
Preprint, 2025, pp. 1–12

doi: —

Research paper

RESEARCH PAPER

Kaminari: a resource-frugal index for approximate
colored k-mer queries

Victor Levallois,1,∗ Yoshihiro Shibuya,2 Bertrand Le Gal,3 Rob Patro,4

Pierre Peterlongo1,† and Giulio Ermanno Pibiri5,6,†

1GenScale, University of Rennes, Inria, CNRS, IRISA - UMR 6074, Rennes, France, 2Sequence Bioinformatics Unit, Institut Pasteur,

F-75015, Paris, France, 3University of Rennes, Rennes, France, 4Department of Computer Science, University of Maryland, College Park,

MD 20440, USA, 5DAIS, Ca’ Foscari University of Venice, Italy and 6ISTI-CNR, Italy
∗Corresponding author: victor.levallois@inria.fr.†Co-last authors.

Abstract

Motivation: The problem of identifying the set of textual documents from a given database containing a query string
has been studied in various fields of computing, e.g., in Information Retrieval, Databases, and Computational Biology. We
consider the approximate version of this problem, that is, the result set is allowed to contain some false positive matches
(but no false negatives), and focus on the specific case where the indexed documents are DNA strings. In this setting,
state-of-the-art solutions rely on Bloom filters as a way to index all k-mers (substrings of length k) in the documents. To
answer a query, the k-mers of the query string are tested for membership against the index and documents that contain
at least a user-prescribed fraction of them (e.g., 75–80%) are returned.
Methods and results: Here, we explore an alternative index design based on k-mer minimizers and integer compression
methods. We show that a careful implementation of this design outperforms previous solutions based on Bloom filters
by a wide margin: the index has lower memory footprint and faster query times, while false positive matches have only
a minor impact on the ranking of the documents reported. This trend is robust across genomic datasets of different
complexity and query workloads.
Software: The software is implemented in C++17 and available under the MIT license at github.com/yhhshb/kaminari.
Reproducibility information and additional results are provided at github.com/vicLeva/benchmarks kaminari.

Key words: Colored k-mers, Hashing, Minimizers, RBO.

1. Introduction

Let R = {R1, . . . , RN} be a collection of textual documents.

Efficiently identifying which documents in R contain a query

string Q is a fundamental problem, especially in fields like

Information Retrieval and Computational Biology. This work

focuses on a specialized case where the documents are DNA

strings, using the alphabet Σ = {A,C,G,T}. For large-scale

processing, it has become customary to represent a DNA string

by its collection of k-long substrings (named “k-mers”). To

assess whether Q is present in a document Ri, we compute

the number of k-mers of Q that are also substrings of Ri. If

this number is at least 75–80% of the total k-mers in Q, we

consider Q to appear in Ri [Ukkonen, 1992]. Therefore, Ri can

be viewed as a (multi-)set of |Ri| − k + 1 k-mers. However,

k-mers of Q may appear in different order in Ri, which would

mean Q does not actually appear as a substring. This situation

is unlikely unless k is very small. In this work we study efficient

solutions to the following problems.

Problem 1 (Exact colored k-mer indexing.) Build a data

structure, referred to as the index in the following, that allows

to retrieve the set Ck(x) = {i|x ∈ Ri} as efficiently as possible

for any k-mer x ∈ Σk. If x does not occur in any Ri, then

Ck(x) = ∅.

In other words, the set Ck(x) contains all the identifiers,

called “colors”, of the documents where the k-mer x appears.

We refer to Ck(x) as the color set of x.

While exact solutions to Problem 1 have been studied

extensively [Karasikov et al., 2020, 2022; Alanko et al., 2023;

Fan et al., 2023, 2024], approximate solutions — allowing for

potential false positive matches but no false negatives — are

gaining importance for their potential enhanced performance

and scalability. In this work, we thus consider the approximate

version of this problem, defined as follows.

Problem 2 (Approximate colored k-mer indexing.) Build an

index allowing retrieval of set C̃k(x) ⊇ Ck(x) as efficiently as

possible, for any k-mer x ∈ Σk and with small |C̃k(x) \Ck(x)|.

The primary motivation for studying solutions to Problem 2

is to create a more efficient method for computing C̃k(x),

© The Author 2025. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com

1

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.16.654317doi: bioRxiv preprint

email:victor.levallois@inria.fr
https://github.com/yhhshb/kaminari
https://github.com/vicLeva/benchmarks_kaminari
https://doi.org/10.1101/2025.05.16.654317
http://creativecommons.org/licenses/by-nc/4.0/

2 Levallois et al.

requiring less RAM and CPU time than Ck(x). As a drawback,

C̃k(x) is a super set of Ck(x), which may lead to false positives

(elements in C̃k(x) \ Ck(x)) that do not actually contain the

k-mer x.

State-of-the-art solutions to Problem 2 (reviewed in

Section 3) are primarily based on Bloom filters [Bloom,

1970] — the most well-known approximate membership data

structure. In these solutions, a Bloom filter is created for each

document by inserting all its k-mers in the filter. The set of

filters is then laid out as a matrix [Bingmann et al., 2019;

Bradley et al., 2019; Lemane et al., 2022, 2024], or in a tree

hierarchy [Mehringer et al., 2022; Marchet and Limasset, 2023;

Sun et al., 2018; Harris and Medvedev, 2020]. As argued below,

these approaches are space-inefficient and do not exploit some

important properties of k-mers to obtain better performance

for Problem 2.

Our contribution. We contribute an alternative index design

that does not use Bloom filters but is based on k-mer

minimizers [Schleimer et al., 2003; Roberts et al., 2004] and

integer compression techniques [Pibiri and Venturini, 2021] to

address the main limitations of the state of the art.

In short, our solution merges the color sets of k-mers in

a coherent way, e.g., those that share the same minimizer

(smallest substring). This allows to save storage space (as the

number of indexed sets reduces dramatically).Unlike Bloom-

filter based solutions, where approximate color sets are created

by merging the color sets of k-mers drawn at random (k-mers

that hash to the same bit positions in the filter), we merge them

based on their “similarity”.

While this merging strategy still allows false positives, they

minimally affect the result sets computed by our index in the

following sense. For a query Q, each reported document in the

result set is associated to a weight, being the number of k-

mers of Q that it contains. Retrieved documents are sorted by

decreasing weight, allowing to rank results. We argue that most

false positives do not have a weight able to significantly alter

the ranking of the result set compared to an exact solution.

To assess this result, we use the established similarity measure

called rank-biased overlap [Webber et al., 2010].

These methods have been implemented in a software called

“Kaminari” (雷, “thunder” in Japanese), freely available on

GitHub. We conducted an extensive experimental analysis,

comparing Kaminari with other efficient approximate and exact

indexes. Results show that Kaminari produces smaller indexes

and faster queries than other approaches. Kaminari is also

competitive in terms of time and resources used to build the

index. Lastly, we demonstrate that false positives have a small

impact on the user, as the most relevant results of a query

remain trustworthy.

2. Background

2.1. Sampling and hashing
Definition 1 (Minimizer sampling.) A minimizer sampling

scheme is defined by a triple (m, k,O), with m, k ∈ N, m < k,

and O : Σm → R is an order over all m-long strings. Given a

k-mer x, the minimizer µ of x is the leftmost m-mer of x such

that O(µ) ≤ O(y) for any other m-mer y of x.

In practice, O is usually implemented as a non-

cryptographic pseudo-random hash function, such as MurmurHash2

[Appleby, 2016], obtaining the so-called “random” minimizer

scheme [Schleimer et al., 2003; Roberts et al., 2004]. (We

however use the simple lexicographic order for ease of

visualization when discussing the examples.) To simplify

notation, “Minimizer(x)” designates the minimizer of the

k-mer x, without specifying parameters m and O. Also,

Minimizers(Q) is the (multi-)set of all the minimizers of the

k-mers of the string Q.

A string is said sampled at the positions of the minimizers of

its k-mers. For a string composed of n i.i.d. random characters

and when m is sufficiently long, the expected number of distinct

sampled positions is ≈ 2/(k − m + 2) · (n − m + 1) (see

Theorem 3 by [Zheng et al., 2020] for details and the paper

by [Groot Koerkamp and Pibiri, 2024] for a recent overview of

sampling algorithms).

