficiency.

Fingerprinting. The goal of perfect hashing through fingerprinting [128] is to offer efficient
queries and fast construction at the cost of larger space consumption. BBHash [116] is dominated
by more recent implementations. FMPH [16] achieves almost twice the construction throughput and
lower minimal space consumption but it only reaches the performance of SIMDRecSplit for large
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Bucket Placement Fingerprinting Multiple Choice Recursive Splitting
FCH [71] BBHash [116] BPZ [26] RecSplit [66]
CHD [12] FMPH [16] SicHash [110] SIMDRecSplit [19]
PTHash [141] FMPHGO [16] ShockHash-RS [112] CONSENSUS-RecSplit [107]
PHOBIC [94] FiPS [109] Bip. ShockH-Flat [111]
PtrHash [87] Bip. ShockH-RS [111]

MorphisHash-Flat [93]
MorphisHash-RS [93]
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Figure 7. Trade-off construction time, query time, and space consumption. Single-threaded, 𝑛 = 100 million
keys. For some approaches, we only show every fourth marker to increase readability. The 𝑥-axis on the left
is logarithmic to the space lower bound, so an overhead of 0 bits would correspond to −∞.
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space consumption. It is written in Rust and opens up perfect hashing to a rather new ecosystem.
FMPHGO [16] reduces the space consumption of FMPH but also has a much slower construction. Its
construction performance is similar to SicHash but has slower queries. Finally, FiPS [109] achieves a
similar space consumption as FMPH but is much faster to construct. FiPS outperforms SIMDRecSplit
for a space consumption of more than 3 bits per key. However, at a similar space consumption,
PtrHash offers faster queries, so it still fills most of the dominance maps.

10.2 Query Trade-Off
We now discuss the approaches again, this time focusing on the query time. Figure 7 also includes
a Pareto front and a dominance map for the query times. The dominance map plots the space
consumption and the query throughput on the axes, and colors each point with the approach that
has the fastest construction.

Multiple Choice Hashing. ShockHash-RS [112] and bipartite ShockHash-RS [111] use the RecSplit
splitting tree but need an additional access to a retrieval data structure. However, their query
performance is still very close to RecSplit. The reason is that they have fewer tree layers to traverse.
It shows that the overhead of the retrieval operation is small compared to the work for traversing
the heavily compressed tree. Bipartite ShockHash-Flat [111] is a variant focused on faster queries.
For this, it sacrifices some of the space consumption of bipartite ShockHash-RS. For the same
space consumption, it achieves 30% faster queries, which brings the query performance of very
space-efficient MPHFs much closer to competitors that are not focused on space consumption. For
both ShockHash variants, MorphisHash [93] uses a more cache-efficient retrieval data structure.
However, the difference in terms of query performance is almost negligible. SicHash [110] provides
a middle ground between construction and query performance. Compared to SIMDRecSplit, it has
much faster queries. Compared to PTHash and PHOBIC, SicHash focuses a bit more on construction
performance. Compared to PtrHash, SicHash can achieve lower space.

Bucket Placement. PHOBIC [94] improves the space consumption of PTHash [141] without
sacrificing query performance. Given that it is also faster to construct, it is almost always the
preferred approach over PTHash. However, PtrHash [87] is, by far, the clear winner in terms of
query performance. It is almost three times faster than most other competitors, and only PTHash
and PHOBIC get close. At the same time, PtrHash achieves a solid space consumption. Because
PtrHash does not get smaller than 2.2 bits/key due to its fixed-width encoding, we can still see
PHOBIC on the dominance map with its slightly slower queries. CHD [12] is much slower to query,
mostly due to decoding variable-length seeds. FCH [71] has fast queries, but needs a lot of space.

Recursive Splitting. RecSplit [66] and SIMDRecSplit [19] are slow to query because they have to
traverse the splitting tree, decoding variable-bitlength data in each step. However, even though
the operations are much more complex, the performance is still solid and not too far away from
BBHash and FMPH. When caring less about query performance, SIMDRecSplit can be a good
choice because of its very fast construction. This is why it fills the base of the dominance map. For
extremely small space consumption, CONSENSUS-RS is the only competitor, so it fills a large area of
the dominance maps. Its query performance is similar to SIMDRecSplit.