Definition 2 (Minimal perfect hash function (MPHF).) Let

f : U → {1, . . . , n} for some universe set U . The function f is

said to be a minimal perfect hash function for the set S ⊆ U ,

with |S| = n, if f(x) ̸= f(y) for all x, y ∈ S, x ̸= y.

In simpler words, a MPHF for the set S maps its

n keys bijectively into the first n natural numbers. The

theoretical space lower bound [Mehlhorn, 1982; Mairson, 1983]

for representing a MPHF is n log2 e − O(logn) bits assuming

|U | → ∞, which is approximately 1.443 bits per key for large

n. Practical constructions with just 0.1% overhead on top of

the lower bound have been proposed [Lehmann et al., 2025]. In

this work, we use the PTHash data structure [Pibiri and Trani,

2023; Hermann et al., 2024], optimized for fast queries with a

space usage of 2 − 3 bits/key.

2.2. Query mode
Given a multi-set M , we indicate with w(i,M) the multiplicity

of element i in M . We colloquially refer to w(i,M) as the weight

of i in M .

Definition 3 (Threshold-union query.) Let Q be a query string

with |Q| ≥ k and M(Q) = ⊎x∈QCk(x) be the multi-set union

of the color sets for all the k-mers of Q. For a given 0 < τ ≤ 1,

the threshold-union query computes the list R(Q, τ) that is the

set {i|w(i,M(Q)) ≥ ⌊τ(|Q| − k + 1)⌋} where the colors i are

sorted by decreasing weight w(i,M(Q)).

We say that R(Q, τ) is a ranked list, as each color is ranked

by its weight. Throughout this paper, we use 1-based indexing

and square-bracket notation R[i..j] to refer to the elements from

position i to j included, 1 ≤ i ≤ j ≤ |R|.
A common value for τ is, for example, 0.8, retaining

documents containing at least 80% of the k-mers of Q. This

query mode is used by both exact and approximate indexes

in state-of-the-art methods (e.g., MetaGraph [Karasikov et al.,

2020], Fulgor [Fan et al., 2024], COBS [Bingmann et al., 2019],

and kmindex [Lemane et al., 2024]). Fig. 1 shows an example

of a threshold-union query.

The approximate version of R(Q, τ) is indicated with

R̃(Q, τ) and is defined in an analogous way but over M̃(Q) =

⊎x∈QC̃k(x). Note that, since C̃k(x) ⊇ Ck(x) for any x we

have that: (1) R̃(Q, τ) ⊇ R(Q, τ) for any query Q, and (2)

w(i, M̃(Q)) ≥ w(i,M(Q)) for any color i.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.16.654317doi: bioRxiv preprint

https://doi.org/10.1101/2025.05.16.654317
http://creativecommons.org/licenses/by-nc/4.0/

Kaminari: a resource-frugal index for approximate colored k-mer queries 3

Fig. 1. Threshold-union query example for k = 8 and τ = 0.5. The query

string Q contains 9 k-mers, x1, . . . , x9. On the right, their hypothetical

color sets. The fact that C8(x9) = ∅ means that x9 has not been indexed.

The result set R(Q, τ) is computed by including all colors whose weight

is at least ⌊τ(|Q| − k + 1)⌋ = ⌊0.5 · 9⌋ = 4, sorted by weight.

2.3. Rank-biased overlap (RBO)
Given two ranked lists of infinite length, Webber et al.

[2010] define their rank-biased overlap (RBO, henceforth) as

a measure of their similarity.

In this work, we exploit one particular definition: the

“bounded RBO”, noted RBO@D, that measures the RBO of

lists truncated at depths D. See supp. mat. for details and

examples.

3. Related work

Since this work focuses on approximate solutions, we do not

review exact indexes here. However, our experiments also report

results for two exact indexes, MetaGraph [Karasikov et al.,

2020] and Fulgor [Fan et al., 2024], used to determine the

ground truth for the queries.

Most solutions use approximate membership query data

structures, mainly indexing k-mers with Bloom filters [Bloom,

1970]. Practical implementations include BIGSI [Bradley et al.,

2019], later enhanced by COBS [Bingmann et al., 2019]. These

methods create individual Bloom filters for each document,

forming final indexes as inverted matrices that interleave the

filters. For a given hash value, N consecutive bits indicate

the presence/absence of a k-mer across N documents, allowing

efficient query access to all k-mer occurrences per sample.

Recent advancements in MetaProFi [Srikakulam et al., 2023]

and kmtricks [Lemane et al., 2022] have enabled the processing

of larger data volumes. Notably, kmtricks was utilized in

kmindex [Lemane et al., 2024] to index hundreds of terabytes

of metagenomic seawater data for the first time. This method

employs the findere approach [Robidou and Peterlongo, 2021],

where a unique hash function is used to reduce false positive

rates by querying multiple s-mers per k-mer (with s ≤ k).

This approach lowers query times by minimizing accesses to

the bloom filter. Similarly, MetaProFi utilizes a chunked Bloom

filter matrix with compression to significantly decrease the

overall index size.

A family of methods organizes Bloom filters in a tree

topology[Solomon and Kingsford, 2016; Sun et al., 2018; Harris

and Medvedev, 2020; Gupta et al., 2021; Marchet and Limasset,

2023], with leaves containing Bloom filters and internal nodes

storing unions of siblings. Such layout saves space by avoiding

duplicating information related to k-mers present in a full

subtree and enhances query speed by halting searches as soon

as a subtree is fully determined. Nevertheless, these approaches

suffer from random memory access issues that limit their query

performances.

Finally, the tools Raptor [Seiler et al., 2021] and

PebbleScout [Shiryev and Agarwala, 2024] are the closest

solutions to our proposal. They index color sets of minimizers

of k-mers rather than the k-mers themselves. For Raptor,

minimizers are indexed with Hierarchical Interleaved Bloom

Filters [Mehringer et al., 2022], optimizing for unbalanced input

dataset sizes. In PebbleScout, color sets are indexed using

minimizers of fixed length m = 25, and k-mers of length

k = 42. While PebbleScout has been effectively used on a

significant portion of the Sequence Read Archive datasets (SRA

[Katz et al., 2022]), it is not open-source, preventing a direct

comparison. Lastly, minimizers have also been exploited to map

k-mers to reads [Vandamme et al., 2025].

4. Approximate indexing of a set of documents

The high-level idea we propose is to store color sets of

minimizers, instead of color sets of k-mers. In other words,

we take the union of color sets of k-mers sharing the same

minimizer. For the sake of clarity, we define Cm(µ) as the color

set of a minimizer µ, i.e., Cm(µ) = {i|µ ∈ Ri}. In practice, our

solution is to let C̃k(x) = Cm(Minimizer(x)).

Minimizers have some important properties that should be

exploited to achieve compact space and fast query time for

Problem 2.

1. Consecutive k-mers tend to share the same minimizer.

This property allows for a drastic reduction in the size of

the final index since there are fewer distinct minimizers

than k-mers. As reviewed in Section 2.1, we expect to

have approximately (k − m + 2)/2 times fewer (random)

minimizers than k-mers.

Additionally, we exploit this property when retrieving

the color sets of k-mers: we save repeated accesses to

the color set of the minimizer (i.e., we cache the set) by

streaming through the k-mers of Q. Other solutions, like

COBS, cannot exploit this streaming query pattern because

every k-mer lookup accesses a different row of its binary

matrix, resulting in a cache miss per each k-mer of Q.

Also, we skip the query of all k-mers whose minimizer is

not indexed.

2. Minimizers are sufficiently well skewed, at least for

reasonable large length m < k, e.g., for m = 19 and

k = 31. We thus expect to decode a short color set,

whose compressed representation often takes much less

than N bits. This is in net contrast to solutions based

on uncompressed binary matrices, such as COBS, which

always has to decode N bits.

3. Consecutive k-mers tend to have very similar color sets

(if not exactly the same). As noted above, consecutive k-

mers tend to share the same minimizer. Because of this,

there is a high chance that every time we see a minimizer

we also see its k-mers. This intuitively helps to keep under

control the amount of false positives in C̃k(x) for all the

k-mers x that have minimizer µ because Cm(µ) results

from the union of similar sets. On the other hand, several

indexes reviewed in the previous section merge color sets of

randomly-chosen k-mers potentially having very different

sets of colors.

Some properties have been used in existing literature [Pibiri,

2022; Fan et al., 2024; Seiler et al., 2021; Vandamme et al.,

2025] to address related problems; however, before this

work no comprehensive solution to Problem 2 integrating

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.16.654317doi: bioRxiv preprint

https://doi.org/10.1101/2025.05.16.654317
http://creativecommons.org/licenses/by-nc/4.0/

4 Levallois et al.

(a) Index construction steps. The example uses k = 6 and m = 4. The ColorMapper

table is populated at the end of Step 4, after deduplicating color sets.

(b) Final index, stored on disk.

Fig. 2. Kaminari index: (a) construction steps; (b) final representation.

all these properties was available. Notably, these properties

are independent of the specific data structures used for

indexing minimizers and compressing color sets, allowing for

various space/time trade-offs. We detail our approach in the

following sections, introducing an index named “Kaminari”

that leverages these properties.

4.1. Index creation and description
Creation of a Kaminari index comprises four steps, represented

in Figure 2.

Step 1: Minimizer extraction and storage. For each

document Ri ∈ R, all random minimizers of length m are

computed, and their MurmurHash2 hashes1 are stored in

an external-memory vector. This vector maintains a list of

disk files (blocks) containing its elements, along with a small

internal-memory buffer for the block under construction. If the

total RAM used by the N buffers exceeds a user-defined limit,

the buffers are sorted, deduplicated, and written to N separate

blocks on disk. Let K ≥ N be the total number of blocks

written.

Step 2: Color sets formation. We merge these K

sorted blocks to deduplicate minimizers and construct the

corresponding color sets, utilizing a classic merging strategy

with log2 K parallel merges. This process also enables the

incremental building of minimizer color sets, leveraging

external-memory abstractions indicating each block’s logical

color. Color sets can be encoded as binary vectors of N bits

or through more advanced encodings (see below). Ultimately,

1 Assuming |Σ| = 4 and m ≤ 32 as in our experiments, we use

64-bit hashes.

we compute the distinct minimizers of R and their associated

color sets.

Step 3: Hashing and mapping minimizers to color sets.

Call S the set of distinct minimizers of R. A minimal perfect

hash function (MPHF) f is built for S using PTHash [Pibiri and

Trani, 2021, 2023; Hermann et al., 2024]. This function maps

each minimizer to an index in a table, ColorMapper[1..|S|],
created and used in last step.

Step 4: Color set deduplication, compression and

mapping. Let z indicate the number of distinct color sets.

Note that z ≤ |S| because different minimizers can have the

same color set. We start by deduplicating color sets and assign

a unique identifier 0 < I ≤ z to each distinct color set (for

example, following their lexicographic order). For every µ ∈ S,

we store the pair of integers (I,F) at position i = f(µ) in the

ColorMapper table:

1. The integer I uniquely identifies the color set associated

with µ.

2. The value F is b-bit integer, computed as F =

Fingerprint(µ). We implement the function Fingerprint :

Σm → [2b] as a pseudo-random hash function, that is, F is

a pseudo-random integer in the interval [1, 2b].

Such fingerprint is used in the detection of alien

minimizers (minimizers not belonging to the input

collection R). Suppose we query for a minimizer α. At

query time, Fingerprint(α) is computed and compared

against that stored in ColorMapper[f(α)]. If they are not

the same, then α is surely alien. Otherwise, α is not

alien with probability at least 1 − 1/2b. This is a folklore

technique to implement a space-efficient static filter with

prescribed false positive probability [Marchet et al., 2020;

Broder and Mitzenmacher, 2003; Bender et al., 2018]. In the

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.16.654317doi: bioRxiv preprint

https://doi.org/10.1101/2025.05.16.654317
http://creativecommons.org/licenses/by-nc/4.0/

Kaminari: a resource-frugal index for approximate colored k-mer queries 5

example of Fig. 2 we use b = 1 and these bits are displayed

in small black font within the ColorMapper table.

It follows that the ColorMapper table is stored in |S|(b +

⌈log2 z⌉) bits. The color sets themselves are compressed using

techniques inspired by Fulgor [Fan et al., 2024]. Specifically,

each color set is classified into one of the following three

categories based on its size.

• Sparse color sets. If the number of colors in the set is

less than N/4, the colors are encoded using a difference-

based approach: we first compute the differences between

consecutive integers and then apply Elias’ δ encoding [Elias,

1975] to compress them.

• Dense color sets. When the size of the set is at least N/4

and at most 3N/4, we use a binary vector of N bits. A bit

set at position i indicates that color i is present in the color

set.

• Very dense color sets. Lastly, if the size of the set exceeds

3N/4, we encode only the absent document identifiers using

the same difference-based approach as for the sparse sets.

All the compressed representations of the color sets are

concatenated in a single bitvector called ColorSets in Fig. 2.

The starting positions of the color sets are kept in a separate

list, so that we can accessed the compressed representation

of the i-th color set for any 0 < i ≤ z. Since this list is

monotone by construction, we compress it using the Elias-Fano

encoding [Elias, 1974; Fano, 1971].

To sum up, the Kaminari index consists of the following

three components: (1) the MPHF f , (2) the ColorMapper

table, (3) and the compressed color sets.

4.2. Queries
The crux of computing R̃(Q, τ) is how w(i, M̃(Q)) is

determined efficiently without explicitely materializing the set

M̃(Q), i.e., without taking the multi-set union of all the colors

sets for all the k-mers of Q. As it is clear, we need to only

consider the color sets for the minimizers of the k-mers of Q,

Z = Minimizers(Q). Since each µ ∈ Z appears in Q for w(µ, Z)

times by definition, the weight of the color i in M̃(Q) is just

the sum of the weights w(µ, Z) for all color sets Cm(µ) where

i appears. In formal terms, w(i, M̃(Q)) =
∑

µ∈Z w(µ, Z) · I[i ∈
Cm(µ)], where I[E] is the indicator variable for the event E,

that is, I[E] = 1 if E is true and 0 otherwise. This allows

us to efficiently compute w(i, M̃(Q)) in an incremental way

(Algorithm 1). We initially set w(i, M̃(Q)) = 0 and, when

scanning Cm(µ), w(µ, Z) is summed to w(i, M̃(Q)) if i ∈
Cm(µ).

It remains to explain how the set Cm(µ) is retrieved from

the index (Algorithm 2). First, p = f(µ) is computed and the

pair (j, F) = ColorMapper[p] is retrieved. If F matches the

fingerprint of µ, then we set Cm(µ) = ColorSets[j]; otherwise

Cm(µ) = ∅.

4.3. False positives
With the proposed scheme, there are two different sources of

false positives when computing C̃k(x) as Cm(Minimizer(x)).

1. The first cause is that the color set of a k-mer is a

subset of the color set of its minimizer, i.e., Ck(x) ⊆
Cm(Minimizer(x)). Hence using Cm(Minimizer(x)) as

an approximation for Ck(x) clearly introduces false

positives, i.e., spurious colors that are due to Ck(y) ⊂

Algorithm 1 The threshold-union query for a sequence Q

and parameter τ , as supported by Kaminari. The algorithm

computes the ranked list R̃(Q, τ) as described in Section 2.2,

i.e., by returning all colors i such that w(i, M̃(Q)) ≥ τ(|Q| −
k + 1). For ease of notation, we let w(i) := w(i, M̃(Q)) and

R̃ := R̃(Q, τ) in the pseudocode.

1: function Threshold-Union-Query(Q, τ)

2: forall i ∈ [1..N] do w(i) = 0

3: Z = Minimizers(Q) ▷ multi-set of minimizers of Q

4: for each distinct minimizers µ ∈ Z do

5: Cm(µ) = Color-Set(µ)

6: for i ∈ Cm(µ) do

7: w(i) += w(µ, Z)

8: R̃ = []

9: for w(i) in non-increasing order do

10: if w(i) < ⌊τ(|Q| − k + 1)⌋ then break

11: append i to R̃

12: return R̃

Algorithm 2 The retrieval of the color set of the minimizer µ

from a Kaminari index.

1: function Color-Set(µ)

2: p = f(µ) ▷ p is the hash value of µ.