Fingerprinting. Perfect hashing through fingerprinting [128] is originally designed to offer fast
queries. Of the different implementations, FiPS offers the best query throughput, being faster than
BBHash [116] and FMPH [16]. However, it is still far away from PtrHash. This holds even for a
rather large space consumption of 3.5 bits per key (𝛾 = 2), where about 73% of the keys can be
handled in the first recursion layer. This indicates that the rank operation is rather costly, even
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when the rank data structure is interleaved with the bit vector. FMPHGO [16] achieves a smaller
space consumption than the other fingerprinting approaches through some brute-force retries.

10.3 Scaling in the Input Size
We now look at the construction and query performance of different perfect hash functions,
depending on the number of input keys 𝑛. The goal is usually to have linear construction time. To
achieve this, it is always possible to partition the input to smaller MPHFs. However, partitioning
comes with a performance penalty, both during construction and query. Figure 8 starts at rather
small input sets of 1 million keys and goes all the way up to 200 million. In case partitions have
to be used (e.g., for a parallel implementation), the plot can be used to decide on a partition size.
For each approach, we use a configuration that is typical for it. Therefore, all competitors have
a different space consumption and construction time to avoid using unfair configurations that
approaches are not designed for. Due to the different space consumption, we give different plots
for different space consumption. Refer to Appendix B to see the exact configurations we use.

Construction. Figure 8 shows how the construction throughput scales in the number of input
keys 𝑛. PTHash [141], CHD [12], BBHash [116], BPZ [26], FMPH [16], and FMPHGO [16] are
influenced more strongly by the input size. For PTHash and CHD, which are both based on bucket
placement, this can be explained by the fact that bucket placement without optimized bucket
sizes [94] inherently has a non-linear construction time. Additionally, the larger bit vectors to
detect collisions cause more cache faults. PHOBIC [94] uses partitioning internally and optimizes
the bucket sizes, so it has linear scaling in 𝑛. For the approaches based on fingerprinting, namely
BBHash, FMPH, and FMPHGO, the slowdown can be explained by the random accesses to the
large bit vector. FiPS avoids these cache inefficient access patterns through the use of sorting.
Even though it uses perfect hashing through fingerprinting as well, it scales a lot more close to
linear. SicHash appears to have a large startup overhead and becomes relatively faster to construct
with more keys. The remaining approaches (CONSENSUS, ShockHash, MorphisHash, PtrHash) scale
almost linearly in 𝑛.

Queries. The query throughput of all approaches in Figure 8 drops when increasing the input
size 𝑛. This is expected because the data structures get larger and do not fit in cache. In general,
all approaches perform pretty well regarding their query time. For techniques below 2.5 bits/key,
PTHash [141] and PHOBIC [94] remain the approaches with the fastest queries for the entire
range of input sizes. However, SicHash [110] comes close to them for large 𝑛, while having a more
favorable trade-off between space consumption and construction throughput. When more space
is allowed, PtrHash wins by a wide margin. However, its query performance drops significantly
when passing 5 · 107 keys. This can be explained by the fact that PtrHash queries are close to
the RAM throughput. This directly shows the data structure becoming larger than the cache,
even though PtrHash has still by far the fastest queries. RecSplit based approaches (RecSplit [66],
SIMDRecSplit [19], ShockHash-RS [111, 112], MorphisHash [93], CONSENSUS-RS [107]) have much
slower queries for the entire range of input sizes but offer faster construction. Over a large range
of input sizes, their query performance has a very small slope. This indicates that they are more
limited by the computation than memory access.