3: (j,F) = ColorMapper[p]

4: if F = Fingerprint(µ) then return ColorSets[j]

5: return ∅

Cm(Minimizer(y)) for any other k-mer y ̸= x such that

Minimizer(y) = Minimizer(x). This effect is exacerbated

when the k-mer is absent but the minimizer is present. In

this case, all the colors in the returned color set are false

positives.

2. The second cause is that the MPHF f — by definition —

cannot detect whether a minimizer has been indexed or not.

For an alien minimizer µ, we remark that f(µ) can be any

integer in {1, . . . , |S|}. This implies that Kaminari always

returns a color set, even when an alien minimizer is queried.

In such cases, the correct color set would be the empty

set and therefore all elements of the returned set must be

considered false positives.

To mitigate this effect, we use the b-bit fingerprint F

stored along with the identifier of the color set of each

minimizer. As already noticed, Fig. 2 shows an example

with b = 1, so that we reject alien minimizers for

approximately 50% of the time.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.16.654317doi: bioRxiv preprint

https://doi.org/10.1101/2025.05.16.654317
http://creativecommons.org/licenses/by-nc/4.0/

6 Levallois et al.

Fig. 3. The same example discussed in Fig. 1 but in the approximate

setting presented in Section 4, i.e., assuming that C̃k(xi) = Cm(µj) for

a k-mer xi whose minimizer is µj . The lexicographic minimizer of length

m = 4 of each k-mer is indicated in bold font; we have µ1 = CCGG,

µ2 = AGAC, µ3 = ACCT, and µ4 = AAGC. We assume that µ1−3 match the

fingerprint stored in the index (green check mark), whereas µ4 does not

(red warning) and it is correctly labeled as alien. Compared to the exact

result set R(Q, τ) = [4, 14, 13, 22, 3, 5, 9, 2] from Fig. 1, the set R̃(Q, τ)

contains three false positives, {8, 19, 18} (highlighted in yellow), and the

ranking of the reported colors is different.

Fig. 3 shows an example of these two effects, using the same

query string Q from Fig. 1. Note how, for example, color 19 is

a false positive for the first of the two reasons described above:

it belongs to both C4(µ1) and C4(µ3) and has a weight of 6 >

⌊τ(|Q| − k + 1)⌋ = 4. This means that minimizers CCGG and

ACCT appear in R19, leading to color 19 to be associated to all

k-mers having these two minimizers (in the example, x1 and

x4−8). On the other hand, as an example of alien minimizer

lookups, we reconsider the example from Fig. 1. There, k-mer

x9 does not appear in any document of R. Let us further assume

that this so because its minimizer, AAGC, is an alien minimizer.

While the returned color set C4(µ4) can be any of the indexed

color sets, the fingerprint matching strategy correctly identifies

it as an alien minimizer. Note how this prevents the color 8 to

gain a weight of 8.

The expectation is that false positives do not occur in more

than τ · 100% of the color sets of the k-mers of Q, and are thus

not reported in the final result R̃(Q, τ).

5. Results

Kaminari is written in C++ and was compiled with gcc

14.2.0 for the experiments illustrated here. Reproducibility

scripts, including scripts to download all tested collections

and to build and query the indexes can be found at

github.com/vicLeva/benchmarks kaminari.

We report the performance of Kaminari in terms of disk

size, query time, and resource usage during construction.

Effectiveness is measured using the RBO similarity, as stated

in Section 2. For all experiments, we considered canonical k-

mers, with k = 31 and τ = 0.8 for queries, motivated by results

presented Figure 4 in appendix.

Hardware. All experiments were conducted on a GenOuest

platform on a node with 4 × 8 cores Xeon E5-2660, clocked at

2.20 GHz and with 1.5 TB of memory, running CentOS Linux 7

(Core) server with a 64-bit architecture (kernel version 3.10.0).

Datasets. We consider five collections characterized by

different file counts, average lengths, and internal similarity.

Basic statistics are provided in Table 1.

• Ecoli: 3,682 E. Coli genomes.

• Salmonella: 10,000 S. Enterica genomes.

Ecoli Salmonella Human Gut Sea-Water

Colors 3,682 10,000 60 10,000 12

Distinct k-mers (×106) 259 633 5,917 7,766 25,714

Min (×106) 0.05 0.14 2,423 0.41 1,579

Max (×106) 11.01 13.21 2,574 4.18 4,122

Avg (×106) 5.06 4.84 2,528 1.92 2,478

Distinct minimizers (×106) 20 58 347 763 2,485

Distinct color sets (×106) 2.866 2.847 6.640 72.474 0.002

Table 1. Some basic, approximate, statistics for the tested

collections for k = 31 and m = 19 as minimizer length.

Ecoli Human Salmonella Gut Sea-Water

Raw data size (gzip) 5.52 48.53 14.17 5.72 38.79

Kaminari 0.50 1.13 0.81 4.78 4.51

Fulgor 1.35 4.67 2.28 12.23 37.54

COBS 7.01 64.07 17.59 6.95 109.50

kmindex 2.91 11.02 9.49 5.43 4.51

Raptor 2.71 17.75 7.37 4.57 8.72

MetaGraph 0.33 3.09 0.60 3.88 11.05

Table 2. Comparisons of index size on disk and raw data size

(compressed with gzip). All values are in gigabytes. Color code is

green: < 3 × best, orange: < 10 × best, red otherwise.

• Human: 60 whole human genomes (30 paternal haplotypes;

30 maternal).

• Gut: 10,000 Gut metagenome-assembled genomes (MAG).

• Sea-Water: A collection of 12 metagenomics non-assembled

samples from sea water.

Competitors. We compared the performance of Kaminari

against 2 exact tools: Raptor and MetaGraph alongside with

3 approximate tools: COBS, kmindex and Raptor. More details

about these tools in Appendix. Rambo is excluded due to its

index size being up to twice that of COBS, and HowDe-SBT

is not included as its construction and queries are significantly

slower than those of COBS [Bingmann et al., 2019]. Among

the tested tools, Fulgor and MetaGraph are exact solutions,

yielding no false positive matches. They serve as baselines for

evaluating the tradeoffs of approximate solutions. Additionally,

we compared the exact rankings from Fulgor with those from

non-exact tools using the RBO measure to assess the latter’s

effectiveness.

All indexes were evaluated using the C++ implementations

provided by the authors. Default parameters were employed

unless otherwise noted, and tools were provided 32 threads to

operate. We report in Appendix the tested tool versions and

the exact parameters used.

5.1. Efficiency

Index size. Table 2 shows the disk size of each index and raw

data. Kaminari consistently produces the smallest index, often

orders of magnitude smaller, with the exception of MetaGraph,

which utilizes the BOSS [Bowe et al., 2012] data structure.

Results show that Kaminari performs well across various data

types, including assembled bacterial and eukaryotic genomes,

MAG genomes, and complex raw data. Although MetaGraph

generates compact indexes, it suffers from significantly longer

query times, as shown in the next section.

Query performance. The second key result is Kaminari’s

query speeds, reported Table 3 (and Table 8 in Appendix).

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.16.654317doi: bioRxiv preprint

https://github.com/vicLeva/benchmarks_kaminari/
https://doi.org/10.1101/2025.05.16.654317
http://creativecommons.org/licenses/by-nc/4.0/

Kaminari: a resource-frugal index for approximate colored k-mer queries 7

Ecoli Human Salmonella Gut Sea-Water

seconds GB seconds GB seconds GB seconds GB seconds GB

Kaminari 7 0.6 3 1.2 22 1.2 10 4.8 10 4.6

Fulgor 21 1.5 8 4.7 62 2.4 16 12.3 29 37.6

COBS 80 7.4 103 64.1 166 18.6 52 7.9 121 109.5

kmindex 88 24.2 19 2.5 328 60.3 91 61.2 11 3.1

Raptor 5 2.8 9 17.8 12 7.4 5 4.6 5 8.8

MetaGraph 3619 0.5 262 3.1 13065 0.8 200 4.0 27 11.1

Table 3. Time and peak memory usage for 50,000 positive queries (1000 base pairs each), using τ = 0.8. See Table 2 for color code.

These results show the total elapsed time to perform 50,000

queries for each dataset, each query consisting of a sequence

composed of 1,000 bases. Results with different query lengths

are proposed in the companion repository. In case of so-called

“positive queries” (Table 3), these queried sequences were

randomly taken from the documents used to build the index.