10.4 Multi-Threaded Construction
Modern processors have many cores available, and testing single-threaded code leaves a lot of
processing power unused. Additionally, most data structures like perfect hash functions are not
used in isolation in actual applications. There are always other processes running on the machines.
Performing multi-threaded measurements can, to a certain extent, account for this. Note that
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Bucket Placement Fingerprinting Multiple Choice Recursive Splitting
FCH [71] BBHash [116] BPZ [26] RecSplit [66]
CHD [12] FMPH [16] SicHash [110] SIMDRecSplit [19]
PTHash [141] FMPHGO [16] ShockHash-RS [112] CONSENSUS-RecSplit [107]
PHOBIC [94] FiPS [109] Bip. ShockH-Flat [111]
PtrHash [87] Bip. ShockH-RS [111]
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MorphisHash-RS [93]
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Figure 8. Comparison of construction and query performance by number of input keys 𝑛. Note that each
approach has configuration parameters giving a wide trade-off between space, construction performance,
and query performance. For the configurations used here, we refer to Appendix B.
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perfect hashing can be parallelized trivially by partitioning, which many approaches use. For
these approaches, a major factor to their multi-threaded scaling is how efficiently they implement
their partitioning step. This makes it less interesting algorithmically and causes a bias in the
measurements. We still give multi-threaded measurements because they are very relevant in
applications. Additionally, because there are fewer memory channels than threads, the cache
locality of approaches is important in parallel measurements.

As a reminder, the Intel processor we run most experiments on has 8 cores (16 hardware threads
(HT)) and supports AVX512. In this section, we additionally use a machine with an AMD EPYC
7702P processor with 64 cores (128 hardware threads) and a base clock speed of 2.0 GHz. The
machine runs Rocky Linux 9.5 with Linux 5.14.0 and supports AVX2. Our 8-core Intel machine has
2 memory channels and our 64-core AMD machine has 8 memory channels. In Figure 9, we give
parallel measurements on the two machines using both weak scaling and strong scaling. With weak
scaling, the number of keys per thread are constant at 10 million, so the total input size increases
gradually up to a total of 1.28 billion using 128 threads. With strong scaling, the total number
of input keys is 100 million and stays the same. For perfect hashing, strong scaling might be the
more important approach, trying to construct a certain perfect hash function as quickly as possible.
However, with strong scaling there might be more threads than it is actually useful. Weak scaling
ensures that each thread always has enough work to do. Like before, we use the configurations
listed in Appendix B. As such, the absolute construction times are very different, so we only plot
self-speedups. In the following, we first describe approaches with a direct parallelization before
looking at the approaches using partitioning.

Direct Parallelization. Some approaches use a parallel implementation of their internal data
structures. An advantage of this technique compared to an external layer of partitioning is that
it is transparent to the queries. Unfortunately, this generally does not seem to work well for the
approaches that do it. We see that BBHash [116] and PTHash [142] only achieve a speedup of
around 2 when running on 16 threads. We will later see that PTHash works better with partitioning
(i.e., with the approach called PTHash-HEM). Interestingly, even though FMPH [16] also performs
a direct parallelization with atomic operations, it scales quite well. FMPHGO [16] uses a direct
parallelization as well, even though it could use internal partitioning [16]. Its authors find that the
small performance gain is not worth the complexity.

Internal Partitioning. Some of the approaches internally partition the input anyway, so in essence
they get their parallelization for free. SIMDRecSplit scales better than PTHash-HEM on the 64-core
AMD machine. Note that the scaling behavior of SIMDRecSplit varies strongly depending on
the configuration parameters [19]. The less space-efficient configurations that it is not actually
designed for scale less well because more time is spent partitioning keys to a large number of
buckets. PHOBIC [94] needs internal partitioning for its interleaved coding. It scales well with
strong scaling and weak scaling, which we attribute to a well implemented partitioning step. In
general, PHOBIC profits most from hyperthreading, possibly due to fast partitioning and very
cache-local construction. PtrHash [87] scales well but does not profit from hyperthreading.

External Partitioning. Most other approaches parallelize by adding an additional layer of parti-
tioning, which introduces small query and construction time overheads. PTHash-HEM [142] scales
well on the 8-core Intel machine. SicHash [110] could theoretically use internal partitioning. How-
ever, the majority of its construction time is spent constructing the BuRR retrieval data structures
covering all internal partitions. While a parallel construction if BuRR is available now [7], it was
not available when SicHash was presented. It therefore uses an external partitioning step.
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Bucket Placement Fingerprinting Multiple Choice Recursive Splitting
PTHash [141] BBHash [116] SicHash [110] SIMDRecSplit [19]
PTHash-HEM [142] FMPH [16] Bip. ShockH-RS [111]
PHOBIC [94] FMPHGO [16] MorphisHash-RS [93]
PtrHash [87]

4 8 12 16
0

5

10 HT

Threads

Sp
ee
du

p

(a) Strong scaling on the 8-core Intel machine.

4 8 12 16
0

5

10 HT

Threads
Sp

ee
du

p

(b) Weak scaling on the 8-core Intel machine.

0 16 32 48 64 80 96 112 128
0

20

40

60 HT

Threads

Sp
ee
du

p

(c) Strong scaling on the 64-core AMD machine.

0 16 32 48 64 80 96 112 128
0

20

40

60 HT

Threads

Sp
ee
du

p

(d) Weak scaling on the 64-core AMD machine.

Figure 9. Multi-threaded construction by number of threads. Weak scaling with 10 million keys per thread,
strong scaling with 100 million keys. We give self-speedups because each approach has a different focus.

GPU Parallelization. Even though this is not the focus of this evaluation, we mention two
GPU parallel constructions. PHOBIC-GPU [94] and GPURecSplit [19] are, to our knowledge, the
only perfect hash functions with a GPU construction. Both approaches achieve a similar peak
construction throughput of about 70 million keys per second on an Nvidia RTX 3090 GPU. In a
reasonable construction time, PHOBIC-GPU can achieve a space consumption of about 1.7 bits per
key, while GPURecSplit can achieve about 1.5 bits per key. The respective query implementations
are identical to the CPU versions and can only be used on the CPU, so our measurements from
Section 10.2 show that PHOBIC is much faster to query. Refer to the PHOBIC paper [94] for details.

11 Conclusion
In this paper, we surveyed state-of-the-art perfect hash function constructions. We categorized
them by their working principles into approaches based on retrieval, brute-force, and fingerprinting.
Historically, retrieval based methods performed the jump from logarithmic to constant number
of bits per key. For this, they tuned the number of choices per key, the retrieval data structure,
load factor, and search techniques. However, right now, purely retrieval-based methods cannot get
below around 2 bits per key. With ShockHash and its variants, the lower bound can be reached
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by combining it with brute-force. In the area of perfect hashing through fingerprinting, we saw
several different implementations. These do not use major new algorithmic ideas, but still achieve
major speedups over the older approaches. For approaches based on brute-force, PTHash combines
the ideas from FCH and CHD to achieve fast queries with good space consumption. PHOBIC then
optimizes this approach by determining an optimal bucket assignment function. PtrHash is a variant
of PHOBIC radically optimized for query speed, because of which it dominates a wide range of
the trade-off. Finally, we looked at the more space-efficient approaches. The simple brute-force
construction is made practical through the development of RecSplit, which is the first approach
that goes a significant step towards the space lower bound. SIMDRecSplit and ShockHash then
tune this to search in a much more structured way. They finally get beaten again by less structured
brute-force again using CONSENSUS, which achieves extremely small space consumption.

Evaluation. After explaining the approaches, we performed and discussed a wide range of
benchmarks. We gave plots illustrating the Pareto front of the entire trade-off between construction
throughput, query throughput, and space consumption. In essence, hash function construction
through fingerprinting focuses on fast construction and queries, at the cost of less space-efficient
representation. FiPS is a fast implementation of the approach. The brute-force approaches focus
on showing what is possible in terms of storage space, but sacrifice on construction and query
performance. The most space-efficient approach is CONSENSUS. Regarding query time, PtrHash
offers the best performance by optimizing PHOBIC. In general, over the past few years, perfect
hashing has seen a large number of algorithmic improvements, leading to massive speedups and
enabling larger and larger input sets.