On the other hand, “negative queries” (Table 8 in Appendix)

are random sequences absent from the documents.

With the exception of kmindex, RAM usage reflects the size

of the index for all tools. kmindex does not load the full index in

memory. Additionally, it is optimised so that parts of the index

are mapped to RAM and remain in RAM as long as memory

is available, limiting the number of disk accesses. This explains

its higher RAM usage with 50,000 queries.

The MetaGraph results show prohibitive query times, up to

≈ 600 times slower than Kaminari when performing positive

queries. Raptor also shows good time performances, however,

its index sizes and, consequently its RAM usage is up to an

order of magnitude bigger than Kaminari ones.

Overall, Kaminari results are always among the best ones,

if not the best. In contrast, all other tested solutions have at

least one instance where query time or RAM usage is an order

of magnitude greater than that of Kaminari.

Construction performance. Table 9 (Appendix) shows that

the construction results for Kaminari are good, if not the

best, for genomic datasets (Ecoli, Human, Salmonella). For more

complex datasets like Gut and Sea-Water, tools such as kmindex

perform better due to their specialized construction algorithms.

We propose two construction strategies: the default method

described in Chapter 4.1 and a second one enabled by the

--metagenome option. This option, intended for datasets with

over 128 documents composed solely of metagenomic data,

reduces redundancy intra and inter documents, resulting in

a high number of minimizers and shorter color sets. Therefore,

in this case, we encode color sets as lists of integers rather than

using binary encoding.

5.2. Effectiveness with default parameters
In this section we provide effectiveness results while using all

tools with their default parameters. We believe that these

information are useful from a user perspective. However, these

comparisons might appear unfair as, under these conditions,

FPRs and index sizes are not directly comparable between

different tools. In Section 5.3 and Section 5.4, we propose

results fixing one of these two parameters at a time.

False positives evaluation. As we use τ = 0.8, a document

is defined as a false positive if 80% or more of the k-mers of the

query sequence are reported as present whereas an exact index

would correctly mark it as absent.

Ecoli Human Salmonella Gut

Kaminari 25.61 1.24 32.08 5.83

COBS 25.83 0.87 31.64 5.84

kmindex 5.81 1.06 5.00 0.60

Raptor 31.14 1.27 36.67 7.97

Table 4. False positive rates (%), using default parameters for all

tools (recalling that index sizes for COBS, kmindex and Raptor are

≈ 3 to 21 times bigger than for Kaminari).

Table 4 shows that Kaminari and COBS produce similar

results, with distinct false positive sources: minimizers and

bloom filters. In contrast, Raptor accumulates imprecision

from both, leading to more false positives. The Findere

method allows kmindex to attain the best precision, despite

significantly slower query times.

For negative (random) queries, we observed that all tested

tools reported 0 false positives.

RBO results. False positives arise from over-estimations that

cause a document to incorrectly exceed the threshold τ . We

think that the real impact for the user is better highlighted by

the RBO metric.

We compared Kaminari answers to the ground truths

provided by Fulgor by using the RBO metric to estimate

the impact of the false positives in real-life applications in

which top hits are the most informative. For every query, we

computed RBO(R(Q, τ), R̃(Q, τ), p), with R(Q, τ) being the

ordered list of documents generated by Fulgor and R̃(Q, τ)

the one generated by non-exact tools, including Kaminari. The

RBO value depends on a parameter p. We explain in appendix

how this parameter was determined.

While RBO can be applied to very short lists (e.g., size <

10), it is not very informative in such case due to limited overlap

measurement opportunities. Therefore, we present Table 5

RBO metrics only for lists of size ≥ 10. We did not include Sea-

Water results as the dataset contains only 12 samples. Similarly,

Raptor is also excluded due to its lack of ranked output,

rendering RBO evaluation infeasible.

All datasets and tools show a significant skew toward high

RBO values, with most queries near an RBO of 1. This suggests

that tools addressing Problem 2 produce rankings closely

resembling the ground truth across various datasets. Except for

the Human dataset, Kaminari consistently achieves the highest

RBO values across biological domains, demonstrating its

robustness and effectiveness in capturing meaningful rankings.

In the case of the Human dataset, the RBO metric encounters

limitations due to the extreme similarity of samples, leading

to subtle variations in query answers. Consequently, minor

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.16.654317doi: bioRxiv preprint

https://doi.org/10.1101/2025.05.16.654317
http://creativecommons.org/licenses/by-nc/4.0/

8 Levallois et al.

RBOs ≤ 0.50]0.50; 0.95]]0.95; 1.00]

Kaminari 0 1 99

Ecoli COBS 1 19 80

kmindex 0 14 86

Kaminari 11 15 74

Human COBS 0 4 96

kmindex 7 12 81

Kaminari 0 1 99

Salmonella COBS 5 6 89

kmindex 2 2 96

Kaminari 1 7 92

Gut COBS 0 29 71

kmindex 2 6 92

Table 5. RBO values distribution for positive queries, for truth

lists of size ≥ 10. In each column, we report the proportion (%) of

queries whose RBO value are in the specified range. Full results are

provided Figure 5 in appendix.

Ecoli Human Salmonella Gut

Kaminari 25.61 1.24 32.08 5.83

COBS 76.67 1.92 59.27 10.57

kmindex 76.59 1.92 59.21 0.79

Raptor 62.91 1.92 58.11 7.99

Table 6. False positive rates (%), using the same index size for all

tested tools.

Ecoli Salmonella Gut

Kaminari 0.94 1.73 3.44

COBS 20.29 65.28 4.52

kmindex 2.20 6.51 2.71

Raptor 15.76 NA 2.93

Table 7. Index Size (GB), while empirically producing results with

10% of false positives. With k = 31, Raptor could not reach 10%

of false positives for Salmonella. More details about the parameters

used can be found in Appendix.

discrepancies from non-exact methods can alter ranking results.

Nevertheless, as shown previously, the false positive rate for this

dataset remains low, at 1.24% for Kaminari, thus preserving the

biological significance of the findings.

5.3. Effectiveness fixing the index sizes
In this section, for all tested tools, we fixed the index size to the

one obtained by Kaminari. In this configuration, false positive

rates, shown Table 6, highlight that on genomic data, for the

same disk size budget, Kaminari generates the least amount

of false positives. On the metagenomic Gut dataset, kmindex

performs better despite being ≈ 9 times slower to query. RBO

results (Figure 6 in Appendix) additionally show that in this

setup, Kaminari provides more precise ranking of the results,

for any of the considered dataset.

5.4. Effectiveness fixing the FPR
So far, every tool has been used and measured with default

parameters. In Table 7, we adjusted the parameters of the

approximate tools in order to achieve 10% of false positives

in queries. Human and Sea-Water datasets were not included

because 10% could not be reached due to the data redundancy

and documents number. Results are similar to Table 2 in

the sense that Kaminari provides the best results, except for

metagenomes for which it nevertheless remains competitive.

6. Conclusions and future work

In this work, we introduced Kaminari, a novel approximate

approach for indexing sets of genomic sequences. By leveraging

the properties of k-mer minimizers, Kaminari achieves

significant improvements over traditional Bloom filter-based

solutions in terms of both memory efficiency and query

performance. We believe this approach will enable the creation

of indexes for massive datasets, in the terabyte regime, while

significantly reducing query time.

Some tools are more suited to indexing and querying set

of closely related genomes (e.g., Fulgor [Fan et al., 2024])

while others are better tailored for complex non-assembled

datasets (e.g., kmindex [Lemane et al., 2024]). On genomic

datasets Kaminari always generates the smallest index (with

the notable example of MetaGraph [Karasikov et al., 2020,

2022] which, however, suffers from prohibitive query times). On

metagenomic dataset, kmindex achieves the best FPR for fixed

index size, despite being approximately 9× slower to query.

Overall, Kaminari consistently ranks as one of the fastest tools

across all data types, generating the smallest indexes (or the

lower FPR), often achieving the top performance and providing

qualitative rankings of results. This robustness represents a

key advantage when indexing heterogeneous and/or poorly

characterized datasets.

This work pioneers the use of Rank-Biased Overlap (RBO)

metric to evaluate similarity between ranked lists of results.