Future Work. It is reasonable to assume that approaches that are more space-efficient are also
slower to construct. Future work will likely give additional trade-offs and achieve even smaller
space consumption. Part of this might also be enabled by additional GPU accelerated constructions.
Current approaches have the tendency that the most space-efficient approaches are slower to
query. There is no reason to think that this is a fundamental limitation, especially since smaller
data structures should be more cache-efficient. We believe that in the future, it will be possible to
construct MPHFs that are very close to the space lower bound, while still achieving fast queries.
An open problem is dynamic perfect hashing with small space consumption where we can add
and remove keys without having to re-generate the function. Given the large progress over the 28
years since the last survey, we are excited for the breakthroughs that the next decades might bring.
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Appendix

A Variants
There are several variants of perfect hashing, using a different set of techniques to solve, so we
only mention them here but do not go into detail. We give an illustration in Figure 10. A 𝑘-perfect
hash function is a generalization of perfect hashing where each output value allows for at most 𝑘
collisions. Minimal 𝑘-perfect hashing has a space lower bound of about 𝑛(log2 (𝑒) + log2 (𝑘!/𝑘𝑘 )/𝑘)
bits [12, 118]. A similar bound for non-minimal 𝑘-perfect hashing is not known [12].
An order-preserving MPHF maps an arbitrarily ordered list of keys to their position in the

list [70]. The name is somewhat misleading as “order” usually implies an order on the universe
(e.g., lexicographical order for strings). This comes with an expected space consumption of at least
log2 (𝑛!)/𝑛 ≈ log2 𝑛− log2 𝑒 bits per key because it needs to differentiate between all 𝑛! permutations
of the set. It is simple to get within 𝑛 log2 𝑒 of this bound by constructing an MPHF and using it to
index a packed array of explicitly stored positions. We can get almost optimal space consumption
by storing the positions in a retrieval data structure, which we explain in Section 3.2.
A monotone MPHF (MMPHF) [9] preserves an intrinsic order of the keys implied by an order

on the universe. For example, with a set of strings, the lexicographically first string would have
the hash value 0, and so on. In other words, an MMPHF can answer rank queries on the input set,
but without storing the set, and giving undefined results for keys not in the set. Relying on the
natural order makes MMPHFs much more space-efficient than order-preserving minimal perfect
hash functions. There are constructions using as few as O(log log log𝑢) bits per key [9] and this
bound was recently proven to be worst-case optimal under the mild assumption 𝑛1+1/

√
log𝑛 ≤ 𝑢 ≤

exp(exp(poly(𝑛))) [6, 105]. Depending on the input distribution, learned MMPHFs can get below
these worst-case lower bounds [69]. We refer to [11] for a survey on monotone MPHFs.

Finally, there has been work on dynamic perfect hashing where the key set can be changed while
still avoiding collisions [127]. If the key set is still available, one can also try to avoid collisions as
much as possible and then rebuild the function if the keys change too much [117]. Despite the name
“dynamic perfect hashing”, Dietzfelbinger et al. [53] actually explain a dynamic set data structure
and not a space-efficient perfect hash function. In this survey, however, we only consider the static
case.
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Figure 10. Illustrations of different variants of perfect hashing.
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B Selected Configurations
While the Pareto fronts give a good overall picture, they do not provide a guide on how to select
the configuration parameters. In Table 6, we take the two most promising configurations of each
competitor from the Pareto fronts. We give their construction time, query time, and space con-
sumption. The table therefore suggests configurations that we recommend for use in an application.
We use the configurations marked with the ∗ symbol for our evaluations in Sections 10.3 and 10.4.
In Appendix C, we give the table for just 10 000 input keys to illustrate the lower order terms.
We start with approaches based on multiple-choice hashing. SicHash is faster than BPZ in

construction and queries, while also achieving better space consumption. ShockHash-RS is then
able to achieve 1.52 bits per key, reducing the gap to the space lower bound of ≈ 1.443 bits per
key by about 30%. Finally, bipartite ShockHash-RS reduces the space consumption to just 1.489
bits per key, which is within 3.3% of the lower bound with practically feasible construction time.
Using a single CPU thread, bipartite ShockHash-RS achieves a space consumption better than what
was previously only achieved using thousands of threads on a GPU [19]. Using the same space
consumption, MorphisHash improves the ShockHash construction time by 50%–100%.

We next look at the approaches based on bucket placement. The partitioned implementation of
PTHash, PTHash-HEM, has the same construction time and space consumption when run on a
single thread. However, its queries are about 10% slower. Even though PHOBIC uses partitioning
as well, with compact coding it loses less query time compared to PTHash. By using Golomb-Rice
coding instead of Elias-Fano coding, PHOBIC improves the query times of PTHash. FCH and CHD
are classical approaches that cannot directly compete with more recent constructions — FCH is
slower to construct and CHD is slower to query. PtrHash offers, by far, the fastest queries in the
table. At the same time, it has very fast construction and decent space consumption. This makes
PtrHash a good choice optimizing the overall trade-off.
We now give a selection of configurations using tree-based search. Comparing different ap-

proaches where each is given about half an hour of construction time, RecSplit is able to produce
a perfect hash function with 1.58 bits per key. RecSplit starts a chain of approaches that further
reduce the space consumption. SIMDRecSplit improves the space consumption to 1.56 bits per key.
Then ShockHash goes down to 1.489 and finally CONSENSUS achieves 1.444 bits per key.

For perfect hashing through fingerprinting, we give 𝛾 = 1.5 and 𝛾 = 5.0 for all competitors.
FMPH achieves the best space consumption among those. FiPS, with its interleaved rank data
structure, needs about 0.1 bits per key more space for the smaller configuration. BBHash needs an
additional 0.17 bits per key. Looking at the construction time and query time, the same configuration
with FMPH is consistently faster to construct and query. This is partially due to its updated
implementation compared to the original paper. Through a small number of retries, FMPHGO
achieves much lower space consumption but also much slower construction.

C Experiments with Smaller Input Sets
Table 7 gives the overview table from Table 6 with a smaller input set of just 10 000 keys. This can
help to get a feeling for the lower order terms involved in the space consumption and construction
time. Additionally, it gives details on the query performance when the entire data structure fits into
the cache. For most competitors, the space consumption stays almost the same. The only exception
is PHOBIC [94], which needs significantly more space. This is caused by its interleaved coding
of seeds, which stores a dedicated encoder for each bucket in all partitions. Using just about 4
partitions with the small input set then has considerable space overhead. This can be avoided by
selecting a different encoding. Even if the entire data structure fits into the cache, PtrHash [87]
keeps by far the fastest queries.
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Table 6. Selected configurations for all competitors. Measurements are all single-threaded and for 𝑛 =

100 million keys. We use the configurations marked with ∗ in Sections 10.3 and 10.4.