Unlike traditional false positive measurements, RBO quantifies

how approximation impacts result ordering — a crucial metric

for assessing bias in non-exact indexing methods. We propose

this evaluation framework as a new standard for measuring

approximate indexing quality. While Kaminari may generate

some false positives answers, RBO results showed that the

impact on the ranking of colors is small. For instance, results

on Ecoli show that 99% of queries present a RBO higher than

0.9, indicating the reliability of the top results.

Future work will study the use of partitioned indexes in

external-memory for scaling up to even larger collections,

and repetition-aware compression [Campanelli et al., 2024] to

compress the color sets even further.

References

J. N. Alanko, J. Vuohtoniemi, T. Mäklin, and S. J. Puglisi.

Themisto: a scalable colored k-mer index for sensitive

pseudoalignment against hundreds of thousands of bacterial

genomes. Bioinformatics, 39(Supplement 1):i260–i269, June

2023.

A. Appleby. Smhasher. https://github.com/aappleby/smhasher,

2016.

M. A. Bender, M. Farach-Colton, M. Goswami, R. Johnson,

S. McCauley, and S. Singh. Bloom filters, adaptivity, and

the dictionary problem. In FOCS, pages 182–193. IEEE

Computer Society, 2018. doi: 10.1109/FOCS.2018.00026.

T. Bingmann, P. Bradley, F. Gauger, and Z. Iqbal.

Cobs: a compact bit-sliced signature index. In

International Symposium on String Processing and

Information Retrieval, pages 285–303. Springer, 2019.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.16.654317doi: bioRxiv preprint

https://github.com/aappleby/smhasher
https://doi.org/10.1101/2025.05.16.654317
http://creativecommons.org/licenses/by-nc/4.0/

Kaminari: a resource-frugal index for approximate colored k-mer queries 9

B. H. Bloom. Space/time trade-offs in hash coding with

allowable errors. Communications of the ACM, 13(7):

422–426, 1970.

A. Bowe, T. Onodera, K. Sadakane, and T. Shibuya. Succinct

de Bruijn graphs. In International Workshop on Algorithms

in Bioinformatics (WABI), pages 225–235. Springer, 2012.

P. Bradley, H. C. Den Bakker, E. P. Rocha, G. McVean, and

Z. Iqbal. Ultrafast search of all deposited bacterial and viral

genomic data. Nature biotechnology, 37(2):152–159, 2019.

A. Z. Broder and M. Mitzenmacher. Survey: Network

applications of bloom filters: A survey. Internet Math., 1

(4):485–509, 2003. doi: 10.1080/15427951.2004.10129096.

A. Campanelli, G. E. Pibiri, J. Fan, and R. Patro. Where

the patterns are: repetition-aware compression for colored de

Bruijn graphs. Journal of Computational Biology, 31(10):

1022–1044, 2024.

P. Elias. Efficient storage and retrieval by content and address

of static files. Journal of the ACM, 21(2):246–260, 1974.

P. Elias. Universal codeword sets and representations of the

integers. IEEE Transactions on Information Theory, 21

(2):194–203, 1975.

J. Fan, J. Khan, G. E. Pibiri, and R. Patro. Spectrum

preserving tilings enable sparse and modular reference

indexing. In Research in Computational Molecular Biology,

pages 21–40, 2023.

J. Fan, J. Khan, N. P. Singh, G. E. Pibiri, and R. Patro. Fulgor:

A fast and compact k-mer index for large-scale matching and

color queries. Algorithms for Molecular Biology, 19(1):1–21,

2024.

R. M. Fano. On the number of bits required to implement an

associative memory. Memorandum 61, Computer Structures

Group, MIT, 1971.

R. Groot Koerkamp and G. E. Pibiri. The mod-minimizer:

A Simple and Efficient Sampling Algorithm for Long k-

mers. In 24th International Workshop on Algorithms in

Bioinformatics (WABI 2024), volume 312, pages 11:1–

11:23, 2024. doi: 10.4230/LIPIcs.WABI.2024.11.

G. Gupta, M. Yan, B. Coleman, B. Kille, R. A. L. Elworth,

T. Medini, T. Treangen, and A. Shrivastava. Fast processing

and querying of 170tb of genomics data via a repeated

and merged bloom filter (rambo). In Proceedings of the

2021 International Conference on Management of Data,

SIGMOD ’21, page 2226–2234, New York, NY, USA, 2021.

Association for Computing Machinery. ISBN 9781450383431.

doi: 10.1145/3448016.3457333. URL https://doi.org/10.

1145/3448016.3457333.

R. S. Harris and P. Medvedev. Improved representation of

sequence bloom trees. Bioinformatics, 36(3):721–727, 2020.

S. Hermann, H.-P. Lehmann, G. E. Pibiri, P. Sanders, and

S. Walzer. PHOBIC: Perfect Hashing With Optimized

Bucket Sizes and Interleaved Coding. In T. Chan,

J. Fischer, J. Iacono, and G. Herman, editors, 32nd Annual

European Symposium on Algorithms (ESA 2024), volume

308 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 69:1–69:17, Dagstuhl, Germany, 2024.

Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN

978-3-95977-338-6. doi: 10.4230/LIPIcs.ESA.2024.69.

M. Karasikov, H. Mustafa, A. Joudaki, S. Javadzadeh-

no, G. Rätsch, and A. Kahles. Sparse Binary Relation

Representations for Genome Graph Annotation. Journal of

Computational Biology, 27(4):626–639, Apr. 2020.

M. Karasikov, H. Mustafa, G. Rätsch, and A. Kahles. Lossless

indexing with counting de bruijn graphs. Genome Research,

32(9):1754–1764, 2022.

K. Katz, O. Shutov, R. Lapoint, M. Kimelman, J. R. Brister,

and C. O’Sullivan. The sequence read archive: a decade more

of explosive growth. Nucleic acids research, 50(D1):D387–

D390, 2022.

H.-P. Lehmann, P. Sanders, S. Walzer, and J. Ziegler.

Combined search and encoding for seeds, with an application

to minimal perfect hashing. CoRR, abs/2502.05613, 2025.

doi: 10.48550/ARXIV.2502.05613.

T. Lemane, P. Medvedev, R. Chikhi, and P. Peterlongo.

Kmtricks: efficient and flexible construction of bloom filters

for large sequencing data collections. Bioinformatics

Advances, 2(1):vbac029, 2022.

T. Lemane, N. Lezzoche, J. Lecubin, E. Pelletier, M. Lescot,

R. Chikhi, and P. Peterlongo. Indexing and real-time user-

friendly queries in terabyte-sized complex genomic datasets

with kmindex and ora. Nature Computational Science, 4(2):

104–109, 2024.

H. G. Mairson. The program complexity of searching a table.

In FOCS, pages 40–47. IEEE Computer Society, 1983. doi:

10.1109/SFCS.1983.76.

C. Marchet and A. Limasset. Scalable sequence database

search using partitioned aggregated bloom comb trees.

Bioinformatics, 39(Supplement 1):i252–i259, 2023.

C. Marchet, L. Lecompte, A. Limasset, L. Bittner, and

P. Peterlongo. A resource-frugal probabilistic dictionary

and applications in bioinformatics. Discrete Applied

Mathematics, 274:92–102, 2020. ISSN 0166-218X. doi:

https://doi.org/10.1016/j.dam.2018.03.035. Stringology

Algorithms.

K. Mehlhorn. On the program size of perfect and universal

hash functions. In 23rd Annual Symposium on Foundations

of Computer Science, pages 170–175. IEEE, 1982.

S. Mehringer, E. Seiler, F. Droop, M. Darvish, R. Rahn,

M. Vingron, and K. Reinert. Hierarchical interleaved bloom

filter: enabling ultrafast, approximate sequence queries.

Genome Biology, 24, 2022.

G. E. Pibiri. Sparse and skew hashing of k-mers.

Bioinformatics, 38(Supplement 1):i185–i194, 06 2022. ISSN

1367-4803.

G. E. Pibiri and R. Trani. Pthash: Revisiting fch minimal

perfect hashing. In Proceedings of the 44th international

ACM SIGIR conference on research and development in

information retrieval, pages 1339–1348, 2021.

G. E. Pibiri and R. Trani. Parallel and external-memory

construction of minimal perfect hash functions with pthash.

IEEE Transactions on Knowledge and Data Engineering,

2023.

G. E. Pibiri and R. Venturini. Techniques for inverted index

compression. ACM Computing Surveys (CSUR), 53(6):

125:1–125:36, 2021.

M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A.

Yorke. Reducing storage requirements for biological sequence

comparison. Bioinformatics, 20(18):3363–3369, 2004.

L. Robidou and P. Peterlongo. findere: Fast and precise

approximate membership query. In String Processing and

Information Retrieval, pages 151–163, Cham, 2021. Springer

International Publishing. ISBN 978-3-030-86692-1.

S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing:

local algorithms for document fingerprinting. In Proceedings

of the 2003 ACM SIGMOD international conference on

Management of data, pages 76–85, 2003.

E. Seiler, S. Mehringer, M. Darvish, E. Turc, and K. Reinert.

Raptor: A fast and space-efficient pre-filter for querying very

large collections of nucleotide sequences. Iscience, 24(7),

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.16.654317doi: bioRxiv preprint

https://doi.org/10.1145/3448016.3457333
https://doi.org/10.1145/3448016.3457333
https://doi.org/10.1101/2025.05.16.654317
http://creativecommons.org/licenses/by-nc/4.0/

10 Levallois et al.

2021.

S. A. Shiryev and R. Agarwala. Indexing and searching

petabase-scale nucleotide resources. Nature Methods, pages

1–9, 2024.

B. Solomon and C. Kingsford. Fast search of thousands of short-

read sequencing experiments. Nature Biotechnology, 34(3):

300–302, 2016.

S. K. Srikakulam, S. Keller, F. Dabbaghie, R. Bals, and O. V.

Kalinina. Metaprofi: an ultrafast chunked bloom filter for

storing and querying protein and nucleotide sequence data

for accurate identification of functionally relevant genetic

variants. Bioinformatics, 39, 2023.

C. Sun, R. S. Harris, R. Chikhi, and P. Medvedev. Allsome

sequence bloom trees. Journal of Computational Biology,

25(5):467–479, 2018.

E. Ukkonen. Approximate string-matching with q-grams and

maximal matches. Theoretical computer science, 92(1):191–

211, 1992.

L. Vandamme, B. Cazaux, and A. Limasset. K2r: Tinted de

bruijn graphs implementation for efficient read extraction

from sequencing datasets. Bioinformatics Advances, page

vbaf111, 05 2025. ISSN 2635-0041. doi: 10.1093/bioadv/

vbaf111. URL https://doi.org/10.1093/bioadv/vbaf111.

W. Webber, A. Moffat, and J. Zobel. A similarity measure

for indefinite rankings. ACM Transactions on Information

Systems (TOIS), 28(4):1–38, 2010.

H. Zheng, C. Kingsford, and G. Marçais. Improved design

and analysis of practical minimizers. Bioinformatics, 36

(Supplement 1):i119–i127, 2020.

7. Competing interests

R.P. is a co-founder of Ocean Genomics Inc. The remaining

authors declare no competing interests.

8. Fundings

This work was supported by Inria Challenge OmicFinder,

ANR SeqDigger (ANR-19-CE45-0008) and the NIH under

grant award numbers R01HG009937 to R.P. Also, this project

has been made possible in part by grants DAF2024-342821,

DAF2022-252586 from the Chan Zuckerberg Initiative DAF, an

advised fund of Silicon Valley Community Foundation.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.16.654317doi: bioRxiv preprint

https://doi.org/10.1093/bioadv/vbaf111
https://doi.org/10.1101/2025.05.16.654317
http://creativecommons.org/licenses/by-nc/4.0/

Kaminari: a resource-frugal index for approximate colored k-mer queries 11

9. Appendix

9.1. Rank-biased overlap (RBO)
Given two ranked lists of infinite length, A and B, Webber et al.

[2010] define their rank-biased overlap (RBO, henceforth) as a

measure of their similarity. Let Xd = |A[1..d] ∩ B[1..d]| be the

overlap between the prefixes of length d. For a given parameter

0 < p < 1, the similarity is defined as

RBO(A,B, p) =
1 − p

p

∞∑
d=1

Xd

d
p
d

where Xd/d is a measure of “agreement” between the prefixes of

length d. Clearly, the similarity lies in [0, 1]: a value of 0 means

that the two rankings are disjoint and 1 means that they are

identical.

Bounding RBO. Although RBO is defined over infinite-length

ranked lists, the summation must be truncated at a given depth

D in practice. Call RBO@D (read “RBO at depth D”) the

truncated RBO value. It is easy to see that RBO@D provides

a lower bound to the true value of RBO, i.e., RBO > RBO@D,

if RBO@D > 0. However, Webber et al. [2010] derive a tighter

lower bound as

RBOMIN(A,B, p,D) =
1 − p

p

(D∑
d=1

Xd − XD

d
p
d−XD ln(1−p)

)
.

In this paper, we use the above formula with the largest possible

D, that is D = min{|A|, |B|}. We set A = R(Q, τ) and B =

R̃(Q, τ). Since R̃(Q, τ) ⊇ R(Q, τ), we have D = |A|.

Determining p for RBO computations. The choice of p

is of utmost importance for RBO as it influences the result.

[Webber et al., 2010] derived a formula to retrieve the weight

of a prefix of the lists according to the bias parameter p:

WRBO(p, d) = 1 − p
d−1

+
1 − p

p
· d ·

(
ln

(
1

1 − p

)
−

d−1∑
i=1

pi

i

)
.

As an example, WRBO(0.85, 17) = 0.9846 means that the first

17 elements of the lists will weight for 98.46% of the RBO value.

For positive queries, the length of the lists can vary from 1 to

N . With such a variability, we made the choice to adapt p

according to the length of the lists. More precisely, for every

query, we fixed p so that WRBO(p, ⌈0.1 · |R(Q, τ)|⌉) ≈ 0.9. In

other words, we want the top 10% of the list’s elements to

explain 90% of the RBO value. To determine p for a given d so

that WRBO(p, d) ≈ 0.9, we can exploit the following fact.

Fact 1 For fixed d, WRBO(p, d) is decreasing as p increases.

Proof . We show that d
dp (WRBO(p, d)) < 0. For the first

term 1 − pd−1, we have d
dp (1 − pd−1) = −(d − 1)pd−2.

Call f(p, d) = ln
(

1
1−p

)
−
∑d−1

i=1
pi

i and consider the second

term 1−p
p · d · f(p, d). We have d

dp

(
d · f(p, d) · 1−p

p

)
=

d
(
f ′(p, d) · 1−p

p − f(p, d) · 1
p2

)
. Now, we compute f ′(p, d) =

d
dp

(
ln
(

1
1−p

))
− d

dp

∑d−1
i=1

pi

i = 1
1−p −

∑d−1
i=1

d
dp

(
pi

i

)
= 1

1−p −∑d−1
i=1 pi−1 = 1

1−p − 1−pd−1

1−p = pd−1

1−p . Hence by simplifying, we

obtain that d
dp (WRBO(p, d)) = pd−2 − d

p2 · f(p, d).
To conclude, we show that d

dp (WRBO(p, d)) < 0 ⇐⇒
d
p2 ·f(p, d) > pd−2 ⇐⇒ f(p, d) > pd

d . Recall that, for 0 < p < 1,

the Taylor expansion of the logarithm is
∑∞

i=1
pi

i = ln
(

1
1−p

)
.

We can rewrite
∑∞

i=1
pi

i as
∑d−1

i=1
pi

i + pd

d +
∑∞

i=d+1
pi

i =

ln
(

1
1−p

)
⇐⇒ f(p, d) = ln

(
1

1−p

)
−
∑d−1

i=1
pi

i = pd

d +
∑∞

i=d+1
pi

i .

The latter quantity is clearly larger than pd

d as
∑∞

i=d+1
pi

i > 0.

□

Thus, we simply calculate the function WRBO(p, d) for

increasing p ∈ (0, 1) and return the first value of p such

that WRBO(p, d) ≈ 0.9. In practice, we consider the values

WRBO(i · ε, d) for i = 1, . . . , ⌈(1− ε)/ε⌉+1 and return the first

(i.e., largest) value p = i · ε for which WRBO(p, d) < 0.9. The

smaller ε, the better the approximation.