Approach Configuration Space Construction Query
bits/key ns/key ns/query

Bu
ck
et

Pl
ac
em

en
t

FCH 𝑐=7.0∗ 7.000 1 191 43
𝑐=3.0 3.000 22 120 40

CHD 𝜆=4∗ 2.166 656 186
𝜆=6 2.007 8 047 195

PTHash 𝜆=4.0, 𝛼=0.99, C-C 3.192 261 33
𝜆=6.0, 𝛼=0.95, EF∗ 2.100 618 49

PTHash-HEM 𝜆=4.0, 𝛼=0.99, C-C 3.192 267 37
𝜆=6.0, 𝛼=0.95, EF∗ 2.100 607 53

PHOBIC 𝜆=4.0, 𝛼=1.0, IC, C 3.109 204 36
𝜆=6.0, 𝛼=1.0, IC, Rice∗ 1.888 635 48

PtrHash 𝜆=3.0, linear, vec∗ 3.051 12 21
𝜆=4.0, cubic, EF 2.142 21 22

Fi
ng

er
pr
in
tin

g

BBHash 𝛾=5.0∗ 6.870 78 61
𝛾=1.5 3.292 167 93

FMPH 𝛾=5.0∗ 6.297 11 45
𝛾=1.5 3.013 14 67

FMPHGO 𝛾=5.0, 𝑠=4, 𝑏=16∗ 6.426 84 45
𝛾=1.5, 𝑠=4, 𝑏=16 2.435 78 55

FiPS 𝛾=5.0∗ 6.980 35 46
𝛾=1.5 3.119 51 69

M
ul
tip

le
Ch

oi
ce

BPZ 𝑐=1.25, 𝑏=3∗ 7.500 315 136
𝑐=1.25, 𝑏=6 3.125 314 141

SicHash 𝛼=0.95, 𝑝1=37, 𝑝2=44∗ 2.198 140 63
𝛼=0.97, 𝑝1=45, 𝑝2=31 2.080 172 61

ShockHash-RS ℓ=40, 𝑏=2000∗ 1.551 1 850 141
ℓ=55, 𝑏=2000 1.526 47 636 138

Bip. ShockHash-RS ℓ=64, 𝑏=2000∗ 1.525 5 695 148
ℓ=128, 𝑏=2000 1.489 172 738 131

Bip. ShockHash-Flat ℓ=64∗ 1.618 998 82
ℓ=100 1.547 9 158 79

MorphisHash ℓ=40, 𝑏=2000, 𝛽=ℓ-4 1.522 4 695 143
ℓ=64, 𝑏=2000, 𝛽=ℓ-4∗ 1.489 8 085 139

MorphisHash-Flat ℓ=60, 𝑒𝑏=3, 𝛽=ℓ-2 1.611 1 485 71
ℓ=84, 𝑒𝑏=3, 𝛽=ℓ-2∗ 1.548 4 922 74

Re
c.
Sp

lit
tin

g RecSplit ℓ=8, 𝑏=100 1.793 702 106
ℓ=14, 𝑏=2000∗ 1.584 122 171 125

SIMDRecSplit ℓ=8, 𝑏=100 1.809 109 120
ℓ=16, 𝑏=2000∗ 1.560 125 805 126

CONSENSUS
𝑘=512, 𝜀=0.1∗ 1.579 273 147
𝑘=32768, 𝜀=0.0005 1.444 33 088 199
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Table 7. Selected configurations for all competitors. Measurements are all single-threaded and for 10 000
input keys to illustrate lower order terms. Refer to Table 6 for the main comparison with a larger input set.