Interpretation and effectiveness. The parameter p affects

the “importance” given by the top-ranked elements and has a

natural probabilistic interpretation. In fact, p can be regarded

as the probability that a user considers the next element in the

ranking: a low p value indicates that the user is satisfied with

the top results only; vice versa, a high value indicates the user’s

willigness to consider more elements down in the ranking.

The RBO measure is particularly useful in scenarios where

the order of the elements in the lists matters more than their

presence lower down the ranking. For example, R̃(Q, τ) could

contain a large amount of false positives but appearing at low

rank positions, while the top-ranked colors could indeed be

identical to those in R(Q, τ). A high RBO value thus indicates

that — even in the presence of false positive matches — the

ranking produced by the proposed index aligns closely with the

true ranking. This ensures that the most relevant documents

still appear at the top, preserving the overall utility of the

retrieval process despite approximation errors.

Example. Consider the ranked list R = [4, 14, 13, 22, 3, 5, 9, 2]

from Fig. 1 and R̃ = [4, 5, 13, 14, 22, 8, 19, 2, 3, 9, 18] from Fig. 3

(computed using a method that we will explain in Section 4).

We have D = min(|R|, |R̃|) = |R| = 8. Using p = 0.5, we have

an RBO similarity of 0.801739 and RBOMIN is 0.804121. With

a lower p, for example p = 0.3, the two scores are higher and

more similar to each other: 0.867608 and 0.867650, respectively.

9.2. Tool versions and used parameters
• Kaminari: commit a323d57, parameters: -m 19

• Fulgor: commit 5ac5699, parameters: -m 19.

• COBS: commit 2fbb044, parameters: --compact-construct,

• kmindex: version 0.5.2, parameters: -k 25, -z 6. To

query 31-mers, kmindex considers 25-mers using the findere

approach [Robidou and Peterlongo, 2021].

• Raptor: version 3.0.1, parameters: --kmer 19 --window 31

• MetaGraph: version 0.3.6 (commit 5c2a12b). In particular,

we built the indexes following the methodology from [Fan

et al., 2024] (reproducible with the workflow available

at https://github.com/theJasonFan/metagraph-workflows):

the indexes use the “relaxed row-diff” BRWT data

structure [Karasikov et al., 2020], which is the most compact

variant of MetaGraph.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.16.654317doi: bioRxiv preprint

https://github.com/theJasonFan/metagraph-workflows
https://doi.org/10.1101/2025.05.16.654317
http://creativecommons.org/licenses/by-nc/4.0/

12 Levallois et al.

Fig. 4. Kaminari index size and FPR measured on positive queries by

varying the m parameter when built on the Ecoli dataset. k is fixed to 31.

About Kaminari, the choice of m impacts the size and the

false positive rate of the index. Figure 4 shows the trade-off

between performance and precision. We think m = 19 is a

reasonable choice considering our needs.

9.3. Additional results

9.3.1. Performances for negative queries

Similar conclusions apply to those drawn in the main text

to negative queries (Table 8), with two notable differences.

Firstly, Fulgor excels in quickly detecting the absence of

queried k-mers due to the SSHash data structure [Pibiri, 2022].

Secondly, MetaGraph queries do not experience the significant

computation time issues seen with positive queries.

9.3.2. Time and RAM for building indexes

Table 9 provides index construction times and peak memory

usage accross tools and datasets.

9.3.3. RBO distribution, full results

Figure 5 shows RBO results distribution, when using default

parameters of tested tools. This is an extension of results

presented Table 5.

9.3.4. RBO distribution, using equal index sizes for all
tools

Figure 6 shows RBO distribution while using the same index

size for all tested tools.

9.3.5. Raptor’s trade-off

Despite proposing ranked results, Raptor appears to be a

serious competitor when it comes to performances (index size,

query speed). In fact, it can reach Kaminari’s index size under

certain parameters. Although as shown in Figure 7, when

Raptor has the same index size for Ecoli than Kaminari (blue

curves), its false positive rate is almost twice as big (green

curves). In fact, with any parameters, Kaminari acts like a

lower bound for both size and FPR for Raptor.

9.3.6. Parameters

Table 6 and Table 7 present results where we tweaked some

parameters to reach certain results. In any case, we kept

k = 31. For COBS and kmindex, we changed the parameters

Fig. 5. RBO values distribution for positive queries, for truth lists of size

≥ 10. Each point shows the sum of the percentage of queries from its x

value (included) to the previous one (excluded). The leftmost point sums

the percentage of queries whose RBO values are in [0, 0.5].

--false-positive-rate and --bloom-size, respectively, for both

experiments. About Raptor, in Table 6, we kept m = 19 (called

--kmer-size in Raptor) as it corresponds to Kaminari’s m value,

then we modified the --false-positive-rate parameter. In

Table 7, as we modified m in Kaminari, we also did in Raptor.

Thus, in this second experiment, we tweaked --kmer-size and

--false-positive-rate for Raptor. Note that for Salmonella,

even with --kmer-size 30 and --false-positive-rate 0.0001,

a FPR of 10% could not be reached. Exact parameters are

summarized in the companion repository.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.16.654317doi: bioRxiv preprint

https://doi.org/10.1101/2025.05.16.654317
http://creativecommons.org/licenses/by-nc/4.0/

Kaminari: a resource-frugal index for approximate colored k-mer queries 13

Ecoli Human Salmonella Gut Sea-Water

seconds GB seconds GB seconds GB seconds GB seconds GB

Kaminari 2 0.6 3 1.2 2 0.9 10 4.8 10 4.6

Fulgor 1 1.5 8 4.7 2 2.3 13 12.3 26 37.6

COBS 56 7.4 98 64.1 55 18.6 52 7.9 118 109.5

kmindex 41 24.2 17 2.5 110 60.3 84 61.2 11 3.0

Raptor 1 2.8 10 17.8 4 7.4 3 4.6 5 8.8

MetaGraph 7 0.4 18 3.2 11 0.7 23 4.0 35 11.1

Table 8. Total elapsed time (seconds) and peak memory usage (GB) for 50,000 negative queries (1000 base pairs), using τ = 0.8. See Table 2

for color code.

Ecoli Human Salmonella Gut Sea-Water

h:mm:ss GB h:mm:ss GB h:mm:ss GB h:mm:ss GB h:mm:ss GB

Kaminari 0:02:01 10.12 0:08:53 46.00 0:11:31 72.47 0:50:09∗ 96.96∗ 1:38:59∗ 294.77∗

Fulgor 0:08:36 16.45 0:38:44 219.10 0:14:45 21.84 0:53:04 50.17 2:17:00 153.70

COBS 0:02:19 6.09 1:02:43 64.07 0:26:27 35.21 0:04:05 6.38 1:13:36 27.38

kmindex 0:07:07 3.71 0:37:01 8.12 0:38:36 3.38 0:19:29 10.24 0:08:48 43.74

Raptor 0:02:03 4.62 1:20:36 833.71 0:05:57 9.23 0:02:59 8.91 0:44:19 354.71

MetaGraph 0:44:50 141.65 3:34:21 284.46 2:39:49 257.08 2:17:54 148.04 2:36:16 256.18
∗ using the Kaminari –metagenome option

Table 9. Index construction time (h:mm:ss) and peak memory usage (GB). See Table 2 for color code.

Fig. 6. RBO values distribution for positive queries, for truth lists of size

≥ 10. In this setup index sizes are identical and are equal to Kaminari’s

one. See Figure 5 for details this result representation.

Fig. 7. Raptor index size and FPR measured on positive queries by

varying the FPR parameter when built on the Ecoli dataset. Kaminari

index size and FPR are parameter independent and are indicated by

dashed lines.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.16.654317doi: bioRxiv preprint

https://doi.org/10.1101/2025.05.16.654317
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Background
	Sampling and hashing
	Query mode
	Rank-biased overlap (RBO)

	Related work
	Approximate indexing of a set of documents
	Index creation and description
	Queries
	False positives

	Results
	Efficiency
	Effectiveness with default parameters
	Effectiveness fixing the index sizes
	Effectiveness fixing the FPR

	Conclusions and future work
	Competing interests
	Fundings
	Appendix
	Rank-biased overlap (RBO)
	Tool versions and used parameters
	Additional results
	Performances for negative queries
	Time and RAM for building indexes
	RBO distribution, full results
	RBO distribution, using equal index sizes for all tools
	Raptor's trade-off
	Parameters