Approach Configuration Space Construction Query
bits/key ns/key ns/query

Bu
ck
et

Pl
ac
em

en
t

FCH 𝑐=7.0∗ 7.072 91 23
𝑐=3.0 3.072 15 900 23

CHD 𝜆=4∗ 2.243 262 83
𝜆=6 2.086 2 400 85

PTHash 𝜆=4.0, 𝛼=0.99, C-C 2.957 200 18
𝜆=6.0, 𝛼=0.95, EF∗ 2.394 432 28

PTHash-HEM 𝜆=4.0, 𝛼=0.99, C-C 3.181 221 19
𝜆=6.0, 𝛼=0.95, EF∗ 2.438 485 32

PHOBIC 𝜆=4.0, 𝛼=1.0, IC, C 37.349 236 15
𝜆=6.0, 𝛼=1.0, IC, Rice∗ 43.691 634 20

PtrHash 𝜆=3.0, linear, vec∗ 3.159 86 7
𝜆=4.0, cubic, EF 2.329 15 800 8

Fi
ng

er
pr
in
tin

g

BBHash 𝛾=5.0∗ 7.475 1 700 31
𝛾=1.5 3.878 1 900 38

FMPH 𝛾=5.0∗ 6.419 21 400 23
𝛾=1.5 3.162 32 31

FMPHGO 𝛾=5.0, 𝑠=4, 𝑏=16∗ 6.547 15 700 21
𝛾=1.5, 𝑠=4, 𝑏=16 2.566 15 800 26

FiPS 𝛾=5.0∗ 7.117 38 17
𝛾=1.5 3.302 53 26

M
ul
tip

le
Ch

oi
ce

BPZ 𝑐=1.25, 𝑏=3∗ 7.519 102 43
𝑐=1.25, 𝑏=6 3.145 96 47

SicHash 𝛼=0.95, 𝑝1=37, 𝑝2=44∗ 2.434 160 39
𝛼=0.97, 𝑝1=45, 𝑝2=31 2.310 7 600 38

ShockHash-RS ℓ=40, 𝑏=2000∗ 1.842 1 800 91
ℓ=55, 𝑏=2000 1.816 42 800 89

Bip. ShockHash-RS ℓ=64, 𝑏=2000∗ 1.810 5 800 97
ℓ=128, 𝑏=2000 1.771 169 300 81

Bip. ShockHash-Flat ℓ=64∗ 2.387 913 48
ℓ=100 2.289 8 500 46

MorphisHash ℓ=40, 𝑏=2000, 𝛽=ℓ-4 1.538 4 700 88
ℓ=64, 𝑏=2000, 𝛽=ℓ-4∗ 1.493 8 200 84

MorphisHash-Flat ℓ=60, 𝑒𝑏=3, 𝛽=ℓ-2 2.088 1 500 41

Re
c.
Sp

lit
tin

g RecSplit ℓ=8, 𝑏=100 1.979 689 57
ℓ=14, 𝑏=2000∗ 1.775 118 900 73

SIMDRecSplit ℓ=8, 𝑏=100 2.041 126 65
ℓ=16, 𝑏=2000∗ 1.781 113 400 74

CONSENSUS
𝑘=512, 𝜀=0.1∗ 2.144 291 58
𝑘=32768, 𝜀=0.0005 3.634 125 57
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Bucket Placement Fingerprinting Multiple Choice Recursive Splitting
FCH [71] BBHash [116] BPZ [26] RecSplit [66]
CHD [12] FMPH [16] SicHash [110] SIMDRecSplit [19]
PTHash [141] FMPHGO [16] ShockHash-RS [112] CONSENSUS-RecSplit [107]
PHOBIC [94] FiPS [109] Bip. ShockH-Flat [111]
PtrHash [87] Bip. ShockH-RS [111]

MorphisHash-Flat [93]
MorphisHash-RS [93]
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(a) Construction throughput by space overhead.
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(b) Query throughput by space overhead.

Figure 11. Trade-off of construction time, space consumption, and query time on the ARM machine. Single-
threaded measurements with 𝑛 = 100 million keys. For some approaches, we only show markers for every
fourth point to increase readability.

D Experiments on ARMMachine
In addition to the x86 machine that we perform our main experiments on, we run the comparison
on an ARM machine as well. In this section, we give an overview over the results. We use an
Ampere Altra Q80-3 processor with 80 cores and a base clock speed of 3.00GHz. The sizes of the
L1 and L2 data caches are 64 KiB and 1 MiB per core, and the L3 cache has a size of 32 MiB. The
machine runs Rocky Linux 9.4 with Linux 5.14.0. We use the GNU C++ compiler version 14.2.0 with
optimization flags -O3 -march=native. For the competitors written in Rust, we compile in release
mode with target-cpu=native. Because the machine does not support AVX instructions, we do
not include SIMDRecSplit in our evaluation. There are no competitors that specifically support the
vector instructions on ARM machines, but the compiler might still automatically vectorize parts of
all competitors. Figure 11 gives our main comparison on the ARM machine.

Construction. Overall, the ARM machine is slower, which can be explained by the fact that it
is a server machine with lower base clock speed. On the ARM machine, Bip. ShockHash-Flat is
Pareto optimal mainly because ShockHash gets slower. The reason for this is that the splittings
profit most from SIMD parallelism, and the approaches do not have an ARM implementation. This
is also the reason why SIMDRecSplit is missing completely. The construction throughput of FiPS
surpasses the one of PtrHash, in contrast to the Intel machine.

Queries. In terms of query throughput, all approaches are slower on the ARM machine as well.
However, PTHash and PHOBIC are impacted most, showing smaller queries even in comparison to
other approaches.
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